Open vSwitch:
A Whirlwind Tour

Justin Pettit
March 3, 2011

Overview

Visibility (NetFlow, sFlow, SPAN/RSPAN)
Fine-grained ACLs and QoS policies
Centralized control through OpenFlow
Port bonding, LACP, tunneling

Works on Linux-based hypervisors: Xen,
XenServer, KVM, VirtualBox

Open source, commercial-friendly Apache 2
license

Multiple ports to physical switches

Visibility

* Number of subscribers to mailing lists:
— discuss: 309
— announce: 195
— dev: 161
—git: 48
* openvswitch.org gets about 4900 unique
visitors per month

(Partial) List of Contributors

CiTRIXE' (ﬂﬁ] FUJITSU nlclllr;

NEC

Google (inMon) \) i

ERICSSON ’

<3 eduniper T

s A i@
— — m‘ﬂ”o P — Toroki
(ntel) o= amazon

External-facing Development

Work underway to upstream kernel module
Fix VLAN handling in kernel

Default networking stack for Xen Cloud Platform
(XCP) and next XenServer release

Distribution packaging
— Debian
— Ubuntu

— SUSE
— Red Hat

Main Components

Control Cluster

Off-box

ovsdb-server ovs-vswitchd

User

Kernel

<~ Management Protocol (6632/TCP) :
« OpenFlow (6633/TCP) openvswitch_mod.ko

o Netlink

ovsdb-server

Database that holds switch-level configuration

Custom database with nice properties:

— Value constraints
— Weak references
— Garbage collection

Log-based (awesome for debugging!)

Speaks management protocol (JSON-RPC) to
manager and ovs-vswitchd

ovs-vswitchd

Core component in the system:
— Communicates with outside world using OpenFlow
— Communicates with ovsdb-server using management protocol
— Communicates with kernel module over netlink
— Communicates with the system through netdev abstract interface

Supports multiple independent datapaths (bridges)

Packet classifier supports efficient flow lookup with wildcards and
“explodes” these (possibly) wildcard rules for fast processing by the
datapath

Implements mirroring, bonding, and VLANs through modifications
of the same flow table exposed through OpenFlow

Checks datapath flow counters to handle flow expiration and stats
requests

openvswitch _mod.ko

Kernel module that handles switching and
tunneling

Exact-match cache of flows

Designed to be fast and simple

— Packet comes in, if found, associated actions executed
and counters updated. Otherwise, sent to userspace

— Does no flow expiration
— Knows nothing of OpenFlow

Implements tunnels

Types of Channels

* One OpenFlow connection per datapath
— Flow table configuration

* One management channel per system
— Switch-level configuration
— Resources
— Counters

OpenFlow

* |dealized view of a switch’s datapath

* Centralized controller configures flow table
— Lookup based on L2-L4
— Supports full wildcarding and priorities
— Flows associated with actions: forward, drop, modify
— Missed flows go to controller

* Remote visibility

— Description of switch (supported actions, flow tables’
sizes, etc.)

— Statistics (flows, tables, ports)

Nicira Extensions to OpenFlow

Resubmit

NXM (Extensible Match)
— Tunnels

— Registers
— IPv6
— Labels used by new actions

Flexible tunnel tagging

Multiple controllers

Separate setting a QoS queue from transmitting
Multipathing

Management Channel

* Built around configuration database

— Simple type system, batching, key/value, triggers,
referential integrity

* Benefits:
— No global lock
— Granular updates

— Allows multiple front-ends (OpenFlow management,
SNMP, CLI)

* |n addition to configuration, it is also used to
retrieve stats

Tunneling

* Required to provide “true” virtual networks

* Focus on performance
— Header caching
— Hardware offloading

e Supported tunneling modes
— GRE
— GRE-over-IPsec
— CAPWAP

Bringing OVS to Hardware

e Hardware switches have slow CPUs but fast
specialized hardware

* Exact match flows are the wrong approach for
TCAMs*

e netdev abstraction

 WDP (wildcard datapath) abstraction

— Currently a branch, in the process of
reimplementing in master

*Expensive and power-hungry

WDP Architecture

ovs-vswitchd ovs-vswitchd ovs-vswitchd

Classifier
DPIF

DPIF WDP-BCM

openvswitch_mod.ko openvswitch_mod.ko Broadcom API

Standard CS Response: Introduce layer of indirection!

