

Securing OpenStack with FreeIPA

Adam Young Senior Software Engineer April 18, 2013

### **Subject Matter**

- Securing OpenStack Services
- Kerberos
- LDAP
- X509 Certificate
- Identity Management
- AMQP
- Database

### **Audience Composition Survey**

- Python Coders?
- System Administrators?
- Know Kerberos?
- Know LDAP?
- Worked with FreeIPA?



### **Audience Composition Survey Cont**

ere because you thought there was going to be fre



### **Agenda**

- Securing the base
- About FreeIPA
- Technical details
- Looking forward



# SECURING THE BASE



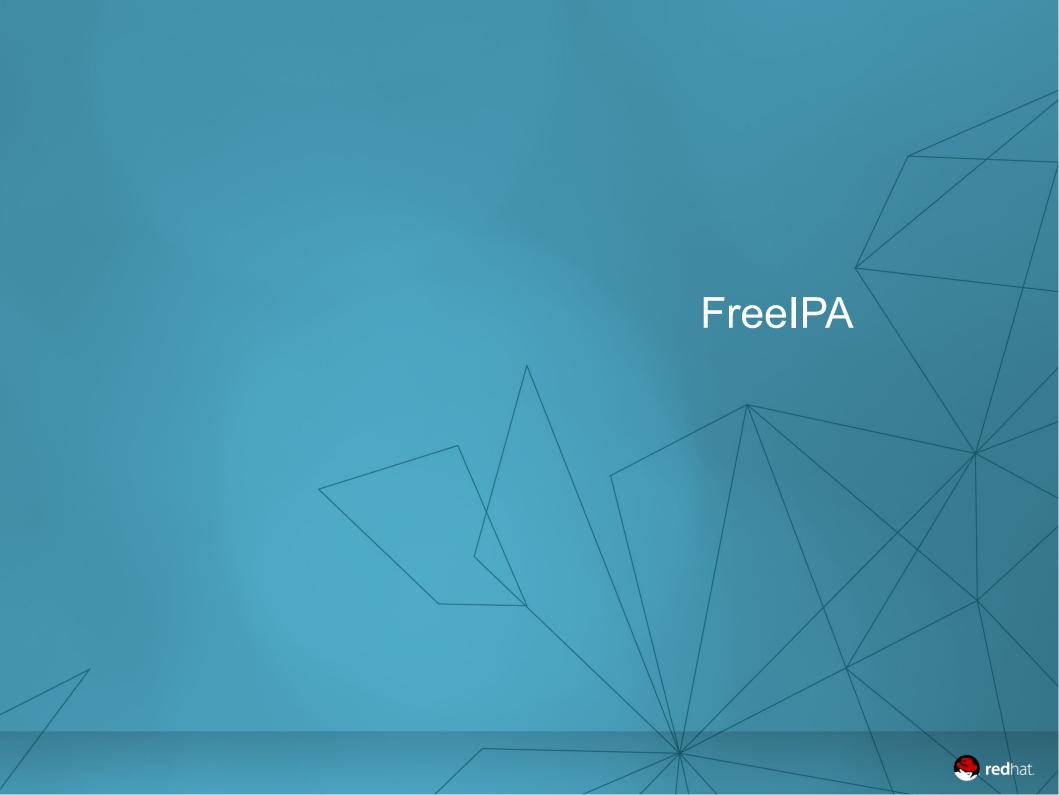
### My Nightmare

- "Sure you can run your code on my computer
- In a virtual machine."
- Hypervisor Exploit
- Escalation of Privileges
- Infects other Services
- Infects Virtual Machines
- All My Base Are Belong to You

### OpenStack Architecture

### OpenStack Architecture

### Defense in Depth


#### What OpenStack Requires

- "Physical" Hosts for Services
- Identity Management
  - $\Sigma$  Single Sign On
  - Σ Access Control/Minimize authority
- Secure Communication
  - $\Sigma$  Encrypt on the Wire
  - Σ Certificate Management
  - $\Sigma$  HTTPS
  - $\Sigma$  AMQP
  - $\Sigma$  Data Storage

### **Cloud Identity Management**

#### "Physical" Layer

- May actually be virtual
- Allocated Machines
  - $\boldsymbol{\Sigma}$  (at least) One per OpenStack API
    - Yes, you can consolidate some
  - $\Sigma$  AMQP
  - $\Sigma$  PostgreSQL
  - $\boldsymbol{\Sigma}$  Several for Nova Compute
  - $\Sigma$  Several with disk for Swift
  - $\Sigma$  Administering > 10 servers.



#### FreeIPA



- Integrated Identity and Authentication solution for Linux/UNIX networked environments.
- Open Source components
- Standard Protocols
- Ease of
  - $\Sigma$  Management
  - $\Sigma$  Automation of installation
  - $\Sigma$  Configuration tasks.
- In RHEL as ipa-server etc...

# Components



- (MIT) Kerberos
- Directory Server (LDAP, 389)
- Certificate Authority (Dogtag)
- Domain Name Server (BIND)
- System Security Services Daemon (SSSD)

# Identity



- User
- Groups
- Hosts
- Hostgroups
- Services
- Keytabs and Certificates
- DNS

### **Policy**



- Access Control Lists (ACL)
- Host Based Access Control
  - Σ System Security Services Daemon (SSSD)
- SUDO
- Automount
- SELinux User Maps
- Cross Domain Trusts

### **MIT Kerberos**

- Authentication
- Multiple Protocols
- 2 Way Verification
- Cross Domain Trusts
- Ticket Policy
- Wire Encryption (SASL)
- New: DIR: Credential Caches
  - $\Sigma$  Multiple KDCs/TGTs





#### Mapping FreeIPA to OpenStack

- Kerberos SSO for "Physical Layer"
  - $\Sigma$  Authentication between components
- Encrypting AMQP
- Certificate management for HTTPS
- LDAP provider for Keystone
- Kerberos to Keystone
  - Σ Apache with mod\_auth\_krb5

### General Approach

- Install FreeIPA Server
- Install ipa-client on each machine and enroll
- Service keytab/credentials cache
- Set up Service
- Test with command line tools
- Set up SSL
  - Σ Certmonger...

### Certmonger

which attempts to simplify interaction with certifying authorities (CAs) on networks which use publicotify early new certificate via FreeIPA rage

#### **Service Choices**

- Fedora 18 for Development
- PostgreSQL
  - $\Sigma$  Shared instance
  - $\Sigma$  Clustered? Replicated?
- Qpid
- Apache HTTPD
- 389 Directory Server
- Network Security Services (NSS)
- CYRUS-SASL

#### Keystone

- Cron for TGTs (UGLY!)
  - Σ KRB5CCNAME=FILE:/tmp/krb5cc\_\$UID
  - $\Sigma$  kinit keystone -k -t /var/kerberos/krb5/user/\$UID/client.keytab"
- SQLAlchemy URL
  - $\Sigma$  connection = postgresql://pg.openstack.freeipa.org/keystone?krbsrvname=postgres

Keystone: HTTPD

- mod\_auth\_krb5
- REMOTE\_USER
- LDAP Backend for Identity
  - $\Sigma$  Kerberos for internal
  - $\boldsymbol{\Sigma}$  Simple Bind for Keystone User requires code change for some operations
- Keytab for httpd service and user

#### Qpid

- /etc/sasl2/qpidd.conf
  - $\Sigma$  mech\_list: GSSAPI
- /etc/qpidd.conf
  - $\Sigma$  /cluster-mechanism=GSSAPI
  - $\Sigma$  auth=yes
  - $\Sigma$  realm=OPENSTACK.FREEIPA.ORG
- Keytab and credential cache
- SELinux updates via audit2allow
- python-saslwrapper python-amqplib for clients

# **LOOKING FORWARD**



### **Looking Forward**

- Automatic credentials refresh
- Apache HTTPD
- Kerberize Horizon
- Authorization Data in Service Tickets
- Kerberos over HTTP

### **Looking Forward**

- Access Control List Delegation
  - $\Sigma$  Enrollment, Group, DNS
  - $\Sigma$  No Admin LDAP operations
- Centralized SUDO/Rootwrap
- SSH Keys
- Encryption Keys

#### Documentation

```
org/page/Documentation
org/books/0.20/AMQP-Messaging-Broker-CPP-Book/html/chap-Messaging_User_
t.org/wiki/Getting_started_with_OpenStack_on_Fedora
e.org/qpid/rasc.html
sql.org/docs/devel/static/auth-methods.html
people.org/repos/openstack/openstack-grizzly/fedora-openstack-grizzly.repo
```

