DPEHIAATA

VERSION 3.0

CLASSIC XML COMPONENTS

OpenXava 3.0 - Classic XML Components Page 1

Contents

L 1115 ¢4 10Tt 6 Lo s R SPRS 4
2\ (04 1<) FO OO OO OO SPRR 5
2.1 Java IMpPlemMentatiOn.ccueioiieiuiiiiienieeieeeteee ettt st eae e e s e 5
2.2 BUSINESS COMPONENL....cccuuiiiruiiieriieeiiieeniteesiteesteeesiteesstteeestteeestseesbeeesasaeesastaessseessseesseeesnseens 5
2.3 Entity and QZ@TEEALES.eevueeriierierieeiieete et et ettt et et et st e e et e sae e st e e et e sae e e e 6
B 2111 2O OSSPSR SR 6
2.5 BRAM. ...ttt ettt et e et e et et e e et e e be e e eab e emnente e eabee s 8
U0 EJB ()it eiee ettt ettt e et e et b e et te e e bt e e e bt e e e abeeenabeesmnaarreeea 10
2.7 IMPIEMENLS (3).cneeieiiiieeiiie ettt ettt ettt e ettt e st e e s bt e e sabeeesabeessabeeesaseesnnse s saseeesaseeenns 12
2.8 PLOPEILY (4).eeteeeutieeeiiieeeiieeeeitte ettt e ettt e sttt e st e e e bee e sttt e eabeeesbeeesseeanssaeanssaeansseeassaeensseeenaseesnnseesnne 14
2.8.1 SEETEOLYPC....eeeeuiteeeiteeeite ettt et e e sttt et e et eeestbee e abeeetbeesasbeeenabeesabteesasteesasee st eesnnneesanes 15
2.8.2 IMAGES_GALLERY stereotype (New in V2.0).....ccccvieiriiiiiniiieiiiieeniee e e esvee e 17
2.8.3 Concurrency and version property (New in V2.2.3).....ccccueervieeriieeriiieeniieenieeenvemmesveeenns 18
2.8.4 Valid VAIUECS......ccccuiiiiiiieciiieciee ettt ettt e e ae e e ate e e taeessateeesbeeeessssmmesseeensaeeensaeenns 18
2.8.5 CalCUIALOT.tee ettt ettt ettt e e st e ettt e e et eeeateeettee e eteessaaeseeenseeenneeenneeenns 19
2.8.6 Default value CalCULAtOT.cccuiieiiieeeiie ettt ettt esaee e b e e sebeeeenaeeeenneees 24
2.8.7 VAlIAALOTccciiiiiiie ettt ettt ettt e et e et e e et aeesebee e sbeeesabeeessseesnssee st e e ensaeennseees 25
2.8.8 Default validator (NeW 1N V2.0.3).....coooiiiiiiiiiiieiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 27
PRI NS (= (= 1 1o () ET T OPPRP 28
2.9.1 Default value calculator in refEreNCES.ccevviuiiieieiiiee e 29

P (O O6) 1 (Tet T} s W () TP 30
B B Y (=1 1 1o T B () TSP 35
B W i1 1T 1S o - TSRS 38
2.13 Postcreate CalCulator (9).....oouuiieeeiiiiie ettt e e et e e e e e et e e e e e ara e e e e nne s s 39
2.14 Postmodify calculator (11)......eeoiiiiiiiiiieeeeee et eee e 41
2.15 Postload and preremove calculator (10, 12).......ccceiiviiiiiiiiiiiieiiee et 42
B (oI e F2 1 o) o (15) TSP 42
2.17 RemMOVE VALIAALOT (14)....uuuriieiieeieeeeeciieeeeee ettt eee et e e e e e eeettaereeeeeeeeenssrennsasrsneeeas 44
218 AGEIEZALE.......eeeiteeiieeiieeit ettt ettt ettt ettt et e st et e b e s e e st et st emeeans 46
2.18.1 REference t0 a@@IEEALE.ueerueieeriieeiiieeiteeeritee ettt e eiteeetteesbteesataeesabeeesasmmseeesnseeesnseens 46
2.18.2 Collection Of a@@TEZALES.ccovuvieruiieriieeriieeeite et e et e esiteesiteeebeeesbeeesbeeesabeessaseesneeens 47

B VAW .ttt ettt e et e et e ettt e e bt e e e at e e e bt e e e b te e e abee e abee e htee e bteeenteeebteeenteeennreaan 50
BL LAYOUL. ettt ettt et e et e e bt e e e bt e e e bt e e et temaeeenbteesbteesabeeea 51
311 GIOUPS. .eteeuitieeiieeeit ettt e et te et te ettt e sttt e sttt e saateesabeeeeabaeeansaeensseeesseeensaeesnsseennssaaannsneenns 52
31,2 SECHIOMS. ¢ utieeiiiteeite ettt ettt ettt e sttt e sttt e st e e sab e e e e abeeesabeeessteeesbeeensaeesnsbeesnseeesnnnneeas 55
3.1.3 Layout PhilOSOPRY.......ciiiiiiiiieeiieeiee ettt et e et e et eesae e eaaeeenaaees 57
3.2 PIOPEITY VIBW.ceuutieiiiieiiieeiiieeeiteeeteeesiteeestteeesateeeseseesnsaeesnsseesnsseesnseeensseesnsseeenss o e sesseesnnseesnnes 57
3.2.1 Label fOrmaAL......ccccviiiiiiieiie ettt ettt e et e e etae e et eeenseesmmnaseeentreeennneenns 58
3.2.2 Value ChanZE ©VENL.......ccccueiiiiieeiiieeiiee et e eiteeeite e st e esteeesabeestbeestteesseeesnseeesnseeensseees 58
3.2.3 ACHONS Of PIOPEILY.....eiiiiiiiiiiiiiiie ettt ettt ettt et she e et esae e bt e e ateeeeas 59
3.2.4 Choosing an editor (NEW 1N V2.1.3)....ccccuiiiiiiieiiie ittt stae e e saee e 61
3.3 RETETENCE VIEW...c.utiiiieiieiiie ettt ettt e ettt e et e e st e e stteeesstee e saeeansaeeessseessseeensss s esseeesnseeenns 61
3.3.1 CROOSE VIBW.....eeeeuiiiiiiiieeeiiieeiieeetiee ettt eetteesstaeessseeesssaeesssaeesseeenssaeessseesnssessmnnsesnssesensseennns 64
3.3.2 CuStOMIZING fTAME.ccooutiiiiiiiiiiieeiitee ettt ettt et e et e e st e e it e s at e s 65
3.3.3 CusStOm SEATCH ACHOMN......eieiiiieiiieeiieeeiieeeiteeette e eite et e et eeesaaeeeaeeestaeesnsaeesnseeennnesnneenns 66

OpenXava 3.0 - Classic XML Components Page 2

3.3.4 CUSLOM CTEALION ACHIOM ... eeeneeeeeeeeeeeeeee e e et e e e et eeeeeeeeeeeeeeaeeeeeeaeeeeeanaaeeeeemmn e eeaneeeeennnans 67

3.3.5 Custom modification action (New 1N V2.0.4)........coooviiiiiiiiiiiii e, 67

3.3.6 Descriptions liSt (COMDOS)........eiiriiiiriiiiiiiieeiteeeite ettt et e et esieeesane e 68

3.3.7 Reference search on change event (New 1n V2.2.5)....cccceiiiiiiniiiiniiiiniieenieeciee e 70

3.4 COIIECHION VIBW...c.utiiiiiiuiiiiieeie et ete ettt ettt ettt sttt e s e e bt e st e b e e sat e et e smmmeeesseebeesaneenneenas 71
3.4.1 CustOom €dit/VIEW QCTION....ccceuuriieeeiiieeeeeitieeeesrteeeestteeeessareeeeesaseeeessssseeesasssseessssseeessnsssen 74

3.4.2 CUSLOM 1IST ACTIOMS. ..uvveiutieriiieiieeiie ettt ettt ettt et ettt et sat e et esbt e e beesateesbeememateeneeas 75

3.4.3 Default list actions (NEW 1N V2.1.4) . .cuuuiieiieeie ettt e e e e e e e ere e 77

3.4.4 Custom detail ACTIOMS. ...ccuutiriiiiiieriieeieeeit ettt sttt ettt ettt sae e st e i e s 17

3.4.5 Refining collection view default behavior (new in v2.0.2)........ccoocuiieviieiniiiniiieniieenine 79

3.5 VIBW PIOPETLY....veeeiiieeiiieeiiee ettt e eiteeestteeetteesteeessteeessseeessseeensseeessseeensseesnsseessseessseesnsseessneenns 80
3.6 View actions (NEW 1N V2.0.3)iiiiiiiiiiiee ettt ee et e e e e e eeeetarreeeeeeeesnannes 81
3.7 Transient component: Only for creating views (new in v2.1.3)......ccccevviiiniieiniiieniieeniceeeeenn 82

4 TADUIAT dALA.eeoeteeiieeiieeee ettt ettt ettt e bt et e b e st e bttt e st e et naneens 84
4.1 Initial properties and €MPRASIZE TOWS.......c..eeeruiieriiieeiieeeiieeeieeesieeesieeesaeeesbeeessseeensseeemaneenes 85
4.2 Filters and base CONAILION.couiiiiiriiiiiieieete ettt ettt st et s eamaeeeas 85
4.3 PUIE SQL SCIECT....ci ittt ettt e e e e e ettt r e e e e e e e e etbaraeeaeeeeeeeartaasaeeaeeeeennnrees 88
4.4 DEFAULL OTAET....c...eeiuiieiieeieee ettt ettt et s bt e bt et essbeebeesaneens 89

5 Object/relational MAPPING......ccceeevviiiiiiiiieiie et s smeese e s e 90
T O o 0 L 21 0) o) 1 PSSR TS 90
5.2 PrOPETLY IAPPINE....uvieuiieirerteeieeetteetee et estee et e st ste e st e et e st e steesneeesseesseesaneesaneenneenseesamamsnees 91
5.3 Ref@reNCe MAPPINEZ.eeeutiiiiiiiieitie ettt ettt ettt et et e et esat e e bt e s bt e st essbeebeesaeeebeeeaee 93
5.4 Multiple Property MapPPINE.....c.cccecueeruerrueerieerienreereesteereeseesreesieeeneesseesreeseeeneessnesneesseeem 95
5.5 Reference to aggregate MAPPING.......coeevueeiereerierterieeieetenieerteetesteereetesteensesaeesseemmm sseenseennens 97
5.6 Aggregate used in collection MAPPING......cccueevueeriieiiieriireenie ettt ee 98
5.7 Converters by defaull...........coouiiiiiiiiiii e 100
5.8 Default mapping (N€W 1N V2.1.3)..cccuuiiiiiiiiiieiiee ettt ettt cmn e s 102
5.9 Object/relational PhiloSOPRY.......c.cooiiiiiiiiiiiiiee e 102

B ASPECES .ttt et ettt ettt ettt et e e h et e e bt e e e bt e e e bt e e e abt e et e e e abee e bt ee et b maeeeabeeenbeesbaeeeanee 103
6.1 INtrodUCHION 0 AOP.... ..o it ee e e e e e e s are e e e e s raeeeeessssmmmessaeee s 103
6.2 ASPECES AEIINTHION. ..cuuiiiiiiieiiiee ettt ettt e ettt e et eeta e e st eesmae bt e e sabeeesnneees 103
6.3 AccessTracking: A practical application Of @SPECtS........ccueeevueeeiieeriieeniieerieeeiee e 104
6.3.1 The aspect defiNItION.eeiriiiiiiieeiieeteeeee ettt e st e st sbe e e sabee e neeree e 105

6.3.2 Setup ACCESSTTACKING.ccuviiiiiiiiiieeeiie ettt ettt ettt e et e e beeteeeas 106

T MISCEIIANEOUS. ...ttt ettt et sb e st esbt e et e s bt e sabeesateenbeesneesmnan 108
7.1 Many-to-many relationShIPS........cccuiiiriiiiiiiiiiiieeee e et 108

OpenXava 3.0 - Classic XML Components Page 3

1 Introduction

OpenXava allows you to create Java Enterprise applications using POJOs and Java 5 annotations.
But in its first incarnations (v1.0 and v2.0) OpenXava used business components defined using
XML and it generated the code for the application from these XMLs.

These XML components are still supported. That is, if you have an OpenXava application
developed with v1.x or v2.x you can update to the last OpenXava version. OpenXava supports XML
components, and generation for EJB2, POJOs + Hibernate and even Java 1.4.

This guide is a complete reference to the XML syntax for OpenXava business component.

OpenXava 3.0 - Classic XML Components Page 4

2 Model

The model layer in an object oriented application contains the business logic, that is the structure of
the data and all calculations, validations and processes associated to this data.

OpenXava is a model oriented framework where the model is the most important, and the rest (e.g.
user interface) depends on it.

The way to define the model in OpenXava is using XML and a few of Java. OpenXava generates a
complete Java implementation of your model from your definition.

2.1 Java Implementation
Currently OpenXava generates code for the next 4 alternatives:
1. Plain Java Classes (the so-called POJOs) for the model using Hibernate for persistence.

2. Plain Java Classes for the model using EJB3 JPA (Java Persistence API) for persistence
(new in v2.1).

3. Classic EJB2 EntityBeans for the model and persistence.
4. POJOs + Hibernate inside an EJB2 container.

The option 2 is the default one (new in v3.0) and the best for the most cases. The option 1 is also
good, specially if you need to use Java 1.4. The option 3 is for supporting all the OpenXava
applications written using EJB2 (EJB2 was the only option in OpenXava 1.x). The option 4 can be
useful in some circumstances. You can see how to configure this in
OpenXavalest/properties/xava.properties.

2.2 Business Component

As you have seen the basic unit to create an OpenXava application is the business component. A
business component is defined using a XML file. The structure of a business component in
OpenXava is:

<?xm version="1.0" encodi ng="1 SO 8859- 1" ?>
<! DOCTYPE conponent SYSTEM "dt ds/ conponent . dtd">
<conponent nanme="Conponent Nane" >

<l-- Model -->

<entity>...</entity>

<aggregate nane="...">...</aggregat e>
<aggregate nane="...”>...</aggregate>
<l-- View -->

<vi ews. .. </vi ew>

<vi ew name="...">...</vi ew>

OpenXava 3.0 - Classic XML Components Page 5

<vi ew name="...">...</vi ew>

<l-- Tabular data -->

<tab>...</tab>

<tab nane="...">. ..</tab>

<tab nanme="...">...</tab>

<I-- (bject relational nmapping -->

<entity-mapping table="...">...</entity-nappi ng>

<aggr egat e- mappi ng aggregate="...” table="...">...</aggregate-mappi ng>

”

<aggr egat e- mappi ng aggregate="..." table="...">...</aggregat e- nappi ng>

</component>

The first part of the component, the part of entity and aggregates, is used to define the model. In
this chapter you will learn the complete syntax of this part.

2.3 Entity and aggregates

The definition for entity and aggregate are practically identical. The entity is the main object that
represents the business concept, while aggregates are additional object needed to define the business
concept but cannot have its own life. For example, when you define an Invoice component, the
heading data of invoice are in entity, while for invoice lines you can create an aggregate called
InvoiceDetail; the life cycle of an invoice line is attached to the invoice, that is an invoice line
without invoice has no meaning, and sharing an invoice line by various invoices is not possible,
hence you will model InvoiceDetail as aggregate.

Formally, the relationship between A and B is aggregation, and B can be modeled as an aggregate
when:

« You can say that A has an B.
- If A is deleted then its B is deleted too.
- B is not shared.

Sometimes the same concept can be modeled as aggregate or as entity in another component. For
example, the address concept. If the address is shared by various persons then you must use a
reference to entity, while if each person has his own address maybe an aggregate is a good option.

2.4 Entity
The syntax of entity is:
<entity>
<bean ... /> (1)

OpenXava 3.0 - Classic XML Components Page 6

<ejb ... /> (2)

<inplenments .../> ... (3)
<property .../> ... (4)
<reference .../> ... (5)
<collection .../> ... (6)
<method .../> ... (7)
<finder .../> ... (8)
<postcreate-cal culator .../> ... (9)
<post | oad-cal culator .../> ... (10)
<post nodi fy-cal culator .../> ... (12)
<prerenove-cal culator .../> ... (12)
<validator .../> ... (13)
<renove-validator .../> ... (14)
</entity>

(1)bean (one, optional): Allows you to use an already existing JavaBean (a simple Java class, the so-
called POJO). This applies if you use JPA o Hibernate as persistence engine. In this case the code
generation for POJO and Hibernate mapping of this component will not be produced.

(1)e5b (one, optional): Allows you to use an already existing EJB. This only applies if you use EJB
CMP2 as persistence engine. In this case code generation for EJB code of this component will
not be produced. It not apply to EJB3.

(2)implements (several, optional): The generated code will implement this interface.

(3)property (several, optional): The properties represent Java properties (with its setfers an getters)
in the generated code.

(4)reference (several, optional): References to other models, you can reference to the entity of
another component or an aggregate of itself.

(5)collection (several, optional): Collection of references. In the generated code it is a property
that returns a java.util.Collection.

(6)method (several, optional): Creates a method in the generated code, in this case the method logic
is in a calculator (ICcalculator).

(7)finder (several, optional): Used to generate finder methods. Finder methods are static method
located in the POJO class. In the case of EJB2 generation EJB2 finders are generated.

(8)postcreate-calculator (several, optional): Logic to execute after making an object persistent.
In Hibernate in a PreInsertEvent, in EJB2 in the ejbPostCreate method.

(9)postload-calculator (several, optional): Logic to execute just after load the state of an object
from persistent storage. In Hibernate in a PostLoadEvent, in EJB2 in the ejbLoad method.

(10)postmodify-calculator (several, optional): Logic to execute after modifying a persistent
object and before storing its state in persistent storage. In Hibernate in a PreUpdateEvent, in
EJB2 in the e jbstore method.

(11)preremove-calculator (several, optional): Logic to execute just before removing a persistent
from persistent storage. In Hibernate in PreDeleteEvent, in EJB2 in the e jbRemove method.

OpenXava 3.0 - Classic XML Components Page 7

(12)validator (several, optional): Executes a validation at model level. This validator can receive
the value of various model properties. To validate a single property it is better to use a property
level validator.

(13)remove-validator (several, optional): It's executed before removal, and can deny the object
removing.

2.5 Bean
With <pean/> you can specify that you want to use your own Java class.

For example:

<entity>

<bean class="org.openxava.test.model.Family"/>

In this simple way you can write your own Java code instead of using OpenXava to generate it.

For our example you can write a Family class as follows:

package org. openxava.t est. nodel ;
i mport java.io.*;

/**
* (@ut hor Javi er Paniza
)

public class Fam |y inplenments Serializable {

private String oid;
private int nunber;

private String description;

public String getG d() ({
return oid;

}

public void setGd(String oid) {
this.oid = oid;

public int getNumber() {

return nunber;

}
public void set Nunber (i nt nunber) {

t hi s. nunber = nunber;

OpenXava 3.0 - Classic XML Components Page 8

public String getDescription() {
return description;
}
public void setDescription(String description) {

t his.description = description;

If you want a reference from the OpenXava generated code to your own handwritten code, then your
Java class has to implement an interface (IFamily in this case) that extends IModel (see
org.openxava.test.Family in OpenXavalest/src).

Additionally you have to define the mapping using Hibernate:

<?xm version="1.0"7?>

<! DOCTYPE hi ber nat e- mappi ng
SYSTEM "htt p: // hi ber nat e. sour cef or ge. net/ hi ber nat e- mappi ng- 3. 0. dt d" >

<hi ber nat e- nappi ng package="or g. openxava.t est . nodel " >
<cl ass
nane="Fam | y"
t abl e=" XAVATEST@epar at or @G-AM LY" >
<id nane="oi d" colum="0 D' access="field">
<generator class="uuid"/>

</id>

<property nanme="nunber" col unm="NUMBER"/ >

<property nane="descri ption" col um="DESCRI PTI ON'/ >

</ cl ass>

</ hi ber nat e- mappi ng>

You can put this file in the hibernate folder of your project. Moreover in this folder you have the
hibernate.cfg.xml file that you have to edit in this way:

<sessi on- f act ory>

<mappi ng resource="Fam |y. hbm xm "/ >

OpenXava 3.0 - Classic XML Components Page 9

</ sessi on-fact or y>

In this easy way you can wrap your existing Java and Hibernate code with OpenXava. Of course, if
you are creating a new system it is much better to rely on the OpenXava code generation.

2.6 EJB (2)

With <ejb/> you can specify that you want to use your own EJB (1.1 and 2.x version).

For example:

<entity>
<ej b renot e="org. openxava. test.ejb. Fam|y"
hone="or g. openxava. t est. ej b. Fam | yHone"
pri mar yKey="or g. openxava. t est. ej b. Fam | yKey"

j ndi ="ej b/ openxava. test/Fam|y"/>

In this simple way you can write you own EJB code instead of using code that OpenXava generates.

You can write the EJB code from scratch (only for genuine men), if you are a normal programmer
(hence lazy) probably you prefer to use wizards, or better yet XDoclet. If you choose to use
XDoclet, then you can put your own XDoclet classes in the package model (or another package of
your choice. This depends on the value of the model.package variable in build.xml) in src folder of
your project.; and your XDoclet code will be generated with the rest of OpenXava code.

For our example you can write a FamilyBean class in this way:

package org. openxava.test.ejb. xej b;

import java.util.*;

i nport javax.ejb.*;

i nport org.openxava. cal cul ators. *;

i mport org.openxava.test.ejb.*;

| *x
* @j b: bean name="Fam | y" type="CM" viewtype="renote"
* j ndi - nane=" CpenXavaTest / ej b/ openxava. t est/Fam | y"
* @ b:interface extends="org.openxava. ej bx. EJBRepl i cabl e"
* @] b: dat a- obj ect extends="j ava. | ang. bj ect "
* @j b: hone extends="j avax. ej b. EJBHong"
* @j b: pk extends="java. | ang. Cbj ect"

* @ boss: tabl e-nane " XAVATEST@epar at or @AM LY"

OpenXava 3.0 - Classic XML Components Page 10

*

* @ut hor Javi er Paniza
*/
abstract public class Fami|yBean
ext ends org. openxava. ej bx. EJBRepl i cabl eBase // (1)

i mpl enents j avax. ej b. EntityBean {

private UU DCal cul ator oi dCal cul ator = new UU DCal cul ator () ;

| **
* @ b:interface-nethod
* @jb:pk-field
* @ b: persistent-field
*
* @boss: col um-nanme "d D'
*/
public abstract String getQ d();
public abstract void setQ d(String nuevoQ d);

/**

* @jb:interface-nethod
* @ b: persistent-field
*
* @ boss: col um- nane " NUVBER'
*/
publ i c abstract int getNunber();
[**
* @] b:interface-nethod
*/
public abstract void setNunber (i nt newNunber);

/**

* @j b:interface-nethod
* @ b: persistent-field
*
* @ boss: col um-nane " DESCRI PTI ON
*/
public abstract String getDescription();
/**
* @) b:interface-nethod
*/
public abstract void setDescription(String newbDescription);

OpenXava 3.0 - Classic XML Components Page 11

[**
* @] b: creat e- net hod
*/
public Fam | yKey ej bCreate(Map properties) // (2)
t hr ows
j avax. ej b. Cr eat eExcepti on,
or g. openxava. val i dat ors. Val i dati onExcepti on,
java. rm . Renot eException {
execut eSet s(properties);
try {
setG d((String)oidCal culator.cal cul ate());
}
catch (Exception ex) {
ex. print StackTrace();
t hr ow new EJBExcept i on(
"I npossible to create Family because:\n" +
ex. get Local i zedMessage()
);
}

return null;

public voi d ej bPost Create(Map properties) throws javax.ejb. CreateException {
}

On writing your own EJB you must fulfill two little restrictions:
(1)The class must extend from org.openxava.ejbx.EJBReplicableBase

(2)It is required at least a ejbCreate (With its ejbPostCreate) that receives as argument a map and
assign its values to the bean, as in the example.

Yes, yes, a little intrusive, but are not the EJB the intrusion culmination?

2.7 Implements (3)

With <implements/> you specify a Java interface that will be implemented by the generated code.
Let's see it:

<entity>

<inpl enents interface="org.openxava.test.nodel.|WthNanme"/>

<property nane="nane" type="String" required="true"/>

OpenXava 3.0 - Classic XML Components Page 12

And you can write your Java interface in this way:

package org. openxava.test. nodel ;
inmport java.rm.*;

/**

* (@ut hor Javi er Paniza
)
public interface | WthNane {

String get Nane() throws RenoteException;

}

Beware to make that generated code implements your interface. In this case you have a property
named name that generates a method called getName () that implements the interface.

In your generated code you can find an ICustomer interface:

public interface |ICustoner extends org.openxava.test.nodel.lWthNane {

}
In the POJO generated code you can see:

public class Custoner inplenents Serializable, org.openxava.test.nodel.|Custoner {

}
In the EJB generated code (if you generate it) you can see the remote interface:

public interface CustomnerRenote extends
or g. openxava. ej bx. EJBRepl i cabl e,

or g. openxava. t est . nodel . | Cust oner

and the EJB bean class is affected too

abstract public class CustonerBean extends EJBReplicabl eBase
i mpl enent s
or g. openxava. t est . nodel . | Cust oner,

Entit yBean

This pithy feature makes the polymorphism a privileged guest of OpenXava.

As you can see OpenXava generates an interface for each component. It's good that in your code you
use these interfaces instead of POJO classes or EJB2 remote interfaces. All code made in this way
can be used with POJO and EJB2 version on same time, or allows you to migrate from a EJB2 to a
POJO version with little effort. Although, if you are using POJOs exclusively you may use the

OpenXava 3.0 - Classic XML Components Page 13

POJOs classes directly and ignore the interfaces, as you wish.

2.8 Property (4)

An OpenXava property corresponds exactly to a Java property. It represents the state of an object
that can be read and in some cases updated. The object does not have the obligation to store
physically the property data, it only must return it when required.

The syntax to define a property is:

<property

nane="pr oper t yNang" (1)

| abel =" abel " (2)

type="type" (3)

st er eot ype=" STEREOTYPE" (4)

si ze="si ze" (5)

scal e="scal e" (6) new in v2.0.4

requi red="true| f al se" (7)

key="true| fal se" (8)

hi dden="t rue| f al se" (9)

sear ch- key="true| fal se" (10) newin v2. 2.4

versi on="true| f al se" (112) newin v2. 2.3
>

<valid-values .../> (12)

<cal culator .../> (13)

<def aul t - val ue-cal cul ator .../> (14)

<validator .../> (15)

</ property>

(1)name (required): The property name in Java, therefore it must follow the Java convention for
property names, like starting with lower-case. Using underline (_) is not advisable.

(2)1apel (optional): Label showed to the final user. Is much better use the i/8n files.

(3)type (optional): It matches with a Java type. All types valid for a Java property are valid here,
this include classes defined by you. You only need to provide a converter to allow saving in
database and a editor to render as HTML; thus that things like java.sqgl.Connection or so can
be a little complicated to manage as a property, but not impossible. It's optional, but only if you
have specified <bean/> or <ejb/> or this property has a stereotype with a associated type.

(4)stereotype(optional): Allows to specify an special behavior for some properties.

(5)size (optional): Length in characters of property. Useful to generate user interfaces. If you do
not specify the size, then a default value is assumed. This default value is associated to the
stereotype or type and is obtained from default-size.xml.

(6)scale (optional): (new in v2.0.4) Scale (size of decimal part) of property. Only applies to
numeric properties. If you do not specify the scale, then a default value is assumed. This default
value is associated to the stereotype or type and is obtained from default-size.xml.

OpenXava 3.0 - Classic XML Components Page 14

(7)required (optional): Indicates if this property is required. By default this is true for key
properties hidden (new in v2.1.3) or without default value calculator on create and false in all
other cases. On saving OpenXava verifies if the required properties are present. If this is not the
case, then saving is not done and a validation error list is returned. The logic to determine if a
property is present or not can be configured by creating a file called validators.xml in your
project. You can see the syntax in OpenXava/xava/validators.xml.

(8)key (optional): Indicates that this property is part of the key. At least one property (or reference)
must be key. The combination of key properties (and key references) must be mapped to a group
of database columns that do not have duplicate values, typically the primary key.

(9)hidden (optional): A hidden property has a meaning for the developer but not for the user. The
hidden properties are excluded when the automatic user interface is generated. However at Java
code level they are present and fully functional. Even if you put it explicitly into a view the
property will be shown in the user interface.

(10)search-key (optional): (new in v2.2.4) The search key properties are used by the user as key for
searching objects. They are editable in user interface of references allowing to the user type its
value for searching. OpenXava uses the key (key="true”) properties for searching by default,
and if the key (key="true"”) properties are hidden then it uses the first property in the view. With
search-key you can choose explicitly the properties for searching.

(11)version (optional): (new in v2.2.3) A version property is used for optimistic concurrency
control. If you want control concurrency you only need to have a property marked as
version="true” in your component. Only a single version property should be used per
component. The following types are supported for version properties: int, Integer, short,
Short, long, Long, Timestamp. The version properties are considered hidden.

(12)valid-values (one, optional): To indicate that this property only can have a limited set of valid
values.

(13)calculator (one, optional): Implements the logic for a calculated property. A calculated
property only has getter and is not stored in database.

(14)default-value-calculator (one, optional): Implements the logic to calculate the default
(initial) value for this property. A property with default-value-calculator has seffer and it is
persistent.

(15)validator (several, optional): Implements the validation logic to execute on this property
before modifying or creating the object that contains it.

2.8.1 Stereotype

A stereotype is the way to determine a specific behavior of a type. For example, a name, a comment,
a description, etc. all correspond to the Java type java.lang.string but you surely wish
validators, default sizes, visual editors, etc. different in each case and you need to tune finer; you
can do this assigning a stereotype to each case. That is, you can have the next sterotypes NAME,
MEMO or DESCRIPTION and assign them to your properties.

OpenXava comes with these generic stereotypes:
- DINERO, MONEY
- FOTO, PHOTO, IMAGEN, IMAGE

OpenXava 3.0 - Classic XML Components Page 15

TEXTO_GRANDE, MEMO, TEXT_AREA

ETIQUETA, LABEL

ETIQUETA_NEGRITA, BOLD_LABEL

HORA, TIME

FECHAHORA, DATETIME

GALERIA_IMAGENES, IMAGES_GALLERY (setup instructions in 3.8.2) new in v2.0
RELLENADO_CON_CEROS, ZEROS_FILLED new in v2.0.2

TEXTO_HTML, HTML_TEXT (text with editable format) new in v2.0.3
IMAGE_LABEL, ETIQUETA_IMAGEN (image depending on property content) new in v2.1.5
EMAIL new in 2.2.3

TELEFONO, TELEPHONE new in 2.2.3

WEBURL new in 2.2.3

IP new in 2.2.4

ISBN new in 2.2.4

TARJETA_CREDITO, CREDIT_CARD new in 2.2.4

LISTA_EMAIL, EMAIL_LIST new in 2.2.4

Now you will learn how to define your own stereotype. You will create one called PERSON_NAME
to represent names of persons.

Edit (or create) the file editors.xml in your folder xava. And add:
<edi tor url ="personNanmeEdi tor.jsp">

<for-stereotype stereotype="PERSON NAME"/>

</ editor>

This way you define the editor to render for editing and displaying properties of stereotype
PERSON_NAME.

Also you can edit stereotype-type-default.xml and the line:

<for stereotype="PERSON NAME" type="String"/>

Furthermore it is useful to indicate the default size; you can do this by editing default-size.xml of
your project:

<for-stereotype name="PERSON NAME" size="40"/>

Thus, if you do not put the size in a property of type PERSON_NAME a value of 40 is assumed.

Not so common is changing the validator for required, but if you wish to change it you can do it
adding to validators.xml of your project the next definition:

<requi red-val i dat or >

OpenXava 3.0 - Classic XML Components Page 16

<val i dat or - cl ass cl ass="or g. openxava. val i dat or s. Not Bl ankChar act er Val i dat or"/ >
<for-stereotype stereotype="PERSON_NAME"/ >

</ required-val i dat or >

Now everything is ready to define properties of stereotype PERSON_NAME:

<property name="name" stereotype="PERSON NAME" required="true"/>

In this case a value of 40 1is assumed as size, String as type and the
NotBlankCharacterValidator validator is executed to verify if it is required.

2.8.2 IMAGES_GALLERY stereotype (new in v2.0)

If you want that a property of your component hold a gallery of images. You only have to declare
your property with the IMAGES_GALLERY stereotype, in this way:

<property nane="phot os" stereotype="1MGCES GALLERY"/>
Furthermore, in the mapping part you have to map your property to a table column suitable to store
a string with a length of 32 characters (VARCHAR (32)).
And everything is done.
In order to support this stereotype you need to setup the system appropriately for your application.
First, create a table in your database to store the images:

CREATE TABLE | MAGES (

| D VARCHAR(32) NOT NULL PRI MARY KEY,

GALLERY VARCHAR(32) NOT NULL,
| MAGE BLOB);

CREATE | NDEX | MAGESO1
ON | MAGES (GALLERY);

The type of 1MAGE column can be a more suitable one for your database to store byte [] (for
example LONGVARBINARY) .

The name of the table is arbitrary. You need to specify the table name and schema (new in v2.2.4)
name in your configuration file (a .properties file in the root of your OpenXava project). In this way:

i mges. schema=MYSCHEVA
i mages. t abl e=l MAGES

And finally you need to define the mapping in your hibernate/hibernate.cfg.xml file, thus:

<hi ber nat e- confi gurati on>

<sessi on-f act ory>

<mappi ng resource="@Gal | eryl mage. hbm xm "/ >

OpenXava 3.0 - Classic XML Components Page 17

</ sessi on-fact or y>

</ hi ber nat e- confi gurati on>

After this you can use the IMAGES_GALLERY stereotype in all components of your application.

2.8.3 Concurrency and version property (new in v2.2.3)

Concurrency is the ability of the application to allow several users to save data at same time without
losing data. OpenXava uses an optimistic concurrency schema. Using optimistic concurrency the
records are not locked allowing high concurrency without losing data integrity.

For example, if a user A read a record and then a user B read the same record, modify it and save
the changes, when the user A try to save the record he receives an error, then he need to refresh the
data and retry his modification.

For activating concurrency support for an OpenXava component you only need to declare a property
using version="true”, in this way:

<property nane="version" type="int" version="true"/>

This property is for use of persistence engine (Hibernate or JPA), your application or your user must
not use this property directly.

2.8.4 Valid values

The element <valid-values/> allows you to define a property that can hold one of the indicated
values only. Something like a C (or Java 5) enum.

It's easy to use, let's see this example:

<property nane="di st ance">
<val i d-val ues>
<val i d-val ue val ue="Il ocal "/ >
<val i d-val ue val ue="national "/>
<val i d-val ue val ue="international "/>

</val i d-val ues>

</property>

The distance property only can take the following values: 1ocal, national Or international,
and as you have not put required="true” the blank value is allowed too. The type is not necessary,
int is assumed.

At user interface level the current implementation uses a combo. The label for each value is
obtained from the i/8n files.

At Java generated code level creates a distance property of type int that can take the values O (no
value), 1 (local), 2 (national) o 3 (international).

At database level the value is by default saved as an integer, but you can configure easily to use
another type and work with no problem with legate databases. See more about this in chapter 6.

OpenXava 3.0 - Classic XML Components Page 18

2.8.5 Calculator

A calculator implements the logic to execute when the getfer method of a calculated property is
called. The calculated properties are read only (only have getfer) and not persistent (they do not
match with any column of database table).

A calculated property is defined in this way:

<property nanme="uni tPri cel nPeset as" type="j ava. mat h. Bi gDeci mal " si ze="18">
<cal cul at or cl ass="org. openxava. test. cal cul at ors. Eur osToPeset asCal cul at or" >
<set property="euros" fronm="unitPrice"/>

</ cal cul at or >

</property>

Now when you (or OpenXava to fill the user interface) call to getUnitPriceInPesetas() the
system executes EurosToPesetasCalculator calculator, but before this it sets the value of the
property euros Of EurosToPesetasCalculator with the value obtained from unitprice of the
current object.

Seeing the calculator code may be instructive:

package org. openxava.test. cal cul ators;

i mport java. math. *;

i nport org.openxava. cal cul ators. *;

/**
* @ut hor Javi er Paniza
S

public class EurosToPesetasCal cul ator inplenents |ICalculator { // (1)

private Bi gDeci mal euros;

public Object calculate() throws Exception { // (2)
if (euros == null) return null;
return euros. mltiply(new Bi gDeci nal ("166.386")).
set Scal e(0, Bi gDeci mal . ROUND HALF _UP);

publ i c Bi gDeci mal get Euros() ({
return euros;
}
public voi d set Eur os(Bi gDeci mal euros) {

this. euros = euros;

OpenXava 3.0 - Classic XML Components Page 19

You can notice two things, first (D) a calculator must implement
org.openxava.calculators.ICalculator, and (2) the method calculate () executes the logic
to generate the value returned by the property.

According to the above definitions now you can use the generated code in this way:

Product product = ..
product . setUnitPrice(2);
Bi gDeci mal result = product.getUnitPricel nPesetas();

And result will hold 332.772.

You can define a calculator without set from to define values for properties, as shown below:

<property nane="detail sCount" type="int" size="3">
<cal cul at or cl ass="org. openxava. test. cal cul at ors. Det ai | sCount Cal cul at or ">
<set property="year"/>
<set property="nunber"/>

</ cal cul at or >

</property>

In this case the property year and number of DetailsCountCalculator calculator are filled from
properties of same name from the current object.

The from attribute supports qualified properties, as following:

<aggr egat e nane="Address" >
<property nane="street" type="String" size="30" required="true"/>
<property nane="zi pCode" type="int" size="5" required="true"/>
<property nane="city" type="String" size="20" required="true"/>
<ref erence nane="state" required="true"/>
<property nane="asString" type="String">
<cal cul ator cl ass="or g. openxava. cal cul at or s. Concat Cal cul at or ">
<set property="stringl" frons"street"/>
<set property="int2" frone"zi pCode"/>
<set property="string3" from="city"/>
<set property="string4" fron¥"state.nane"/> (1)
<set property="int5" fron="custoner. nunber"/> (2)
</ cal cul at or >
</ property>

</ aggr egat e>

The property string4 (1) of the calculator is filled using the value of name of the state (that is a
reference), this a qualified property (reference.property). In the case of int5 (2) you can see
that customer reference is not declared in Address, because it is referenced from the customer
entity, therefore address has an implicit reference to its container model (its parent) that you can

OpenXava 3.0 - Classic XML Components Page 20

use In from attribute (new in v2.0.4). That is, the int5 property is filled with the number of the
customer which has this address.

Also it's possible to assign a constant value to a calculator property:

<property nanme="ful | Nane" type="String">
<cal cul at or cl ass="org. openxava. cal cul at ors. Concat Cal cul at or ">
<set property="stringl" from="id"/>
<set property="separator" value=" - "/>
<set property="string2" from="nane"/>
</ cal cul at or >

</ property>

In this case the property separator of ConcatCalculator has a constant value.

Another interesting feature of calculator is that you can access from it to the model object (entity or
aggregate) that contains the property that is being calculated:

<property nanme="anpunt sSum' stereotype="MONEY" >
<cal cul at or cl ass="org. openxava. t est. cal cul at ors. Anount sSuntal cul ator"/ >

</ pr operty>

And the calculator:

package org. openxava.test. cal cul ators;

i mport java.nath.*;
inmport java.rm.*;

import java.util.*;

inport javax.rm.*;

i mport org.openxava. cal cul ators. *;

i mport org.openxava.test.ejb.*;

/**
* (@ut hor Javi er Paniza

*/
public class Amount sSuntal cul ator inplenents | Mdel Cal culator { // (1)
private |lnvoice invoice;
public Object calculate() throws Exception {

Iterator itDetails = invoice.getDetails().iterator();

Bi gDeci mal result = new Bi gDeci mal (0);

OpenXava 3.0 - Classic XML Components Page 21

while (itDetails.hasNext()) {
Il nvoi ceDetail detail = (llnvoiceDetail) itDetails.next();
result = result.add(detail.getArount());

}

return result;

public void set Mbdel (Obj ect nodel) throws RenoteException { // (2)

invoice = (Ilnvoice) nodel

}

This calculator implements IModelCalculator (1) (new in v2.0) and to do this it has a method
setModel (2), this method is called before calling the calculate () method and thus allows access
to the model object (in this case an invoice) that contains the property inside calculate ().

Within the code generated by OpenXava you can find an interface for each business concept that is
implemented by the POJO class, the EJB2 remote interface and the EJB2 Bean class. That is for
Invoice you have a TInvoice interface implemented by Invoice (POJO class), InvoiceRemote
(EJB2 remote interface) and InvoiceBean (EJB2 bean class), this last two only if you generate
EJB2 code. In the calculator of type IModelCalculator it is advisable to cast to this interface,
because in this cases the same calculator works with POJOs, EJB2 remote interface and EJB2 bean
class. If you are developing with a POJO only version (maybe the normal case) you can cast directly
to the POJO class, in this case Invoice.

This calculator type is less reusable than that which receives simple properties, but sometimes are
useful. Why is it less reusable? For example, if you use IInvoice to calculate a discount, this
calculator only could be applied to invoices, but if you uses a calculator that receives amount and
discountPercentage as simple properties this last calculator could be applied to invoices,
deliveries, orders, etc.

From a calculator you have direct access to JDBC connections, here is an example:

<property nane="detail sCount" type="int" size="3">
<cal cul at or cl ass="org. openxava. test. cal cul at ors. Det ai | sCount Cal cul at or ">
<set property="year"/>
<set property="nunber"/>

</ cal cul at or >

</property>

And the calculator class:

package org. openxava.test.cal cul ators;

import java.sql.*;

OpenXava 3.0 - Classic XML Components Page 22

i nport org.openxava. cal cul ators. *;

i mport org.openxava. util.*;

/**

* @ut hor Javi er Pani za
=

public class Detail sCount Cal cul ator inplenents |JDBCCal cul ator {

private | Connecti onProvi der provider;
private int year;

private int nunber;

publ i c voi d set Connecti onProvi der (| Connecti onProvi der provider) { // (2)

t his. provider = provider;

public Object calculate() throws Exception {

Connection con = provider. get Connection();
Prepar edSt at enent ps = con. prepar eSt at enment (

"sel ect count(*) from XAVATEST | NVO CEDETAIL “ +
“where | NVO CE_YEAR = ? and | NVO CE_NUMBER = ?");

Integer result = new Integer(rs.getint(1));

try {
ps.setint (1, getVYear());
ps.setlnt (2, getNunber());
Result Set rs = ps. execut eQuery();
rs.next();
ps. cl ose();
return result;

}

finally {
con. cl ose();

}

public int getYear() {

return year;

public int getNunmber() {

return nunber;

OpenXava 3.0 — Classic XML Components

Page 23

public void setYear(int year) {

this.year = year;

public void set Nunber (i nt nunber) {

t hi s. nunber = nunber;

}

To use JDBC your calculator must implement 1JpBCCalculator (1) and then it will receive a
IConnectionProvider (2) that you can use within calculate (). Yes, the JDBC code is ugly and
awkward, but sometime it can help to solve performance problems.

The calculators allow you to insert your custom logic in a system where all code is generated; and as
you see it promotes the creation of reusable code because the calculators nature (simple and
configurable) allows you to use them time after time to define calculated properties and methods.
This philosophy, simple and configurable classes that can be plugged in several places is the
cornerstone that sustains all OpenXava framework.

OpenXava comes with a set of predefined -calculators, you can find them in

org.openxava.calculators.

2.8.6 Default value calculator

With <default-value-calculator/> you can associate logic to a property, but in this case the
property is readable, writable and persistent. This calculator is for calculating its initial value. For
example:

<property nane="year" type="int" key="true" size="4" required="true">
<def aul t - val ue- cal cul at or

cl ass="or g. openxava. cal cul at ors. Current Year Cal cul ator"/ >

</property>

In this case when the user tries to create a new Invoice (for example) he will find that the year
field already has a value, that he can change if he wants to do.

You can indicate that the value will be calculated just before creating (inserting into database) an
object for the first time; this is done this way:

<property nane="oi d" type="String" key="true" hidden="true">
<def aul t - val ue- cal cul at or
cl ass="or g. openxava. cal cul at ors. UU DCal cul at or "

on-create="true"/>

</property>

OpenXava 3.0 - Classic XML Components Page 24

If you use on-create="true” then you will obtain that effect.

A typical use of the on-create="true” is for generating identifiers automatically. In the above
example, an unique identifier of type string and 32 characters is generated. Also you can use other
generation techniques, for example, a database sequence can be defined in this way:

<property nanme="id" key="true" type="int" hidden="true">
<def aul t - val ue- cal cul at or
cl ass="or g. openxava. cal cul at ors. SequenceCal cul ator" on-create="true">
<set property="sequence" val ue="XAVATEST_SI| ZE | D _SEQ'/ >
</ def aul t - val ue- cal cul at or >

</ property>

Or maybe you want to use an identity (auto increment) column as key:

<property nanme="id" key="true" type="int" hidden="true">
<def aul t - val ue- cal cul at or
cl ass="org. openxava. cal cul ators. | dentityCal cul ator" on-create="true"/>

</ property>

SequenceCalculator (new in v2.0.1) and IdentityCalculator (new in v2.0.2) do not work with
EJB2. They work with Hibernate and EJB3.

If you define a hidden key property with no default calculator with on-create="true” then it uses
identity, sequence or hilo techniques automatically depending upon the capabilities of the underlying
database. As this:

<property nanme="oi d" type="int" hidden="true" key="true"/>
Also, this only works with Hibernate and EJB3, not in EJB2.

All others issues about <default-value-calculator/> are as in <calculator/>.

2.8.7 Validator

The validator execute validation logic on the value assigned to the property just before storing. A
property may have several validators.

<property nane="description" type="String" size="40" required="true">

<val i dat or cl ass="org. openxava.test.validators. Excl udeStri ngVal i dat or ">
<set property="string" val ue="MOTO'/>

</ val i dat or >

<val i dat or cl ass="org. openxava. test.validators. ExcludeStringVali dator"
onl y-on-create="true">
<set property="string" val ue="COCHE"'/ >

</ val i dat or >

</property>

The technique to configure the validator (with <set/>) is exactly the same than in calculators. With
the attribute only-on-create="true” you can define that the validation will be executed only

OpenXava 3.0 - Classic XML Components Page 25

when the object is created, and not when it is modified.

The validator code is:

package org. openxava.test.validators;

i mport org.openxava. util.*;

i mport org.openxava. val i dators. *;

/**

* @ut hor Javi er Paniza
*/
public class ExcludeStringValidator inplenents |PropertyValidator { // (1)

private String string;

public void validate(

Messages errors, I (2)
Qoj ect val ue, Il (3)
String obj ect Nane, I (4)
String propertyNane) Il (5)

t hrows Exception {
if (value==null) return;
if (value.toString().indexOr(getString()) >= 0) {
errors. add("excl ude_string", propertyNane, objectName, getString());

public String getString() {

return string==null?"":string;

public void setString(String string) {

this.string = string;

}

A validator has to implement IPropertyvalidator (1), this obliges to the calculator to have a
validate () method where the validation of property is executed. The arguments of validate ()
method are:

(2)Messages errors: A object of type Messages that represents a set of messages (like a smart
collection) and where you can add the validation errors that you find.

OpenXava 3.0 - Classic XML Components Page 26

(3)object value: The value to validate.

(4)string objectName: Object name of the container of the property to validate. Useful to use in
eIror messages.

(5)string propertyName: Name of the property to validate. Useful to use in error messages.

As you can see when you find a validation error you have to add it (with errors.add ()) by sending
a message identifier and the arguments. If you want to obtain a significant message you need to add
to your i/8n file the next entry:

excl ude_string={0} cannot contain {2} in {1}

If the identifier sent is not found in the resource file, this identifier is shown as is; but the
recommended way is always to use identifiers of resource files.

The validation is successful if no messages are added and fails if messages are added. OpenXava
collects all messages of all validators before saving and if there are messages, then it display them
and does not save the object.

The package org.openxava.validators contains some common validators.

2.8.8 Default validator (new in v2.0.3)

You can define a default validator for properties depending of its type or stereotype. In order to do it
you have to use the file xava/validators.xml of your project to define in it the default validators.

For example, you can define in your xava/validators.xml the following:

<val i dat or s>
<def aul t - val i dat or >
<val i dat or-cl ass
cl ass="or g. openxava. t est. val i dat or s. Per sonNaneVal i dat or "/ >
<for-stereotype stereotype="PERSON_NAME"/ >
</ def aul t - val i dat or >

</val i dat or s>

In this case you are associating the validator PersonNamevalidator to the stereotype
PERSON_NAME. Now if you define a property as the next one:

<property nane="nane" stereotype="PERSON NAME' required="true"/>

This property will be validated using PersonNamevalidator although the property itself does not
define any validator. PersonNamevalidator is applied to all properties with PERSON_NAME
stereotype.

You can also assign a default validator to a type.

In validators.xml files you can also define the validators for determine if a required value is present
(executed when you use required="true”). Moreover you can assign names (alias) to validator
classes.

You <can learn more about validators examining OpenXava/xava/validators.xml and
OpenXavaTest/xava/validators.xml.

OpenXava 3.0 - Classic XML Components Page 27

2.9 Reference (5)

A reference allows access from an entity or an aggregate to another entity or aggregate. A reference
is translated to Java code as a property (with its getter and its setter) whose type is the referenced
model Java type. For example a customer can have a reference to his seller, and that allows you
to write code like this:

| Cust oner custoner = ..

cust onmer. get Sel |l er (). get Nane() ;

to access to the name of the seller of that customer.

The syntax of reference is:

<ref erence
name="nane" (1)
| abel =" abel " (2)
nodel =" nodel " (3)
requi red="true| f al se" (4)
key="true| fal se" (5)
rol e="rol e" (6)
>
<defaul t -val ue-cal cul ator .../> (7)
</reference>

(1)name (optional, required if model is not specified): The name of reference in Java, hence must
follow the rules to name members in Java, including start by lower-case. If you do not specify
name the model name with the first letter in lower-case is assumed. Using underline (_) is not
advisable.

(2)1abel (optional): Label shown to the final user. It's much better use i/8n.

(3)model (optional, required if name is not specified): The model name to reference. It can be the
name of another component, in which case it is a reference to entity, or the name of a aggregate
of the current component. If you do not specify model the reference name with the first letter in
upper-case is assumed.

(4)required (optional): Indicates if the reference is required. When saving OpenXava verifies if the
required references are present, if not the saving is aborted and a list of validation errors is
returned.

(5)key (optional): Indicates if the reference is part of the key. The combination of key properties and
reference properties should map to a group of database columns with unique values, typically the
primary key.

(6)role (optional): Used only in references within collections. See below.

(7)default-value-calculator (one, optional): Implements the logic for calculating the initial
value of the reference. This calculator must return the key value, that can be a simple value (only

if the key of referenced object is simple) or key object (a special object that wraps the key and is
generated by OpenXava).

OpenXava 3.0 - Classic XML Components Page 28

A little example of references use:

<ref erence nodel =" Address" required="true"/> (1)
<reference nane="seller"/> (2)
<reference name="alternateSeller" model="Seller"/> (3)

(1)A reference to an aggregate called address, the reference name will be address.
(2)A reference to the entity of seller component. The model is deduced from name.
(3)A reference called alternateseller to the entity of component Seller.

If you assume that this is in a component named Customer, you could write:

| Cust oner custoner = ...
Addr ess address = custoner. get Address();
ISeller seller = custoner.getSeller();

ISeller alternateSeller = custoner.getAlternateSeller();

2.9.1 Default value calculator in references

In a reference <defaut-value-calculator/> works like in a property, only that it has to return the
value of the reference key, and on-create="true” is not allowed.

For example, in the case of a reference with simple key, you can write:

<reference nane="fam |ly" nodel ="Fam | y2" required="true">
<def aul t - val ue-cal cul at or cl ass="or g. openxava. cal cul at ors. | nt eger Cal cul at or" >
<set property="val ue" val ue="2"/>
</ def aul t - val ue- cal cul at or >

</reference>

The calculate () method is:

public Object calculate() throws Exception {

return new | nt eger(val ue);

As you can see an integer is returned, that is, the default value for family is 2.

In the case of composed key:

<ref erence nane="war ehouse" nodel ="\War ehouse" >
<def aul t - val ue- cal cul at or
cl ass="or g. openxava. t est. cal cul at or s. Def aul t War ehouseCal cul ator"/ >

</reference>

And the calculator code:

package org. openxava.test. cal cul ators;

OpenXava 3.0 - Classic XML Components Page 29

i nport org.openxava. cal cul ators. *;

i mport org.openxava.test.ejb.*;

/**
* @ut hor Javi er Paniza
=

public cl ass Defaul t War ehouseCal cul ator inpl ements | Cal cul ator {

public Object cal culate() throws Exception {
War ehouse key = new \War ehouse();
key. set Nunber (4) ;
key. set ZoneNunber (4) ;
return key; // This works with PQJO and EJB2
/] return new WarehouseKey(new I nteger(4), 4); // This only work with EJB2

}

Returns an object of type warehouse, (Or WwarehouseKey if you use only EJB2).

2.10 Collection (6)

With <collection/> you define a collection of references to entities or aggregates. This is
translated to Java as a property of type java.util.Collection.

Here syntax for collection:

<col | ecti on
nane="nane" (1)
| abel =" abel " (2)
m ni muns" N' (3)
maxi mune" N' (4) new v2.0. 3
>
<reference ... /> (5)
<condition ... /> (6)
<order ... /> (7)
<cal culator ... /> (8)
<postrenove-cal cul ator ... /> (9)
</ col | ecti on>

(1)name (required): The collection name in Java, therefore it must follow the rules for name
members in Java, including starting with lower-case. Using underline (_) is not advisable.

(2)1apel (optional): Label shown to final user. Is much better to use i/8n files.

(3)minimum (optional): Minimum number of expected elements. This is validated just before saving.

OpenXava 3.0 - Classic XML Components Page 30

(4)maximum (optional): (new v2.0.3) Maximum number of expected elements.
(5)reference (required): With the syntax you can see in the previous point.
(6)condition (optional): Restricts the elements that appear in the collection.
(7)order (optional): The elements in collections will be in the indicated order.

(8)calculator (optional): Allows you to define your own logic to generate the collection. If you
use this, then you cannot use neither condition nor order.

(9)postremove-calculator (optional): Execute your custom logic just after an element is removed
from collection.

Let's have a look at some examples. First a simple one:

<col | ecti on nanme="del i veri es">
<ref erence nodel ="Del i very"/>

</col |l ecti on>

If you have this within an Tnvoice, then you are defining a deliveries collection associated to
that Tnvoice. The details to make the relationship are defined in the object/relational mapping
(more about this in chapter 6).

Now you can write a code like this:

Il nvoice invoice = ...

for (lterator it = invoice.getDeliveries().iterator(); it.hasNext();) {
IDelivery delivery = (IDelivery) it.next();
del i very. doSomet hi ng() ;

}

To do something with all deliveries associated to an invoice.

Let's look at another example a little more complex, but still in Invoice:

<col | ecti on nane="details" m ni nun¥"1"> (1)
<reference nodel ="Invoi ceDetail"/>
<or der >${ servi ceType} desc</ order> (2)
<post r enove- cal cul at or (3)

cl ass="org. openxava. t est. cal cul at ors. Det ai | Post r enoveCal cul at or"/ >

</col |l ecti on>

In this case you have a collection of aggregates, the details (or lines) of the invoice. The main
difference between collection of entities and collection of aggregates is when you remove the main
entity; in the case of a collection of aggregates its elements are deleted too. That is when you delete
an invoice its details are deleted too.

(1)The restriction minimum="1" requires at least one detail for the invoice to be valid.
(2)With order you force that the details will be returned ordered by serviceType.

(3)With postremove-calculator you indicate the logic to execute just after a invoice detail is
removed. Let's look at the calculator code:

OpenXava 3.0 - Classic XML Components Page 31

package org. openxava.test. cal cul ators;

inmport java.rm.*;

i mport org.openxava. cal cul ators. *;

i mport org.openxava.test.ejb.*;

/**
* @ut hor Javi er Pani za
@]

public class Detail PostrenoveCal cul ator inplenments | Mdel Cal cul ator {

private |lnvoice invoice;

public Object calculate() throws Exception {

i nvoi ce. set Comment (i nvoi ce. get Conment () + "DETAI L DELETED');

return null

public void setEntity(Object nodel) throws RenoteException {

this.invoice = (Ilnvoi ce) nodel

As you see this is a conventional calculator as it is used in calculated properties. A thing to consider
is that the calculator is applied to the container entity (in this case Invoice) and not to the
collection element. That is, if your calculator implements IModelCalculator then it receives an
Invoice and not an InvoiceDetail. This is consistent because it is executed after the detail is
removed and the detail doesn't exist any more.

You have full freedom to define how the collection data is obtained, with condition you can
overwrite the default condition generated by OpenXava:

<l-- Qhers carriers of sane warehouse -->
<col | ection nane="fel |l owCarriers">
<reference nodel ="Carrier"/>
<condi ti on>
${ war ehouse. zoneNunber} = ${thi s. war ehouse. zoneNunber} AND
${war ehouse. nunber} = ${this. war ehouse. nunber} AND
NOT (${nunber} = ${this. nunber})
</ condi ti on>

</col |l ecti on>

If you have this collection within carrier, you can obtain with this collection all carriers of the

OpenXava 3.0 - Classic XML Components Page 32

same warehouse but not himself, that is the list of his fellow workers. As you see you can use this
in the condition in order to reference the value of a property of current object.

If with this you have not enough, you can write the logic that returns the collection. The previous
example can be written in the following way too:

<l--
The sanme that 'fellowCarriers' but inplemented with a cal cul at or
caD
<col | ecti on nane="fel |l owCarri ersCal cul at ed" >
<ref erence nodel ="Carrier"/>
<cal cul at or cl ass="org. openxava.test.cal cul ators. Fel | owCarri ersCal cul ator"/>

</col |l ecti on>

And here the calculator code:

package org. openxava.test. cal cul ators;

inmport java.rm.*;

i mport org.openxava. cal cul ators. *;

i mport org.openxava.test.ejb.*;

/**
* @ut hor Javi er Pani za
*/
public class FellowCarriersCal cul ator inplenments | Mdel Cal cul ator {

private | Carrier carrier;

public Object calculate() throws Exception {

/1 Using Hi bernate

i nt war ehouseZoneNunber = carri er. get War ehouse() . get ZoneNunber () ;

i nt war ehouseNunber = carri er. get War ehouse() . get Nunber () ;

Sessi on session = XH bernat e. get Sessi on();

Query query = session.createQuery("from Carrier as o where " +
"0.war ehouse. zoneNunber = :warehouseZone AND " +
"0.war ehouse. nunber = :warehouseNunber AND " +
"NOT (0. nunber = :nunber)");

query. set | nt eger ("war ehouseZone", war ehouseZoneNunber) ;

query. set | nt eger ("war ehouseNunber", war ehouseNunber) ;

query. set | nt eger ("nunber", carrier.get Nunber());

return query.list();

OpenXava 3.0 - Classic XML Components Page 33

/* Using EJB3 JPA
EntityManager nanager = XPersi st ence. get Manager () ;
Query query = manager.createQery("from Carrier c where " +
"c.war ehouse. zone = :zone AND " +
"c.war ehouse. nunber = :warehouseNunber AND " +
"NOT (c. nunber = :nunber) ");
query. set Par anet er (" zone", getWarehouse(). get Zone());
query. set Par anet er (" war ehouseNunber ", get War ehouse() . get Nunber ());
query. set Par anmet er ("nunber", get Nunber());
return query.getResultList();
*/

/* Using EIB2

return CarrierUtil.getHonme().findFell owCarriersC Carrier(
carrier. get War ehouseKey() . get ZoneNunber (),
carrier. get War ehouseKey() . get _Nunber (),

new | nteger(carrier.getNunber())

*/

public voi d set Model (Obj ect nodel) throws RenoteException {

carrier = (I Carrier) nodel;

As you see this is a conventional calculator. Obviously it must return a java.util.Collection
whose elements are of type ICarrier.

The references in collections are bidirectional, this means that if in a sel1ler you have a customers
collection, then in Customer you must have a reference to seller. But if in Customer you have
more than one reference to seller (for example, seller and alternateSeller) OpenXava does
not know which to choose, for this case you have the attribute role of reference. You can use it in
this way:

<col | ecti on name="cust omers" >
<reference nodel ="Custoner" rol e="seller"/>

</ col | ecti on>

To indicate that the reference seller and not alternateSeller will be used in this collection.

In the case of a collection of entity references you have to define the reference at the other side, but
in the case of a collection of aggregate references this is not necessary, because in the aggregates a
reference to this container is automatically generated.

OpenXava 3.0 - Classic XML Components Page 34

2.11 Method (7)

With <method/> you can define a method that will be included in the generated code as a Java
method.

The syntax for method is:

<met hod
nanme="nane" (1)
type="type" (2)
ar gunent s="ar gunent s" (3)
excepti ons="excepti ons" (4)
>
<cal culator ... /> (5)
</ met hod>

(1)name (required): Name of the method in Java, therefore it must follow the Java rules to name
members, like beginning with lower-case.

(2)type (optional, by default void): Is the Java type that the method returns. All Java types valid as
return type for a Java method are applicable here.

(3)arguments (optional): Argument list of the method in Java format.

(4)exceptions (optional): Exception list that can be thrown by this method, in Java format.
(5)calculator (required): Implements the logic of the method.

Defining a method is easy:

<met hod nane="i ncr easePri ce">

<cal cul at or cl ass="org. openxava. test.cal cul ators. | ncreasePri ceCal cul ator"/>

</ met hod>

And the implementation depends on the logic that you want to program. In this case:

package org. openxava.test. cal cul ators;

i mport java. math. *;

inport java.rm.*;

i nport org.openxava. cal cul ators. *;

i nport org.openxava.test. nodel . *;

/**
* @ut hor Javi er Pani za
*/

public class IncreasePriceCal cul ator inplenents | Mdel Cal cul ator {

OpenXava 3.0 - Classic XML Components Page 35

private |Product product;

public Object calculate() throws Exception {
product . set Uni t Pri ce(Il (1)
product . get Uni tPrice() .
mul ti pl y(new Bi gDeci mal ("1.02")).set Scal e(2));

return null; Il (2)

public voi d set Model (Obj ect nodel) throws RenoteException {
this. product = (IProduct) nodel;

}

All applicable things for calculators in properties are applicable to methods too, with the next
clarifications:

(1)A calculator for a method has moral authority to change the state of the object.
(2)If the return type of the method is void the calculator must return null.
Now you can use the method in the expected way:

| Product product = ...

product . set Uni t Pri ce(new Bi gDeci mal (“100"));

product . i ncreasePrice();

Bi gDeci mal newPrice = product.getUnitPrice();

And in newPrice you have 102.

Another example, now a little bit more complex:

<met hod name="get Pri ce" type="Bi gDeci mal "
argunent s="String country, BigDecimal tariff"
excepti ons="Product Excepti on, PriceException">
<cal cul at or cl ass="org. openxava. test. cal cul ators. Export Pri ceCal cul at or">
<set property="euros" fronm"unitPrice"/>

</ cal cul at or >

</method>

In this case you can notice that in arguments and exceptions the Java format is used, since what you
put there is inserted directly into the generated code.

The calculator:

package org. openxava.test. cal cul ators;

OpenXava 3.0 - Classic XML Components Page 36

i mport java. nath.*;

i mport org. openxava. cal cul ators. *;

i nport org.openxava.test.ejb.*;

/**

* (@ut hor Javi er Paniza
@

public class ExportPriceCal culator inplenents |ICal cul ator {

private Bi gDeci mal euros;
private String country;

private BigDecimal tariff;

public Cbject calculate() throws Exception {
if ("Espafa".equal s(country) || "Cuatemal a".equal s(country)) {
return euros.add(tariff);
}
el se {

throw new Pri ceException("Country not registered");

publ i c Bi gDeci mal get Euros() ({

return euros,

public void set Euros(Bi gDeci mal decimal) {

euros = deci nal ;

public Bi gDecimal getTariff() {

return tariff;

public void setTariff(BigDeci mal decimal) ({

tariff = decinal;

public String getCountry() {

return country;

}
public void setCountry(String string) {

OpenXava 3.0 - Classic XML Components Page 37

country = string;

}

Each argument is assigned to a property of the name in the calculator; that is, the value of the first
argument, country, is assigned to country property, and the value of the second one, tariff, to
the tariff property. Of course, you can configure values for others calculator properties with
<set/> as usual in calculators.

And to use the method:

| Product product
Bi gDeci mal price = product.getPrice(“Espafia’, new Bi gDeci mal (“100)); // works
product . getPrice(“El Puig”, new BigDecimal (“100”)); // throws PriceException

Methods are the sauce of the objects, without them the object only would be a silly wrapper of data.
When possible it is better to put the business logic in methods (model layer) instead of in actions
(controller layer).

2.12 Finder (8)

A finder is a special method that allows you to find an object or a collection of objects that follow
some criteria. In POJO version a finder method is a generated static method in the POJO class. In
the EJB2 version a finder matches with a finder in home.

The syntax for finder is:

<fi nder
nanme="nane" (1)
argument s="ar gunment s" (2)
col lection="(true|fal se)" (3)
>
<condition ... /> (4)
<order ... /> (5)
</finder>

(1)name (required): Name of the finder method in Java, hence it must follow the Java rules for
member naming, e.g. beginning with lower-case.

(2)arguments (required): Argument list for the method in Java format. It is (most) advisable to use
simple data types.

(3)collection (optional, by default false): Indicates if the result will be a single object or a
collection.

(4)condition (optional): A condition with SQL/EJBQL syntax where you can use the names of
properties inside ${}.

(5)order (optional): An order with SQL/EJBQL syntax where you can use the names of properties
inside ${}.

OpenXava 3.0 - Classic XML Components Page 38

Some examples:

<finder name="byNunber" argunents="int nunber">
<condi ti on>${ nunber} = {0}</condition>

</ finder>

<finder name="byNaneLi ke" argunments="String nanme" collection="true">
<condi ti on>${nane} |ike {0}</condition>
<or der >${ name} desc</ order >

</ finder>

<fi nder
nanme="byNaneLi keAndRel ati onWthSel | er"
argunents="String name, String relationWthSeller"
col l ection="true">
<condi ti on>${nane} |ike {0} and ${relationWthSeller} = {1}</condition>
<or der >${ nanme} desc</ order >

</ finder>

<finder name="normal Ohes" arguments="" collection="true">
<condi ti on>${type} = 1</condition>

</finder>
<finder name="steadyOnes" argunents="" collection="true">
<condi ti on>${type} = 2</condition>

</ finder>

<finder name="all" arguments="" collection="true"/>

This generates a set of finder methods available from POJO class and EJB2 home. This methods can
be used this way:

/1 PQJO, both JPA and Hi bernate
| Cust oner custoner = Custoner. fi ndByNunber (8);
Col | ection javieres = Custoner. findByNaneLi ke(“%AVI %) ;

/1l EIB2
| Cust oner custoner = Custoner Uil . get Hone() . findByNunber (8);
Col l ection javieres = Customer Uil .getHome().findByNaneLi ke(“%AVI %) ;

2.13 Postcreate calculator (9)

With <postcreate-calculator/> you can plug in your own logic to execute just after creating the
object as persistent object.

OpenXava 3.0 - Classic XML Components Page 39

Its syntax is:

<post cr eat e- cal cul at or
cl ass="cl ass" > (1)
<set ... [> ... (2)

</ post cr eat e- cal cul at or >

(1)class (required): Calculator class. This calculator must implement 1Calculator or some of its
children.

(2)set (several, optional): To set the value of the calculator properties before executing it.
A simple example is:
<post cr eat e- cal cul at or
cl ass="or g. openxava. test. cal cul at ors. Del i ver yTypePost cr eat eCal cul at or ">

<set property="suffix" val ue="CREATED'/ >

</ post cr eat e- cal cul at or >

And now the calculator class:

package org. openxava.test.cal cul ators;

inmport java.rm.*;

i mport org.openxava. cal cul ators. *;

i nport org.openxava.test.ejb.*;

[**
* @ut hor Javi er Paniza
*/

public class DeliveryTypePostcreateCal cul ator inplements | Mdel Cal cul ator {

private |DeliveryType deliveryType;

private String suffix;
public Object calculate() throws Exception {

del i veryType. set Descri pti on(del i veryType. get Description() + " " + suffix);

return null;

public voi d set Model (Obj ect nodel) throws RenoteException {
deli veryType = (I DeliveryType) nodel;

public String getSuffix() {

OpenXava 3.0 - Classic XML Components Page 40

return suffix;

}
public void setSuffix(String suffix) {

this.suffix = suffix;

}

In this case each time that a DeliveryType is created, just after it, a suffix to description is added.

As you see, this is exactly the same as in other calculators (as calculated properties or method) but
is executed just after creation.

2.14 Postmodify calculator (11)

With <postmodify-calculator/> you can plug in some logic to execute after the state of the
object is changed and just before it is stored in the database, that is, just before executing UPDATE
against database.

Its syntax is:

<post nodi f y- cal cul at or
cl ass="cl ass" > (1)
<set ... /> ... (2)

</ post nodi f y- cal cul at or >

(3)class (required): Calculator class. A calculator that implements ICalculator or some of its
children.

(4)set (several, optional): To set the value of the calculator properties before execute it.

A simple example is:

<post nodi fy- cal cul at or

cl ass="or g. openxava. t est. cal cul at ors. Del i ver yTypePost nodi f yCal cul ator"/ >

And now the calculator class:

package org. openxava.test. cal cul ators;

inmport java.rm.*;

i mport org. openxava. cal cul ators. *;

i mport org.openxava.test.ejb.*;

/**

* @ut hor Javi er Pani za
@]

OpenXava 3.0 - Classic XML Components Page 41

public class DeliveryTypePost nodi fyCal cul at or inpl ements | Mdel Cal cul ator {

private |DeliveryType deliveryType;

public Object calculate() throws Exception {

del i veryType. set Descri pti on(del i veryType. get Descri ption() + " MOD FIED");

return nul | ;

public voi d set Model (Obj ect nodel) throws RenoteException {
del i veryType = (I DeliveryType) nodel;

}

In this case whenever that a DeliveryType is modified a suffix is added to its description.

As you see, this is exactly the same as in other calculators (as calculated properties or methods), but
it is executed just after modifying.

2.15 Postload and preremove calculator (10, 12)

The syntax and behavior of postload and preremove calculators are the same of the postcreate and
and postmodify ones.

2.16 Validator (13)

This validator allows to define a validation at model level. When you need to make a validation on
several properties at a time, and that validation does not correspond logically with any of them, then
you can use this type of validation.

Its syntax is:

<val i dat or
cl ass="cl ass" (1)
name="nane" (2)
onl y-on-create="true|fal se" (3)
>
<set ... /> ... (4)

</ val i dat or >

(1)class (optional, required if name is not specified): Class that implements the validation logic. It
has to be of type 1validator.

(2)name (optional, required if class is not specified): This name is a validator name from
xava/validators.xml file of your project or of the OpenXava project.

(3)only-on-create (optional): If true the validator is executed only when creating a new object,
not when an existing object is modified. The default value is false.

OpenXava 3.0 - Classic XML Components Page 42

(4)set (several, optional): To set a value of the validator properties before executing it.

An example:

<val i dat or cl ass="org. openxava.test.val i dators. CheapProduct Val i dat or " >

<set property="limt" val ue="100"/>
<set property="description"/>

<set property="unitPrice"/>

</val i dat or >

And the validator code:

package org.openxava.test.validators;

i mport java. nath.*;

i mport org.openxava. util.*;

i mport org.openxava. val i dators. *;

/**

* (@ut hor Javi er Paniza

*/

public class CheapProduct Validator inplenents |Validator { /Il (1)

private int limt;
private Bi gDeci mal unitPrice;

private String description;

public void validate(Messages errors) { Il (2)
if (getDescription().indexCf("CHEAP') >= 0
| | getDescription().indexO("BARATO') >= 0
|| getDescription().indexOr("BARATA") >= 0) {
if (getLimtBd().conpareTo(getUnitPrice()) < 0) {
errors. add("cheap_product"”, getLimtBd());

public Bi gDeci mal getUnitPrice() {

return unitPrice;

public void setUnitPrice(Bi gDeci mal decinal) {

unitPrice = decinal;

11 (3)

OpenXava 3.0 — Classic XML Components

Page 43

public String getDescription() {

return description==null?"":description;

public void setDescription(String string) {

description = string;

public int getLimt() {

return limt;

public void setLimt(int i) {

limt =i;

private BigDeci mal getLimtBd() {

return new BigDecimal (Iimt);

}

This validator must implement Tvalidator (1), this forces you to write a validate (Messages
messages) (2). In this method you add the error message ids (3) (whose texts are in the i/8n files).
And if the validation process (that is the execution of all validators) produces some error, then
OpenXava does not save the object and displays the errors to the user.

In this case you see how description and unitPrice properties are used to validate, for that
reason the validation is at model level and not at individual property level, because the scope of
validation is more than one property.

2.17 Remove validator (14)

The <remove-validator/> is a level model validator too, but in this case it is executed just before
removing an object, and it has the possibility to deny the deletion.

Its syntax is:

<renove-val i dat or

cl ass="val i dat or" (1)

name="nane" (2)
>

<set ... [> ... (3)

</ renove-val i dat or >

OpenXava 3.0 - Classic XML Components Page 44

(1)class (optional, required if name is not specified): Class that implements the validation logic.
Must implement IRemovevalidator.

(2)name (optional, required if class is not specified): This name is a validator name from the
xava/validators.xml file of your project or from the OpenXava project.

(3)set (several, optional): To set the value of the validator properties before executing it.
An example can be:

<r enpove-val i dat or

class="org.openxava.test.validators.DeliveryTypeRemoveValidator"/>

And the validator:

package org. openxava.test. val i dators;
import java.util.*;

i nport org.openxava.test.ejb.*;
i mport org.openxava. util.*;

i mport org.openxava. val i dators.*;

| *x
* @ut hor Javi er Paniza
*/

public class DeliveryTypeRenoveVal i dator inplenments | RenoveValidator { // (1)

private |DeliveryType deliveryType;
public void setEntity(Chject entity) throws Exception { Il (2)

this.deliveryType = (IDeliveryType) entity;

public void validate(Messages errors) throws Exception {
if (!deliveryType.getDeliveries().isEmty()) {

errors. add("not_renove_delivery type if_in_deliveries"); Il (3)

As you see this validator must implement IRemovevalidator (1) this forces you to write a
setEntity () (2) method that receives the object to remove. If validation error is added to the
Messages object sent to validate () (3) the validation fails. If after executing all validations there
are validation errors, then OpenXava does not remove the object and displays a list of validation
messages to the user.

OpenXava 3.0 - Classic XML Components Page 45

In this case it verifies if there are deliveries that use this delivery type before deleting it.

2.18 Aggregate
The aggregate syntax is:

<aggr egat e name="aggr egat e" > (1)
<bean cl ass="beand ass"/> (2)
<ejb ... /> (3)
<inmplenents .../>

<property .../> ...

<reference .../> ...
<collection .../> ...

<method .../> ...

<finder .../> ...
<postcreate-cal culator .../> ...
<post nodi fy-cal culator .../> ...
<validator .../> ...
<renove-validator .../> ...

</ aggr egat e>

(1)name (required): Each aggregate must have a unique name. The rules for this name are the same
that for class names in Java, that is, to begin with upper-case and each new word starting with
upper-case too.

(2)bean (one, optional): Allows to specify a class written by you to implement the aggregate. The
class has to be a JavaBean, that is a plain Java class with getters and setters for properties.
Usually this is not used because it is much better that OpenXava generates the code for you.

(3)e5b (one, optional): Allows to use existing EJB2 to implement an aggregate. This can be used
only in the case of a collection of aggregates. Usually this is not used because it is much better
that OpenXava generates the code for you.

An OpenXava component can have whichever aggregates you want. And you can reference it from
the main entity or from another aggregate.

2.18.1 Reference to aggregate
The first example is an aggregate address that is referenced from the main entity.
In the main entity you can write:

<reference name="address" model="Address" required="true"/>

And in the component level you define:

<aggr egat e nane="Address" >
<inpl enents interface="org.openxava.test.ejb. IWthCty"/> (1)
<property nane="street" type="String" size="30" required="true"/>

<property nane="zi pCode" type="int" size="5" required="true"/>

OpenXava 3.0 - Classic XML Components Page 46

<property nane="city" type="String" size="20" required="true"/>
<reference nane="state" required="true"/> (2)

</ aggr egat e>

As you see an aggregate can implement an interface (1) and contain references (2), among other
things, in fact all thing that you can use in <entity/> are supported in an aggregate.

The resulting code can be used this way, for reading:

| Cust omer custoner = ..
Addr ess address = custoner. get Address();

address.getStreet(); // to obtain the val ue

Or in this other way to set a new address:

Il to set a new address

Address address = new Address(); // it's a JavaBean, never an EJB2
address. setStreet (“M/ street”);

addr ess. set Zi pCode(46001) ;

address.setGty(“Val encia”);

address. setState(state);

cust oner . set Addr ess(addr ess) ;

In this case you have a simple reference (not collection), and the generated code is a simple
JavaBean, whose life cycle is associated to its container object, that is, the Address is removed and
created through the customer. An Address never will have its own life and cannot be shared by
other customer.

2.18.2 Collection of aggregates

Now an example of a collection of aggregates. In the main entity (for example Invoice) you can
write:

<col | ecti on name="details" m ni nun"1">
<ref erence nodel ="I nvoi ceDetail"/>

</ col | ecti on>

And define the InvoiceDetail aggregate:

<aggr egat e nane="I nvoi ceDetai | ">
<property nane="oi d" type="String" key="true" hidden="true">
<def aul t - val ue- cal cul at or
cl ass="or g. openxava. t est. cal cul ators. | nvoi ceDet ai | O dCal cul at or"
on-create="true"/>
</ property>
<property nane="serviceType">

<val i d- val ues>

OpenXava 3.0 - Classic XML Components Page 47

<val i d-val ue val ue="speci al "/ >
<val i d-val ue val ue="urgent"/>
</val i d- val ues>
</ property>
<property nane="quantity" type="int"
size="4" required="true"/>
<property name="unitPrice"
st er eot ype="MONEY" required="true"/>
<property nanme="anount"
st er eot ype=" MONEY" >
<cal cul at or
cl ass="or g. openxava. t est. cal cul at or s. Det ai | Anount Cal cul at or" >
<set property="unitPrice"/>
<set property="quantity"/>
</ cal cul at or >
</ property>
<ref erence nodel ="Product” required="true"/>
<property nane="del i veryDate" type="java.util.Date">
<def aul t - val ue- cal cul at or
cl ass="or g. openxava. cal cul at ors. Current Dat eCal cul ator"/ >
</ property>
<ref erence nane="sol dBy" nodel ="Seller"/>

<property nanme="renmarks" stereotype="MEMD'/ >

<val i dat or cl ass="org. openxava.test.validators.|nvoiceDetail Validator">
<set property="invoice"/>
<set property="o0id"/>
<set property="product"/>
<set property="unitPrice"/>

</val i dat or >

</ aggr egat e>

As you see an aggregate is as complex as an entity, with calculators, validators, references and so
on. In the case of an aggregate used in a collection a reference to the container is added
automatically, that is, although you have not defined it, InvoiceDetail has a reference to Invoice.

In the generated code you can find an Invoice with a collection of I1nvoicebDetail. The difference
between a collection of references and a collection of aggregates is that when you remove a
Invoice its details are removed too (because they are aggregates). Also there are differences at
user interface level (you can learn more on this in chapter 4).

(New in v2.1.1 Reference Guide: Explanation of implicit reference) Every aggregate has a implicit
reference to its container model. That is, InvoiceDetail has a reference named invoice, even if
the reference is not declared (although it can be optionally declared for refining purpose, for

OpenXava 3.0 - Classic XML Components Page 48

example, for making it key). This reference can be used in Java code, as following:

I nvoi ceDetail detail = ... ;

detail.getlnvoice(); // For obtaining the parent

Or it can be used in XML code, in this way:

<property nane="oi d" type="String" key="true" hidden="true">
<def aul t - val ue- cal cul at or
cl ass="org. openxava. t est. cal cul ators. | nvoi ceDet ai | 20 dCal cul at or"
on-create="true">
<set property="invoiceYear" fron¥"invoice.year"/> (1)
<set property="invoi ceNunber" from="invoice. nunber"/> (1)
</ def aul t - val ue- cal cul at or >

</ pr operty>

In this case we use invoice in the from attribute (1) although invoice is not declared in
InvoiceDetail. New in v2.1.1: using reference to parent model key properties in a from attribute

(that is, from="invoice.year”)

OpenXava 3.0 — Classic XML Components

Page 49

3 View

OpenXava generates a default user interface from the model. In many simple cases this is enough,
but sometimes it is necessary to model with precision the format of the user interface or view. In
this chapter you will learn how to do this.

The syntax for view is:

<Vi ew
nane="nane" (1)
| abel =" abel " (2)
nodel =" nodel " (3)
nmenber s=" menber s" (4)
>
<property ... /> ... (5)
<property-view ... [> ... (6)
<reference-view ... /> ... (7)
<col lection-view ... /> ... (8)
<menbers ... [> ... (9)
</ vi ew>

(1)name (optional): This name identifies the view, and can be used in other OpenXava places (for
example in application.xml) or from another component. If the view has no name then the view is
assumed as the default one, that is the natural form to display an object of this type.

(2)1abel (optional): The label that is showed to the user, if needed, when the view is displayed. It's
much better use the i/8n files.

(3)model (optional): If the view is for an aggregate of this component you need to specify here the
name of that aggregate. If mode1 is not specified then this view is for the main entity.

(4)members (optional): List of members to show. By default it displays all members (excluding
hidden ones) in the order in which are declared in the model. This attribute is mutually exclusive
with the members element (that you will see below).

(S)property (several, optional): Defines a property of the view, that is, information that can be
displayed to the user and the programmer can work programmatically with it, but it is not a part
of the model.

(6)property-view (several, optional): Defines the format to display a property.
(7)reference-view (several, optional): Defines the format to display a reference.
(8)collection-view (several, optional): Defines the format to display a collection.

(9)members (one, optional): Indicates the members to display and its layout in the user interface. Is
mutually exclusive with the members attribute. Inside members you can use section and group
elements (see section 4.1) for layout purposes; or action (new in v2.0.3) element for showing a
link associated to a custom action inside your view (see section 4.6).

OpenXava 3.0 - Classic XML Components Page 50

3.1 Layout

By default (if you do not use <view/>) all members are displayed in the order of the model, and one
for each line.

For example, a model like this:

<entity>
<property nane="zoneNunber" key="true"
size="3" required="true" type="int"/>
<property nane="of fi ceNunber" key="true"
size="3" required="true" type="int"/>
<property nanme="nunber" key="true"
size="3" required="true" type="int"/>
<property nane="nanme" type="String"
size="40" required="true"/>

</entity>

Generates a view that looks like this:

Name [/ IPEPE

You can choose the members to display and its order, with the members attribute:

<view members="zoneNumber; officeNumber; number"/>

In this case name is not shown.

The members also can be specified using the members element, that is mutually exclusive with the
members attribute, thus:

<vi ew>
<menber s>
zoneNunber, officeNunber, nunber;
name
</ menber s>

</ vi ew>

You can observe that the member names are separated by commas or by semicolon, this is used to
indicate layout. With comma the member is placed just the following (at right), and with semicolon
the next member is put below (in the next line). Hence the previous view is displayed in this way:

OpenXava 3.0 - Classic XML Components Page 51

Zone o= | Officec=| Numbere=|

Name 5/ |PEPE

3.1.1 Groups

With groups you can lump a set of related properties and it has this visual effect:

<vi ew>
<nmenber s>
<group nanme="id">
zoneNunber, officeNunber, nunber
</ gr oup>
; name
</ menber s>

</ vi ew>

In this case the result is:
Id

Inn:timl_1 ﬂfﬂi:eﬁ;:—l_1 Mumb:rﬁ,r-l_1

Name 5/ |PEPE

You can see the three properties within the group are displayed inside a frame, and name is
displayed outside this frame. The semicolon before name causes it to appear below, if not it appears

at right.

You can put several groups in a view:

<gr oup nane="cust oner" >
type;
name;

</ gr oup>

<group name="seller">
sell er;
rel ati onWthSel |l er;

</ gr oup>

In this case the groups are shown one next to the other:

Cusiomer Seller
Type &/ [Normal - Seller
Namr.f'.;/l Mumher@ml_% Add
Name i/ |

Relation with seller IGGGD

If you want one below the other then you must use a semicolon after the group, like this:

OpenXava 3.0 — Classic XML Components

Page 52

<gr oup nane="cust oner" >
type;
nane;

</ gr oup>;

<group name="seller">
sel | er;
rel ati onWthSel | er;

</ gr oup>

In this case the view is shown this way:

Customer

Type 5/ | Normal ;l

Name &/ |

Seller
Seller

Number i= I_%: Add
Name i/ |

Relation with seller IGDDD

Nested groups are allowed. This is a pretty feature that allows you to layout the elements of the user
interface in a flexible and simple way. For example, you can define a view as this:

<menber s>
i nvoi ce;
<group nane="del i veryDat a">
type, nunber;
dat e;
descri pti on;
shi pnent ;
<group nanme="transport Data">
di stance; vehicle; transportMde; driverType;
</ gr oup>
<group name="del i veryByDat a" >
del i ver edBy;
carrier;
enpl oyee;
</ gr oup>

</ gr oup>

OpenXava 3.0 - Classic XML Components Page 53

</ menber s>

And the result will be:

*rear@=~| Mumheru:;ml S & Dnil:[_"'#-fl Year discount £

Delivery daia

Type = I | Humherlz:ml Generate
Date 7 |§3ma-'2uu5 B

Descriplion I

Shipment | |

Transpori ata '‘Delivery by data
Distance | | Delivered by |—;|
Vehicle |

Transpori mode
Driver type I,‘(

New in v2.0.4: Sometimes it's useful to layout members aligned by columns, like in a table. For
example, the next view:

<vi ew nane="Anount s" >
<menber s>
year, nunber;
<group nane="anounts">
cust omer Di scount, custoner TypeD scount, yearD scount;
amount sSum vat Per cent age, vat;
</ gr oup>
</ menber s>

</ vi ew>

...will be displayed as following:

Year = I Numherti,‘r—*l

Amounts.
Customer discount I € Customer type discount I € Year discount I €
Amounts sum | € VAT %E‘z/| 16 VAT. | €

This is ugly. It would be better to have all data aligned by columns. You can define the group in this
way:

OpenXava 3.0 - Classic XML Components Page 54

<vi ew nane="Anount s" >
<menber s>
year, nunber;
<group name="anounts" al i gned- by-col utms="true"> (1)
cust orer Di scount, customer TypeD scount, yearD scount;
anmount sSum vat Per cent age, vat;
</ gr oup>
</ menber s>

</ vi ew>

And you will obtain this result:

Year = I Number@?l

Amounts

Customer discount I € Customer type discount I € Year discount I £
Amounts sum | € VAT §f|16 VAT. | €

Now, thanks to the aligned-by-columns (1) attribute, the members are aligned by columns.

The attribute aligned-by-columns is also available for the sections (see below).

3.1.2 Sections

Furthermore the members can be organized in sections. Let's see an example from the Invoice
component:

<vi ew>

<menber s>
year, nunber, date, paid;
cust omer Di scount, custoner TypeDi scount, year Di scount
conment ;
<section nanme="cust oner" >cust oner </ secti on>
<section nane="detail s">detail s</section>
<section nane="anount s" >anount sSunm vat Percent age; vat</section>
<section nane="del i veri es">deliveries</section>

</ menber s>

</ vi ew>

The visual result is:

OpenXava 3.0 - Classic XML Components Page 55

Year o | Number o= | Datei/|01/012002 Paid [

Cusfomer discount I € Cusiomer type di:cnunil € Year dis:nunil €

Comment IINVOICE WITH SPACES

| Seller Details Amounts Deliveries

Little code = | 1 % Add
Type v [

Address

ViewProperty |

Streel | 4 Iz"ﬂ = Stateti/ [l o

The sections are rendered as tabs that the user can click to see the data contained in that section.
You can observe how in the view you put members of all types (not only properties); thus,

customer is a reference, details is a collection of aggregates and deliveries is a collection of
entities.

Nested sections are allowed (new in v2.0). For example, you can define a view as this:

<vi ew name="Nest edSecti ons" >
<nenber s>
year, nunber
<secti on nanme="cust oner">cust oner </ secti on>
<section nanme="data">
<section nane="detail s">detail s</section>
<section nane="anount s">
<section nane="vat">vat Percent age; vat</section>
<section nane="anount sSuni >anount sSunx/ secti on>
</ secti on>
</ section>
<section nane="del i veries">deliveries</section>
</ menber s>

</ vi ew>

In this case you will obtain a user interface like this:

Yanr@#lm NumberG‘FID—
Customer = Data Deliveries
ﬁm Amounts sum

VAT % 7 |_

VAT. | €

OpenXava 3.0 - Classic XML Components Page 56

New in v2.0.4: As in the groups case, the sections allow using the attribute aligned-by-columns,
like this:

<section name="anounts" aligned-by-col ums="true"> ... </section>

With the same effect as in the group case. Look at section 4.1.2.

3.1.3 Layout philosophy

It's worth to notice that you have groups instead of frames and sections instead of tabs. Because
OpenXava tries to maintain a high level of abstraction, that is, a group is a set of members
semantically related, and the sections allow to split the data into parts. This is useful, if there is a big
amount of data that cannot be displayed simultaneous. The fact that the group is displayed as frames
or sections in a tabbed pane is only an implementation issue. For example, OpenXava (maybe in
future) can choose to display sections (for example) with trees or so.

3.2 Property view
With <property-view/> you can refine the visual aspect and behavior of a property in a view.

It has this syntax:

<property-vi ew
propert y="propertyNane" (1)
| abel =" abel " (2)
read-onl y="true| f al se" (3)
| abel - f or mat =" NORVAL | SMALL| NO_LABEL" (4)
edi t or ="edi t or Nane" (5) newin v2. 1.3
di spl ay- si ze="si ze" (6) newin v2. 2.1
>
<on-change ... /> (7)
<action ... /> ... (8)
</ property-vi ew>

(1)property (required): Usually the name of a model property, although it also can be the name of
a property of the view itself.

(2)1apel (optional): Modifies the label for this property in this view. To achieve this it is much
better use the i/8n files.

(3)read-only (optional): If you set this property to true it never will be editable by the final user
in this view. An alternative to this is to make the property editable or not editable
programmatically using org.openxava.view.View.

(4)1abel-format (optional): Format to display the label of this property.

(5)editor (optional): New in v2.1.3. Name of the editor to use for displaying the property in this
view. The editor must be declared in OpenXava/xava/default-editors.xml or xava/editors.xml of
your project.

(6)display-size (optional): New in v2.2.1. The size in characters of the editor in the User Interface

OpenXava 3.0 - Classic XML Components Page 57

used to display this property. The editor display only the characters indicated by display-size
but it allows to the user to entry until the total size of the property. If display-size is not
specified, the value of the size of the property is assumed.

(7)on-change (one, optional): Action to execute when the value of this property changes.

(8)action (several, optional): Actions (showed as links, buttons or images to the user) associated
(visually) to this property and that the final user can execute.

3.2.1 Label format

A simple example of using label format:

<vi ew nodel =" Addr ess" >
<property-vi ew property="zi pCode" | abel -format="SMALL"/>

</ vi ew>

In this case the zip code is displayed as:
code
i 46540
The norMAL format is the default style (with a normal label at the left) and the no_LaBEL simply
does not display the label.

3.2.2 Value change event
If you wish to react to the event of a value change of a property you can write:
<property-view property="carrier. nunber">

<on- change cl ass="org. openxava. t est. acti ons. OnChangeCarri er | nDel i veryActi on"/>

</ property-vi ew>

You can see how the property can be qualified, that is in this case your action listens to the change
of carrier number (carrier is a reference).

The code to execute is:

package org.openxava.test.actions;

i nport org.openxava. acti ons. *;

[**
* @ut hor Javi er Paniza
*/
public class OnChangeCarri erlnDel i veryAction
ext ends OnChangePr opert yBaseActi on { Il (1)

public void execute() throws Exception {
if (getNewvalue() == null) return; Il (2)
getView).setVal ue("remarks", "The carrier is " + getNewalue()); // (3)

OpenXava 3.0 - Classic XML Components Page 58

addMessage("carri er _changed");

}

The action has to implement T0nChangePropertyAction although it is more convenient to extend
it from OnChangePropertyBaseAction (1). Within the action you can use getNewvalue () (2) that
provides the new value entered by user, and getview() (3) that allows you to access
programmatically the view (change values, hide members, make them editable and so on).

3.2.3 Actions of property
You can also specify actions that the user can click directly:
<property-vi ew property="nunber" >

<action action="Deliveries. generateNunber"/>

</ property-vi ew>

In this case instead of an action class you have to write the action identifier that is the controller
name and the action name. This action must be registered in controllers.xml in this way:

<control | er nanme="Del i veri es">
<action nanme="gener at eNunber" hi dden="true"
cl ass="org. openxava. t est. acti ons. Gener at eDel i ver yNunmber Acti on" >

<use- obj ect name="xava_vi ew'/ >

</ acti on>

</control | er>

The actions are displayed as a link or an image beside the property. Like this:

Mu mherci:! Generate

By default the action link is present only when the property is editable, but if the property is read-
only or calculated then it is always present. You can use the attribute always-enabled (new in
v2.0.3) to true so that the link is always present, even if the property is not editable. As following:

<action action="Deliveries.generateNunber" always-enabl ed="true"/>

The attribute always-enabled is optional and its default value is false.

The code of previous action is:

package org.openxava.test.actions;

i mport org.openxava. acti ons. *;

/**

OpenXava 3.0 - Classic XML Components Page 59

* @ut hor Javi er Paniza
*/
public class GenerateDeliveryNunber Acti on ext ends Vi ewBaseAction {

public void execute() throws Exception {

get Vi ew() . set Val ue(" nunber", new Integer(77));

}

A simple but illustrative implementation. You can use any action defined in controllers.xml and its
behavior is the normal for an OpenXava action. In the chapter 7 you will learn more details about
actions.

Optionally you can make your action an IPropertyAction (new in v2.0.2) (this is available for
actions used in <property-view/> only), thus the container view and the property name are
injected in the action by OpenXava. The above action class could be rewritten in this way:

package org.openxava.test.actions;

i nport org.openxava. acti ons. *;

i nport org. openxava. vi ew. *;

| *x
* @ut hor Javi er Paniza
*/
public class GenerateDeliveryNunberActi on
ext ends BaseAction
i mpl enents | PropertyAction { /Il (1)
private View view,

private String property;

public void execute() throws Exception {

vi ew. set Val ue(property, new Integer(77)); Il (2)

}

public void setProperty(String property) { Il (3)
this. property = property;

}

public void setViewView view { Il (4)
this.view = view,

}

OpenXava 3.0 - Classic XML Components Page 60

This action implements IPropertyAction (1), this required that the class implements
setProperty () (3) and setview () (4), these values are injected in the action object before call to
execute () method, where they can be used (2). In this case you does not need to inject xava_view
object when defining the action in controllers.xml. The view injected by setview () (4) is the inner
view that contains the property, for example, if the property is inside an aggregate the view is the
view of that aggregate not the main view of the module. Thus, you can write more reusable actions.

3.2.4 Choosing an editor (new in v2.1.3)

An editor display the property to the user and allows him to edit its value. OpenXava uses by default
the editor associated to the stereotype or type of the property, but you can specify a concrete editor
for display a property in a view.

For example, OpenXava uses a combo for editing the properties of type valid-values, but if you
want to display a property of this type in some particular view using a radio button you can define
that view in this way:

<vi ew nane="TypeW t hRadi oBut t on" >
<property-view property="type" editor="ValidVal uesRadi oButton"/>
<nmenber s>nunber; type; nane; address</nenbers>

</ vi ew>

In this case for displaying/editing the editor validvaluesRadioButton will be used, instead of
default one. validvalueRadioButton 1s defined in OpenXava/xava/default-editors.xml as
following:

<edi tor nanme="Val i dVal uesRadi oButt on" url ="radi oButtonEditor.jsp"/>
This editor is included with OpenXava, but you can create your own editors with your custom JSP
code and declare them in the file xava/editors.xml of your project.

This feature is for changing the editor only in one view. If you want to change the editor for a type,
steroetype or a property of a model at application level then it's better to configure it using
xava/editors.xml file.

3.3 Reference view
With <reference-view/> you can modify the format for displaying references.

Its syntax is:

<r ef er ence- vi ew
ref erence="ref erence" (1)
vi ew="vi ew!' (2)
read-onl y="true|f al se" (3)
frame="true|fal se" (4)
create="true|fal se" (5)
nodi fy="true| f al se" (6) new in v2.0.4
search="true| fal se" (7)
as- aggregate="true| fal se" (8) new in v2.0.3

OpenXava 3.0 - Classic XML Components Page 61

<on- change-search ... /> (9) newin v2 2.5

<search-action ... /> (10)
<descriptions-list ... /> (12)
<action ... /> ... (12) new in v2. 0.1

</reference-vi ew>

(1)reference (required): Name of the reference to refine its presentation.

(2)view (optional): If you omit this attribute, then the default view of the referenced object is used.
With this attribute you can indicate that it uses another view.

(3)read-only (optional): If you set the value to true the reference never will be editable by final
user in this view. An alternative is to make the property editable/uneditable programmatically

using org.openxava.view.View.
(4)frame (optional): If the reference is displayed inside a frame. The default value is true.

(5)create (optional): If the final user can create new objects of the referenced type from here. The
default value is true.

(6)modify (optional): (new in v2.0.4) If the final user can modify the current referenced object from
here. The default value is true.

(7)search (optional): If the user will have a link to make searches with a list, filters, etc. The default
value 1S true.

(8)as-aggregate (optional): (new in v2.0.3) By default fa1se. By default in the case of a reference
to an aggregate the user can create and edit its data, while in the case of a reference to an entity
the user can only to choose an existing entity. If you put as-aggregate to true then the user
interface for references to entities behaves as a in the aggregate case, allowing to the user to
create a new object and editing its data directly. It has no effect in case of a reference to
aggregates. Warning! If you remove an entity its referenced entities are not removed, even if they
are displayed using as—aggregate="true”.

(9)on-change-search (one, optional): (new in v2.2.5) Allows you to specify your own action for
searching when the user type a new key.

(10)search-action (one, optional): Allows you to specify your own action for searching when the
user click on search link.

(11)descriptions-1ist: Display the data as a list of descriptions, typically as a combo. Useful
when there are few elements of the referenced object.

(12)action (several, optional): (new in v2.0.1) Actions (showed as links, buttons or images to the
user) associated (visually) to this reference and that the final user can execute. Works as in
<property-view/> case, look at section 4.2.3.

If you do not use <reference-view/> OpenXava draws a reference using the default view. For
example, if you have a reference like this:

<entity>

OpenXava 3.0 - Classic XML Components Page 62

<reference nane="family" nodel ="Fam |y" required="true"/>

</entity>

The user interface will look like this (modify link new in v2.0.4):
Family

Number G/ 1% & @}

Description G

3.3.1 Choose view

The most simple customization is to specify the view of the referenced object that you want to use:

<reference-view reference="invoice" view="Simple"/>

In the Invoice component you must have a view named Simple:

<conponent nane="|nvoi ce">

<vi ew nane="Si npl e" >
<nmenber s>
year, nunber, date, yearD scount;
</ menber s>

</ vi ew>

</ conponent >

Thus, instead of using the default view of Invoice (that shows all invoice data) OpenXava will use
the next one:

Invoice

Year i= I Mumher@:—l Dﬂieﬁj..fl Year discount I £

3.3.2 Customizing frame

If you combine frame="false” with group you can group visually a property that is not a part of a
reference with that reference, for example:

<reference-view reference="seller" frane="fal se"/>

<nenber s>

<group nane="seller">
sel | er;
relationWthSell er;

</ gr oup>

OpenXava 3.0 - Classic XML Components Page 63

</ menber s>

And the result:
Seller
MNumber c::l % Add
Name |

Relation wilh seller IGDGD

3.3.3 Custom search action

The final user can search a new value for the reference simply by keying the new code and leaving
the editor the data of reference is obtained; for example, if the user keys “1” on the seller number
field, then the name (and the other data) of the seller “1” will be automatically filled. Also the user
can click in the lantern, in this case the user will go to a list where he can filter, order, etc, and mark
the wished object.

To define your custom search logic you have to use <search-action/> in this way:

<reference-vi ew reference="sell er">
<search-action action="M/Reference. search"/>

</reference-vi ew>

When the user clicks in the lantern your action is executed, which must be defined in
controllers.xml.

<control | er name="M/Ref er ence" >
<action nanme="search" hi dden="true"

cl ass="org. openxava. t est. acti ons. M/Sear chActi on"
i mage="i mages/ search. gi f">
<use- obj ect name="xava_vi ew'/ >
<use- obj ect name="xava_r ef erenceSubvi ew'/ >
<use- obj ect name="xava_tab"/>
<use- obj ect name="xava_current Ref erencelLabel "/ >

</ acti on>

</controll er>

The logic of your MySearchaction is up to you. You can, for example, refining the standard search
action to filter the list for searching, as follows:

package org.openxava.test.actions;

i nport org. openxava. acti ons. *;

OpenXava 3.0 - Classic XML Components Page 64

/**
* @ut hor Javi er Pani za
*/

public class M/SearchActi on extends ReferenceSearchAction {
public void execute() throws Exception {

super . execut e() ; // The standard search behavi our

get Tab() . set BaseCondi tion("${nunber} < 3"); // Adding a filter to the |list

}

You will learn more about actions in chapter 7.

3.3.4 Custom creation action

If you do not write create="false” the user will have a link to create a new object. By default
when a user clicks on this link, a default view of the referenced object is displayed and the final user
can type values and click a button to create it. If you want to define your custom actions (among
them your create custom action) in the form used when creating a new object, you must have a
controller named as component but with the suffix creation. If OpenXava see this controller it
uses it instead of the default one to allow creating a new object from a reference. For example, you
can write in your controllers.xml:

<I--
Because its nane i s WarehouseCreati on (nodel nane + Creation) it is used
by default for create fromreference, instead of NewCreation.
Action 'new is executed automatically.
caD
<control | er nane="War ehouseCr eati on" >
<extends control | er="NewCreation"/>
<action name="new' hi dden="true"
cl ass="or g. openxava. t est. acti ons. O eat eNewMar ehouseFr onRef er enceAct i on" >
<use- obj ect name="xava view'/>
</ acti on>

</controller>

In this case when the user clicks on the 'create’ link, the user is directed to the default view of
Warehouse and the actions in WarehouseCreation will be allowed.

If you have an action called 'new', it will be executed automatically before all. It can be used to
initialize the view used to create a new object.

3.3.5 Custom modification action (new in v2.0.4)

If you do not write modify="false” the user will have a link to modify the current referenced

OpenXava 3.0 - Classic XML Components Page 65

object. By default when a user clicks on this link, a default view of the referenced object is
displayed and the final user can modify values and click a button to update it. If you want to define
your custom actions (among them your update custom action) in the form used when modifying the
current object, you must have a controller named as component but with the suffix Modification.
If OpenXava see this controller it uses it instead of the default one to allow modifying the current
object from a reference. For example, you can write in your controllers.xml.:

Al
Because its nane is WarehouseMdi fication (nodel nane + Modification) it is used
by default for nmodifying fromreference, instead of Mdification
The action 'search' is executed automatically.
oo
<control | er name="\War ehouseMdi fi cati on">
<extends controller="Mdification"/>
<action name="search" hi dden="true"
cl ass="or g. openxava. t est. act i ons. Mbdi f yWar ehouseFr onRef er enceAct i on" >
<use- obj ect name="xava view'/>
</ acti on>

</controller>

In this case when the user clicks on the 'modify' link, the user is directed to the default view of
Warehouse and the actions in WarehouseModification will be allowed.

If you have an action called 'search’, it will be executed automatically before all. It is used to
initialize the view with the object to modify.

3.3.6 Descriptions list (combos)

With <descriptions-1ist/> you can instruct OpenXava to visualize references as a descriptions
list (actually a combo). This can be useful, if there are only a few elements and these elements have
a significant name or description.

The syntax is:

<descriptions-Iist

descri pti on-property="property" (1)
description-properties="properties” (2)
depends="depends” (3)
condi ti on="condi ti on" (4)
or der - by- key="true| f al se" (5)
order="order" (6)
| abel - f or mat =" NORVAL| SMALL| NO_LABEL" (7)

/>

(1)description-property (optional): The property to show in the list, if not specified, the
property named description, descripcion, name Or nombre is assumed. If the referenced
object does not have a property called this way then it is required to specify a property name
here.

OpenXava 3.0 - Classic XML Components Page 66

(2)description-properties (optional): As description-property (and excluding with it) but
allows to set more than one property separated by commas. To the final user the values are
concatenated.

(3)depends (optional): It's used in together with condition. It can be achieve that the list content
depends on another value displayed in the main view (if you simply type the name of the
member) or in the same view (if you type this. before the name of the member).

(4)condition (optional): Allows to specify a condition (with SQL style) to filter the values that are
shown in the description list.

(5)order-by-key (optional): By default the data is ordered by description, but if you set this
property to true it will be ordered by key.

(6)order (optional): Allows to specify an order (with SQL style) for the values that are shown in the
description list.

(7)1apbel-format (optional): Format to display the label of the reference. See section 4.2.1.

The most simple usage is:

<ref erence-vi ew ref erence="war ehouse" >
<descriptions-list/>

</reference-vi ew>

That displays a reference to warehouse in this way:

Warehouse EALMACEN X

Unit price 5/ | |CcANTE CENTROX
ALMA 11
& £ =2 [AMAT3
ALMA 14
ALMA 15
ALMA 16
ALMA 17
ALMA 18
ALMA 19
ALMA 20
CASA 1
CASA2
CASA3
CASA 4
CASAS
CASA 6
CASTELLON DE LA PLANAX
CENTRAL VALENCIA [

In this case it shows all warehouses, although in reality it uses the base-condition and the filter
specified in the default tab of warehouse. You will see more about tabs in chapter 5.

If you want, for example, to display a combo with the product families and when the user chooses a
family, then another combo will be filled with the subfamilies of the chosen family. An

OpenXava 3.0 - Classic XML Components Page 67

implementation can look like this:

<reference-vi ew reference="fam | y">
<descriptions-Ilist order-by-key="true"/> (1)

</reference-vi ew>

<ref erence-vi ew ref erence="subfam | y" create="fal se"> (2)

<descriptions-Iist

descri pti on- property="description" (3)
depends="fam | y" (4)
condi tion="${fam |y. nunber} = ?"/> (5)
order="%${descri pti on} desc"/> (6)

</ref erence-vi ew>

Two combos are displayed one with all families loaded and the other one empty. When the user
chooses a family, then the second combo is filled with all its subfamilies.

In the case of Family the property description of Family is shown, since the default property to
show is 'description' or 'name'. The data is ordered by key and not by description (1). In the case
of subfamily (2) the link to create a new subfamily is not shown and the property to display is
'description' (in this case this maybe omitted).

With depends (4) you make that this combo depends on the reference family, when change family
in the user interface, this descriptions list is filled applying the condition condition (5) and
sending as argument (to set value to ?) the new family value. And the entries are ordered
descending by description (6).

In condition and order you put the property name inside a ${} and the arguments as 2. The
comparator operators are the SQL operators.

You can specify several properties to be shown as description:
<reference-view reference="alternateSel |l er" read-only="true">

<descriptions-list description-properti es="Ilevel.description, nane"/>

</ref erence-vi ew>

In this case the concatenation of the description of level and the name is shown in the combo.
Also you can see how it is possible to use qualified properties (1evel.description).

If you set read-only="true” in a reference as descriptions-1ist, then the description (in this
case level.description + name) is displayed as a simple text property instead of using a combo.

3.3.7 Reference search on change event (new in v2.2.5)

The user can search the value of a reference simply typing its key. For example, if there is a
reference to Subfamily, the user can type the subfamily number and automatically the subfamily
data is loaded in the view. This is done using a default on change action that does the search. You
can specify your own action for search when key change using on-change-search, just in this way:

<ref erence- vi ew r ef erence="subf am | y" >

OpenXava 3.0 - Classic XML Components Page 68

<on- change-search cl ass="org. openxava. t est. act i ons. OhChangeSubf ami | ySear chActi on"/>

</ref erence-vi ew>

This action is executed for doing the search, instead of the standard action, when the user changes
the subfamily number.
The code to execute is:

package org. openxava.test. acti ons;

i nport org.openxava. acti ons. *;

/**
*

* @ut hor Javi er Pani za
*/

public class OnChangeSubf ani | ySear chActi on ext ends OnChangeSear chActi on {

public void execute() throws Exception {
if (getView).getValuelnt("nunber") == 0) {
get Vi ew() . set Val ue(" nunber", new Integer("1"));
}

super . execut e() ;

The action implements T0nChangePropertyAction, by means of onChangeSearchaction (1),
although it's a reference. It receives the change of the key property of the reference; in this case
subfamily.number.

This case is an example of refining the behavior of on change search, because it extends from
OnChangeSearchAction, that is the default action for searching, and calls to super.execute ().
Also it's possible to do a regular on change action (extending from onChangePropertyBaseAction
for example) overriding completely the search logic.

3.4 Collection view

Suitable to refine the collection presentation. Here is its syntax:

<col | ecti on-vi ew

col | ection="col | ection" (1)
Vi ew="vi ew!' (2)
read-onl y="true| f al se" (3)
edit-only="true|fal se" (4)
create-reference="true|fal se" (5)
nodi fy-ref erence="true| f al se" (6) newin v2.0.4

OpenXava 3.0 - Classic XML Components Page 69

as- aggregate="true| fal se" (7) newin v2.0.2

<list-properties ... /> (8)
<rowstyle ... /> (9) newin v2. 2. 2
<edit-action ... /> (10)

<viewaction ... /> (112)

<new action ... /> (12) newin v2.0.2
<save-action ... /> (13) newin v2.0.2
<hi de-detail -action ... /> (14) newin v2.0.2
<renove-action ... /> (15) new in v2.0.2
<renove-sel ected-action ... /> (16) newin v2.1
<list-action ... /> ... (17)
<detail-action ... /> ... (18)

</ col | ecti on-vi ew>

(1)collection (required): The look of the collection with this name will be customized.

(2)view (optional): The view of the referenced object (each collection element) which is used to
display the detail. By default the default view is used.

(3)read-only (optional): By default false; if you set it to true, then the final user only can view
collection elements, he cannot add, delete or modify elements.

(4)edit-only (optional): By default faise; if you set it to true, then the final user can modify
existing elements, but not add or remove collection elements.

(5)create-reference (optional): By default true, if you set it to false then the final user doesn't
get the link to create new objects of the referenced object type. This only applies in the case of an
entity references collection.

(6)modify-reference (optional): (new in v2.0.4) By default true, if you set it to false then the
final user doesn't get the link to modify the objects of the referenced object type. This only
applies in the case of an entity references collection.

(7)as-aggregate (optional): (new in v2.0.2) By default false. By default the collections of
aggregates allow the users to create and to edit elements, while the collections of entities allow
only to choose existing entities to add to (or remove from) the collection. If you put as-
aggregate to true then the collection of entities behaves as a collection of aggregates, allowing
to the user to add objects and editing them directly. It has no effect in case of collections of
aggregates.

(8)list-properties (one, optional): Properties to show in the list for visualization of the
collection. You can qualify the properties. By default it shows all persistent properties of the
referenced object (excluding references and calculated properties).

(9)row-style (several, optional): New in v2.2.2. To give a special style to some rows. Behaves
equals that in the Tab case. See section 5.1 about emphasize rows for more details. It does not
works for calculated collections.

(10)edit-action (one, optional): Allows you to define your custom action to begin the editing of a
collection element. This is the action showed in each row of the collection, if the collection is

OpenXava 3.0 - Classic XML Components Page 70

editable.

(11)view-action (one, optional): Allows you to define your custom action to view a collection
element. This is the action showed in each row, if the collection is read only.

(12)new-action (one, optional): (new in v2.0.2) Allows you to define your custom action to start
adding a new element to the collection. This is the action executed on click in 'Add' link.

(13)save-action (one, optional): (new in v2.0.2) Allows you to define your custom action to save
the collection element. This is the action executed on click in 'Save detail' link.

(14)nide-detail-action (one, optional): (new in v2.0.2) Allows you to define your custom action
to hide the detail view. This is the action executed on click in 'Close' link.

(15)remove-action (one, optional): (new in v2.0.2) Allows you to define your custom action to
remove the element from the collection. This is the action executed on click in 'Remove detail’
link.

(16)remove-selected-action (one, optional): (new in v2.1) Allows you to define your custom
action to remove the selected elements from the collection. This is the action executed when a
user select some rows and then click in 'Remove selected' link.

(17)1ist-action (several, optional): To add actions in list mode; usually actions which scope is the
entire collection.

(18)detail-action (several, optional): To add actions in detail mode, usually actions which scope
is the detail that is being edited.

If you do not use <collection-view/>, then the collection is displayed using the persistent
properties in list mode and the default view to represent the detail; although in typical scenarios the
properties of the list and the view for detail are specified:

<col | ecti on-vi ew col | ecti on="cust oners" vi ew="Si npl e">
<list-properties>
nunber, nane, remarks, relationWthSeller, seller.|evel.description
</list-properties>

</ col | ection-vi ew>

And the collection is displayed:
Cusiomers

Mumbar Name Remarks Relation with seller Description

Edit 1 Javi BUEMNA MANASER
Edit 2 Juanillo MANAGER
Add

You see how you can put qualified properties into the properties list (as

seller.level.description).

When the user clicks on 'Edit', then the view simple of customer will be rendered; for this you
must have defined a view called simple in the Customer component (the model of the collection
elements).

This view is also used if the user click on 'Add' in a collection of aggregates, but in the case of a

OpenXava 3.0 - Classic XML Components Page 71

collection of entities OpenXava does not show this view, instead it shown a list of entities to add

(new in v2.2).

If the view simple of Customer is like this:

<view name="Simple" members="number; type; name; address"/>

On clicking in a detail the following will be shown:

Cusiomers
Mumbser MName Remarks Relation with seller Description
Edit 1 Javi BUEMNA MANAGER
Edit 2 Juanillo MANAGER
Cusiomer
Number &= I 1
Type & |
Address
ViewProperty |
. _, Zip code
Sireet & | WI-P—
City

B Statey/|

Save detail Close Remove detail

3.4.1 Custom edit/view action

You can refine easily the behavior when the 'Edit' link is clicked:

<col | ecti on-vi ew col | ecti on="det ai | s">
<edit-action action="Invoices.editDetail"/>

</ col | ection-vi ew>

You have to define Invoices.editDetail in controllers.xml:

<control |l er name="Invoi ces">

<action nane="editDetail" hidden="true"

cl ass="or g. openxava. test. acti ons. Edi t | nvoi ceDet ai | Acti on">

OpenXava 3.0 — Classic XML Components

Page 72

<use- obj ect name="xava_view'/ >

</ acti on>

</controller>

And finally write your action:

package org.openxava.test.actions;
i mport java.text.*;

i mport org.openxava. acti ons. *;

/**
* @ut hor Javi er Paniza
*/
public class EditlnvoiceDetail Acti on extends EditEl enentlnCollectionAction { Il (1)

public void execute() throws Exception {
super . execut e() ;
Dat eFor mat df = new Si npl eDat eFor mat ("dd/ MM yyyy");
get Col | ecti onEl ement Vi ew() . set Val ue(Il (2)

"remarks", "Edit at " + df.format(new java.util.Date()));

}

In this case you only refine hence your action extends (1) EditElementInCollectionAction. In
this case you only specify a default value for the remarks property. Note that to access the view that
displays the detail you can use the method getCollectionElementView () (2).

Also it's possible to remove the edit action from the User Interface (new in v2.2.1), in this way:
<col | ecti on-vi ew col | ecti on="det ai | s">

<edit-action action=""/>

</ col | ecti on-vi ew>

You only need to put an empty string as value for the action. Although in most case it's enough to
define the collection as read-only.

The technique to refine the view action (the action for each row, if the collection is read only) is the
same but using <view-action/> instead of <edit-action/>.

3.4.2 Custom list actions

Adding our custom list actions (actions that apply to entire collections) is easy:

OpenXava 3.0 - Classic XML Components Page 73

<col | ection-view col | ecti on="fel |l owCarriers" view="Si npl e">
<list-action action="Carriers.transl ateNane"/ >

</ col | ection-vi ew>

Now a new link is shown to user:
Fellow Carriers
Mumber Mame Calculated Remarks
Edit [2DOS TR

=

it [3 THREE TR

m |m
[~ T =
- =

[4FOUR TR

hod
[=}
=}

Translate name

And also you see that there is a check box in each row (since v2.1.4 check box is always present in
all collections).

Also you need to define the action in controllers.xml:

<control l er name="Carriers">
<action nanme="transl at eNane"
cl ass="org. openxava. test. acti ons. Transl at eCarri er NaneAct i on" >
</ acti on>

</control |l er>

And the action code:

package org.openxava.test.actions;

import java.util.*;
i mport org.openxava. acti ons. *;

i mport org.openxava.test. nmodel . *;

/**
* @ut hor Javi er Pani za
@]

public class Transl ateCarri er NaneActi on extends Col | ecti onBaseAction { // (1)

public void execute() throws Exception {
Iterator it = getSel ectedhjects().iterator(); Il (2)
while (it.hasNext()) {
ICarrier carrier = (ICarrier) it.next();

carrier.transl ate();

OpenXava 3.0 - Classic XML Components Page 74

The action extends CollectionBaseAction (1), this way you can use methods as
getSelectedObjects () (2) that returns a collection with the objects selected by the user. There are
others useful methods, as getobjects () (all elements collection), getMapvalues () (the collection
values in map format) and getMapsSelectedvalues () (the selected elements in map format).

As in the case of detail actions (see next section) you can use getCollectionElementView () .

Also it's possible to use actions for list mode (see at section section 7.5) as list actions for a
collection (new in v2.1.4).

3.4.3 Default list actions (new in v2.1.4)

If you want to add some custom list actions to all the collection of your application you can do it
creating a controller called DefaultListActionsForCollections In your own
xava/controllers.xml file as following:

<control | er nane="Defaul t Li st Acti onsFor Col | ecti ons" >
<extends controller="Print"/>
<action nanme="exportAsXM."
cl ass="org. openxava. t est. acti ons. Export ASXM_Act i on" >
</ acti on>

</controller>

In this way all the collections will have the actions of print controller (for export to Excel and
generate PDF report) and your own ExportAsxMLAction. This has the same effect of <1ist-
action/> element (in section 4.4.2) but it applies to all collections at once.

This feature does not apply to calculated collections (new in v2.2.1).

3.4.4 Custom detail actions

Also you can add your custom actions to the detail view used for editing each element. These
actions are applicable only to one element of collection. For example:

<col | ecti on-vi ew col | ecti on="detai |l s">
<det ai | -action action="Invoi ces. vi ewProduct"/>

</ col | ection-vi ew>

In this way the user has another link to click in the detail of the collection element:
I

Save detail Close Remowve detail View product

You need to define the action in controllers.xml:

<control | er nanme="Invoi ces">

<acti on nanme="vi ewProduct" hi dden="true"

cl ass="or g. openxava. t est. acti ons. Vi ewPr oduct Fr om nvoi ceDet ai | Acti on">

OpenXava 3.0 - Classic XML Components Page 75

<use- obj ect name="xava_view'/ >
<use- obj ect name="xavat est _i nvoi ceVal ues"/ >

</ acti on>

</controller>

And the code of your action:

package org.openxava.test.actions;

import java.util.*;

i mport javax. ejb.*;

i mport org.openxava. acti ons. *;

[*x
* @ut hor Javi er Pani za
*/
public class Vi ewProduct From nvoi ceDet ai | Acti on
extends Col | ecti onEl ement Vi ewBaseAct i on Il (1)

i mpl enents | Navi gati onAction {
private Map invoi ceVal ues;

public void execute() throws Exception {

try {
set I nvoi ceVal ues(get Vi ew() . get Val ues());
Obj ect nunber =

get Col | ecti onEl ement Vi ew() . get Val ue(" product . nunber"); // (2)

Map key = new HashMap();
key. put (" nunber", nunber);
get Vi ew() . set Model Nanme(" Product ") ; Il (3)
get Vi ew() . set Val ues(key);
getView). findject();
get Vi ew() . set KeyEdi t abl e(fal se);
getView). set Edi t abl e(f al se);

}

catch (Qbj ect Not FoundException ex) {
getView).clear();
addError (" obj ect _not _found");

}
catch (Exception ex) {

ex. print StackTrace();

OpenXava 3.0 - Classic XML Components Page 76

addError ("systemerror");

public String[] getNextControllers() {

return new String [] { "Product From nvoi ce" };

public String getCustonVi ew() {
return SAME VI EW

public Map getlnvoi ceVal ues() {

return invoiceVal ues;

public void setlnvoi ceVal ues(Map map) {

i nvoi ceVal ues = map;

You can see that it extends CollectionElementViewBaseAction (1) thus it has available the view
that displays the current element using getCollectionElementView () (2). Also you can get access
to the main view using getview () (3). In chapter 7 you will see more details about writing actions.

Also, using the view returned by getCollectionElementView() you can add and remove
programmatically detail and list actions (new in v2.0.2) with addbDetailAction(),
removeDetailAction(), addListAction() and removelListAction (), Se€€ API doc for

org.openxava.view.View.

3.4.5 Refining collection view default behavior (new in v2.0.2)

Using <new-action/>, <save-action/>, <hide-detail-action/>, <remove-action/> and
<remove-selected-action/> you can refine the default behavior of collection view. For example
if you want to refine the behavior of save a detail action you can define your view in this way:

<col | ecti on-vi ew col | ecti on="detai | s">
<save-action acti on="DeliveryDetails.save"/>

</col | ection-vi ew>

You must have an action beliveryDetails.save in your controllers.xml:

<control | er name="Del i veryDetail s">

<action nanme="save"

cl ass="or g. openxava. t est. acti ons. SaveDel i veryDet ai | Acti on" >

OpenXava 3.0 - Classic XML Components Page 77

<use- obj ect name="xava_view'/ >
</ acti on>

</controller>

And define your action class for saving:

package org.openxava.test.actions;

i nport org.openxava. acti ons. *;

/**

*

* @ut hor Javi er Paniza

*/
public class SaveDel i veryDetail Action extends SaveEl ement|nCol | ecti onAction { // (1)
public void execute() throws Exception {

super . execut e();

/] Here your own code Il (2)

}

The more common case is extending the default behavior, for that you have to extend the original
class for saving a collection detail (1), that is saveElementInCollection action, then call to super
from execute () method (2), and after it, writing your own code.

New in v2.2.1: Also it's possible to remove any of these actions from User Interface, for example,
you can define a <collection-view/> in this way:

<col | ecti on-vi ew col | ecti on="det ai |l s">
<r enove- sel ect ed- acti on action=""/>

</ col | ecti on-vi ew>

In this case the action for removing the selected elements in the collection will be missing in the
User Interface. As you see, only it's needed to declare an empty string as the name of the action.

3.5 View property

With <property/> within <view/> you define a property that is not in the model but you want to
show to the user. You can use it to provide Ul controls to allow the user to manage his user
interface.

An example:

<vi ew>

OpenXava 3.0 - Classic XML Components Page 78

<property nane="del i ver edBy" >
<val i d-val ues>
<val i d- val ue val ue="enpl oyee"/ >
<val i d-val ue val ue="carrier"/>
</val i d-val ues>
<def aul t - val ue- cal cul at or

cl ass="or g. openxava. cal cul at ors. | nt eger Cal cul at or ">

</ def aul t - val ue-cal cul at or>

</ pr operty>
<property-vi ew property="del i ver edBy" >
<on- change cl ass="org. openxava.test. acti ons. OnChangeDel i ver yByActi on"/>

</ property-vi ew>

</ vi ew>

You can see that the syntax is exactly the same as in the case of a property of a model; you can even
use <valid-values/> and <default-value-calculator/>. After defining the property you can
use it in the view as usual, for example with on-change or putting it in members.

3.6 View actions (new in v2.0.3)

In addition of associating actions to a property, reference or collection, you also can define arbitrary
actions inside your view, in any place. In order to do this we use action element, in this way:

<menber s>
nunber ;
type;
nane, <action acti on="Custoners. changeNanelLabel "/ >;

</ menber s>

The visual effect will be:

Code o=

Type &

Mame 0/ Pavi Change name label

You can see the link 'Change name label' that will execute the action Customers.changeNameLabel
on click on it.

If the container view of the action is not editable, the action is not present. If you want that the
action is always enabled, even if the view is not editable, you have to use the attribute always-
enabled, as following:

OpenXava 3.0 - Classic XML Components Page 79

<action acti on="Custoners. changeNaneLabel " al ways-enabl ed="true"/>

The standard way to expose actions to the user is using the controllers (actions in a bar), the
controllers are reusable between views, but sometimes you will need an action specific to a view,
and you want display it inside the view (not in the button bar), for these cases the action element
may be useful.

See more about actions in chapter 7.

3.7 Transient component: Only for creating views (new in v2.1.3)

In OpenXava it is not possible to have a view without model. Thus if you want to draw an arbitrary
user interface, you need to create a component, declare it as transient (new in v2.1.3) and define your
view from it.

An transient component is not associated to any table of the database, typically it's used only for
display User Interfaces not related to any data in database.

An example can be:

<?xm version="1.0" encodi ng="1SO 8859- 1" ?>

<! DOCTYPE conponent SYSTEM "dt ds/conponent . dtd">

<I--
Exanpl e of an OpenXava transi ent conponent (not persistent).
This can be used, for exanple, to display a dialog,
or any ot her graphical interface.

-->

<conponent nane="Filter BySubfam | y">

<entity>
<reference name="subfam | y" nodel =" Subfam | y2" required="true"/>

</entity>

<vi ew name="Fam | y1">

<ref erence-vi ew reference="subfam | y" create="fal se">

<descriptions-list condition="${fam |y. nunber} = 1"/>
</ reference-vi ew>
</ vi ew>
<vi ew nane="Fam | y2" >
<ref erence-vi ew reference="subfam | y" create="fal se">
<descriptions-list condition="${fam|ly. nunber} = 2"/>

OpenXava 3.0 - Classic XML Components Page 80

</ ref erence-vi ew>

</ vi ew>
<vi ew nane="Wt hSubf am | yFor ni >

<ref erence-vi ew reference="subfani | y" search="fal se"/>
</ vi ew>

<transi ent/> (1)

</ conponent >

For defining a component as transient you only need to put <transient/> at the end of the
component definition (1), just in the part for the mappings. You mustn't put the mapping nor declare
properties as key.

This way you can design a dialog that can be useful, for example, to print a report of families or
products filtered by subfamily.

With this simple trick you can use OpenXava as a simple and flexible generator for user interfaces
although the displayed data won't be stored.

OpenXava 3.0 - Classic XML Components Page 81

4 Tabular data

Tabular data is data that is displayed in table format. If you create a conventional OpenXava
module, then the user can manage the component data with a list like this:

@ [Delete selected | Selected to lowercase | Detail - List
[# Zone Warehouse number Mame

Fiter | [- =] [- = starts v |

Detail ;h" 1 1 CENTRAL VALENCIA

Detail B il 2 WALENCIA SURETE

Detail | 1 3 VALENCIA NORTE

Detail I_ 2 1 CASTELLON DE LA PLANAX

Detail I 3 1 ALICANTE CENTRCIX

Detail [4 2 ALMAZ

Detail | 4 3 ALMA 3

Detail [~ 4 4 ALMA 4

Detail | 4 5 ALMA S

Detail B 4 G ALMA G

12345 p There are 49 objets in list

| [} Delete selected Selected to lowercase Detail - List

This list allows user to:

- Filter by any columns or a combination of them.

+ Order by any column with a single click.

- Display data by pages, and therefore the user can work efficiently with millions of records.

« Customize the list: add, remove and change the column order (with the little pencil in the left top
corner). This customizations are remembered by user.

- Generic actions to process the objects in the list: generate PDF reports, export to Excel or remove
the selected objects.

The default list is enough for many cases, moreover the user can customize it. Nevertheless,
sometimes it is convenient to modify the list behavior. For this you have the element <tab/> within
the component definition.

The syntax of tab is:

<t ab
nanme="nane" (1)
>
<filter ... [> (2)
<rowstyle ... /> ... (3)
<properties ... [> (4)
<base-condition ... /> (5)
<default-order ... /> (6)
</t ab>

(1)name (optional): You can define several tabs in a component, and set a name for each one. This

OpenXava 3.0 - Classic XML Components Page 82

name is used to indicate the tab that you want to use (usually in application.xml).

(2)filter (one, optional): Allows to define programmatically some logic to apply to the values
entered by user when he filters the list data.

(3)row-style (several, optional): A simple way to specify a different visual style for some rows.
Normally to emphasize rows that fulfill certain condition.

(4)properties (one, optional): The list of properties to show initially. Can be qualified (that is you
can specify referenceName .propertyName at any depth level).

(5)base-condition (one, optional): Condition to be fulfilled by the displayed data. It's added to the
user condition if needed.

(6)default-order (one, optional): To specify the initial order for data.

4.1 Initial properties and emphasize rows

The most simple customization is to indicate the properties to show initially:

<t ab>
<rowstyle style="highlight" property="type" val ue="steady"/>
<properties>
nane, type, seller.nane, address.city, seller.|evel.description
</ properties>

</t ab>

These properties are shown the first time the module is executed, after that the user will have the
option to change the properties to display. Also you see how you can use qualified properties
(properties of references) in any level.

In this case you can see also how to indicate a <row-style/>; you are saying that the object which
property type has the value steady will use the style highlight. The style has to be defined in the
CSS style-sheet. The highlight style are already defined in OpenXava, but you can define more.

The visual effect of above is:

[Name Type Seller City Seller level

starts hd 5tar15—v starts > starts hd

Filter | k| | | k| 2 k|

Detail [Javi Steady MANUEL CHAVARRI EL PUIG MANAGER

Detail [~ Juanillo Mormal MANUEL CHAVARRI WALENCIA MANAGER

Detail | Carmelo Normal EL PUIG

Detail [Cuatrero Mormal JUANVI LLAVADOR VALENCIA MANAGER

1 There are 4 objels in list

4.2 Filters and base condition

A common technique is to combine a filter with a base condition:

<tab name="Current">

<filter class="org.openxava.test.filters.CQurrentYearFilter"/>

OpenXava 3.0 - Classic XML Components Page 83

<properties>

year, nunber, anountsSum vat, detail sCount, paid, custoner.name
</ properties>
<base- condi ti on>${year} = ?</base-condition>

</t ab>

The condition has to have SQL syntax, you can use > for arguments and the property names inside
$1{}. In this case a filter is used to set the value of the argument. The filter code is:

package org.openxava.test.filters;
import java.util.*;

i mport org.openxava. filters.*;

/**

* @ut hor Javi er Paniza

*/
public class CurrentYearFilter inplenments IFilter { Il (1)
public Object filter(Ohject o) throws FilterException { Il (2)
Cal endar cal = Cal endar. getlnstance();

cal .setTime(new java. util.Date());

I nteger year = new | nteger(cal.get(Cal endar. YEAR));

Qoject [] r = null;

if (o ==null) { /1 (3)
r = new oj ect[1];

r[0] = year;
}
else if (o instanceof Chject []) { Il (4)
hject [] a = (Dwject []) o;
r = new Object[a.length + 1];
r[0] = year;
for (int i =0; i <a.length; i++) {
rli+l]=ali];
}
}
el se { /1 (5)
r = new Qbject[2];
r[0] = year;
r(1] = o;
}

OpenXava 3.0 - Classic XML Components Page 84

return r;

}

A filter gets the arguments of user type for filtering in lists and for processing, it returns the value
that is sent to OpenXava to execute the query. As you see it must implement 1rilter (1), this force
it to have a method named filter (2) that receives a object with the value of arguments and returns
the filtered value that will be used as query argument. These arguments can be null (3), if the user
does not type values, a simple object (5), if the user types a single value or an object array (4), if the
user types several values. The filter must consider all cases. The filter of this example adds the
current year as first argument, and this value is used for filling the arguments in the base-
condition of tab.

To sum up, the tab that you see above only shows the invoices of the current year.

Another case:

<t ab name="Def aul t Year" >
<filter class="org.openxava.test.filters.DefaultYearFilter"/>
<properties>
year, nunber, custoner. nunber,
cust oner. nane, anountsSum vat, detailsCount, paid, inportance
</ properties>
<base- condi ti on>${year} = ?</base-condition>

</t ab>

In this case the filter is:

package org.openxava.test.filters;

import java.util.*;

i nport org.openxava.filters.*;

/**

* @ut hor Javi er Pani za
*/

public class DefaultYearFilter extends BaseContextFilter { Il (1)
public Cbject filter(Cbhject o) throws FilterException {

if (o ==null) {
return new bject [] { getDefaultYear() }; Il (2)

OpenXava 3.0 - Classic XML Components Page 85

if (o instanceof oject []) {
List ¢ = new ArrayLi st (Arrays. asList((Qoject []) 0));
c.add(0, getDefaultYear()); Il (2)

return c.toArray();

el se {

return new Cbject [] { getDefaultYear(), o }s Il (2)

private | nteger getDefaultYear() throws FilterException {

try {
return getlnteger("xavatest_defaul t Year"); Il (3)

}

catch (Exception ex) {
ex. print StackTrace();
throw new Fi | t er Excepti on(

"l mpossi ble to obtain default year associated with the session");

}

This filter extends BaseContextFilter, this allow you to access to the session objects of
OpenXava. You can see how it uses a method getDefaultyear () (2) that call to getInteger () (3)
which (as getString(), getLong () or the more generic get ()) that allows you to access to value
of the session object xavatest_defaultYear. This object is defined in controllers.xml this way:

<object name="xavatest defaultYear" class="java.lang.Integer" value="1999"/>

The actions can modify it and its life is the user session life but it's private for each module. This
issue is treated in more detail in chapter 7.

This is a good technique for data shown in list mode to depend on the user or the configuration that
he has chosen.

Also it's possible to access environment variables inside a filter (new in v2.0) of type
BaseContextFilter, USiNg getEnvironment () method, just in this way:

new | nt eger (get Envi ronnent () . get Val ue(" XAVATEST_DEFAULT_YEAR')) ;

For learning more about environment variables see the Chapter 7 Controllers.

4.3 Pure SQL select

You can write the complete select statement to obtain the tab data:

OpenXava 3.0 - Classic XML Components Page 86

<t ab nanme="Conpl et eSel ect" >
<properties>nunber, description, famly</properties>
<base- condi ti on>
sel ect ${nunber}, ${description}, XAVATEST@eparat or @AM LY. DESCRI PTI ON
from XAVATEST@epar at or @GUBFAM LY, XAVATEST@epar at or @AM LY
where XAVATEST@epar at or @GUBFAM LY. FAM LY =
XAVATEST@epar at or @AM LY. NUMBER
</ base- condi ti on>

</t ab>

Use it only in extreme cases. Normally it is not necessary, and if you use this technique the user
cannot customize his list.

4.4 Default order

Finally, setting a default order is very easy:

<tab nane="Si npl e">
<properties>year, nunber, date</properties>
<def aul t - order >${year} desc, ${nunmber} desc</default-order>

</t ab>

This specified the initial order and the user can choose any other order by clicking in the heading of
a column.

OpenXava 3.0 - Classic XML Components Page 87

5 Object/relational mapping

Object relational mapping allows you to declare in which tables and columns of your database the
component data will be stored.

If ORM is familiar to you: The OpenXava mapping is used to generate the code and XML files
needed to object/relational mapping. Actually the code is generated for:

- Hibernate 3.x.
 EntityBeans CMP 2 of JBoss 3.2.x y 4.0.x.
+ EntityBeans CMP 2 of Websphere 5, 5.1y 6.

If Object/relational tools are not familiar to you: Object/relational tools allow you to work with
objects instead of tables and columns, and to generate automatically the SQL code to read and
update the database.

OpenXava generates a set of Java classes that represent the model layer of your application (the
business concepts with its data and its behavior). You can work directly with these objects, and you
do not need direct access to the SQL database. Of course you have to define precisely how to map
your classes to your tables, and this work is done in the mapping part.

5.1 Entity mapping

The syntax to map the main entity is:

<entity-mappi ng tabl e="t abl e"> (1)
<property-mapping ... /> ... (2)
<reference-nmapping ... /> ... (3)
<mul tipl e-property-mapping ... /> ... (4)

</ entity-mappi ng>

(1)table (required): Maps this table to the main entity of component.
(2)property-mapping (several, optional): Maps a property to a column in the database table.

(3)reference-mapping (several, optional): Maps a reference to one or more columns in the
database table.

(4)multiple-property-mapping (several, optional): Maps a property to several columns in
database table.

A plain example can be:
<entity-mappi ng tabl e=" XAVATEST@epar at or @EL| VERYTYPE" >

<property-mappi ng property="nunber" col umm="NUVBER"/ >
<property-mappi ng property="description" col um="DESCR PTI ON' />

</ entity- nappi ng>

More easier impossible.

You see how the table name is qualified (with collection/schema name included). Also you see that
the separator is @separator@ instead of a dot (.), this is useful because you can define the

OpenXava 3.0 - Classic XML Components Page 88

separator value in your build.xml and thus the same application can run against databases with or
without support for collections or schemes.

5.2 Property mapping

The syntax to map a property is:

<pr operty- mappi ng

property="property" (1)
col um="col um" (2)
cnp-type="type"> (3)
<converter ... /> (4)

</ pr opert y- nappi ng>

(1)property (required): Name of a property defined in the model part.
(2)column (required): Name of a table column.

(3)cmp-type (optional): Java type of the attribute used internally in your object to store the property
value. This allows you to use Java types more closer to the database, without contaminating your
Java model. It is used with a converter.

(4)converter (one, optional): Implements your custom logic to convert from Java to DB format
and vice versa.

For now, you have seen simple examples for mapping a property to a column. A more advanced
case is using a converter. A converter is used when the Java type and the DB type don't match, in
this case a converter is a good idea. For example, imagine that in database the zip code is
VARCHAR while in Java you want to use an int. A Java int is not directly assignable to a
VARCHAR column in database, but you can use a converter to transform that int to string. Let's
see it:

<pr operty-mappi ng property="address_zi pCode" col um="2ZlI PCODE"' cnp-type="String">
<converter class="org.openxava. converters.|ntegerStringConverter"/>

</ pr opert y- mappi ng>

cmp-type indicates to which type the converter has to convert to and it is the type of the internal
attribute in the generated class code. It must be a type close (assignable directly from JDBC) to the
column type in database.

The converter code is:

package org.openxava. convert ers;

/**

* In java an int and in database a String.

*

* @ut hor Javi er Paniza

*/

public class IntegerStringConverter inplenents |Converter { Il (1)

OpenXava 3.0 - Classic XML Components Page 89

private final static Integer ZERO = new I nt eger(0);

public Object toDB(Cbject o) throws Conversi onException { Il (2)

return o==nul | ?"0": 0.toString();

public Object toJava(Object o) throws ConversionException { // (3)
if (0 ==null) return ZERG
if (!(o instanceof String)) {

t hr ow new Conver si onExcepti on("conversi on_j ava_stri ng_expected");

}
try {
return new Integer((String) o);
}
catch (Exception ex) {
ex. print StackTrace();

t hr ow new Conver si onExcepti on("conversion_error");

A converter must implement IConverter (1), this forces it to have a tobpB() (2) method, that
receives the object of the type used in Java (in this case an Integer) and returns its representation
using a type closer to the database (in this case string hence assignable to a VARCHAR column).
The toJdava () method has the opposite goal; it gets the object in database format and it must return
an object of the type used in Java.

If there are any problem you can throw a ConversionException.

You see that this converter is in org.openxava.converters, 1. €., it 1S a generic converter that
comes with the OpenXava distribution. Another quite useful generic converter is
validvaluesLetterConverter. That one allows to map properties of type valid-values. For
example, if you have a property like this:

<entity>

<property nane="di st ance">
<val i d-val ues>
<val i d-val ue val ue="Il ocal "/ >
<val i d-val ue val ue="national "/ >
<val i d-val ue val ue="international "/ >

</val i d- val ues>

</ property>

OpenXava 3.0 - Classic XML Components Page 90

</entity>

valid-values generates a Java property of type int in which 0 is used to indicate the empty value,
1 is local', 2 is 'national' and 3 is 'international’. But what happens, if in the database a single letter
('L', 'N' or 'T') is stored? In this case you can use a mapping like this:

<property-mappi ng property="di stance" col um="Dl STANCE' cnp-type="String">
<converter class="org.openxava. converters. Vali dVal uesLetter Converter">
<set property="letters" value="LN"/>
</ converter>

</ pr opert y- nappi ng>

As you put 'LNI' as a value to letters, the converter matches the 'L' to 1, the 'N' to 2 and the 'T' to
3. You also see how converters are configurable using its properties and this makes the converters
more reusable (as calculators, validators, etc).

5.3 Reference mapping

The syntax to map a reference is:

<r ef er ence- nappi ng

ref erence="ref erence" (1)

<r ef erence- mappi ng-detail ... /> ... (2)

</ r ef er ence- mappi ng>

(1)reference (required): The reference to map.

(2)reference-mapping-detail (several, required): Maps a table column to a property of the
reference key. If the key of the referenced object is multiple, then you will have several

reference-mapping-detail.

Making a reference mapping is easy. For example, if you have a reference like this:

<entity>
<ref erence nane="invoi ce" nodel ="I|nvoi ce"/ >
</entity>

You can map it this way:

<entity-mappi ng tabl e=" XAVATEST@epar at or @XEL| VERY" >
<r ef erence- mappi ng reference="i nvoi ce">
<r ef er ence- mappi ng- det ai
col umm="1 NvVO CE_YEAR'

r ef er enced- nodel - property="year"/>

OpenXava 3.0 - Classic XML Components Page 91

<r ef er ence- mappi ng- det ai
col um="1 NVO CE_NUVBER'
r ef er enced- nodel - property="nunber"/>

</ r ef er ence- mappi ng>

</ entity-nappi ng>

INVOICE_YEAR and INVOICE_NUMBER are columns of the DELIVERY table that allows
accessing to its invoice, that is it's the foreign key although declaring it as a foreign key in database
is not required. You must map this columns to the key properties in Invoice, like this:

<entity>
<property name="year" type="int" key="true" size="4" required="true">
<def aul t - val ue- cal cul at or
cl ass="or g. openxava. cal cul at ors. Current Year Cal cul ator"/>
</ pr operty>

<property name="nunber" type="int" key="true" size="6" required="true"/>

If you have a reference to a model which key itself includes references, you can define it in this way:

<r ef erence- nappi ng reference="del i very">

<r ef er ence- mappi ng- det ai

col um="DELI VERY_I| N\VO CE_YEAR

r ef er enced- nodel - property="i nvoi ce. year"/ >
<r ef er ence- nappi ng- det ai

col umm="DELI VERY_| NVO CE_NUVBER'

r ef er enced- nodel - property="i nvoi ce. nunber"/ >
<r ef er ence- mappi ng- det ai

col um="DELI| VERY_TYPE"

r ef er enced- nodel - property="t ype. nunber"/>
<r ef er ence- mappi ng- det ai

col um="DELI| VERY_NUVBER"

r ef er enced- nodel - pr operty="nunber"/>

</ r ef er ence- mappi ng>

As you see, to indicate the properties of referenced models you can qualify them.

Also it's possible to use converters in a reference mapping:

<r ef er ence- nappi ng reference="dri vi ngLi cence" >
<r ef er ence- mappi ng- det ai
col um="DRI VI NG| CENCE_TYPE"

r ef er enced- nodel - property="t ype"

cnp-type="String"> (1) <!-- In this case this line can be omtted -->

OpenXava 3.0 - Classic XML Components Page 92

<converter class="org.openxava.converters. Not Nul | StringConverter"/> (2)
</ r ef er ence- nappi ng- det ai | >
<r ef er ence- mappi ng- det ai |

col um="DRI VI NG_I CENCE_LEVEL"

r ef er enced- nodel - property="1evel "/ >

</ r ef er ence- mappi ng>

You can use the converter just like in a simple property (2). The difference in the reference case is
that if you do not define a converter, then a default converter is not used. This is because applying in
an indiscriminate way converters on keys can produce problems in some circumstances. You can use
cmp-type (1) (new in v2.0) to indicate the Java type of the attribute used internally in your object to
store the value. This allows you to use Java types closer to the database; cmp-type is not needed if
the database type is compatible with Java type.

5.4 Multiple property mapping

With <multiple-property-mapping/> you can map several table columns to a single Java
property. This is useful if you have properties of custom class that have itself several attributes to
store. Also it is used when you have to deal with legate database schemes.

The syntax for this type of mapping is:

<mul ti pl e- property-nmappi ng

property="property" (1)
>

<converter ... /> (2)

<cnp-field ... /> ... (3)

</ mul ti pl e- property- nappi ng>

(1)property (required): Name of the property to map.

(2)converter (one, required): Implements the logic to convert from Java to the database and vice
versa. Must implement TMultipleConverter.

(3)cmp-field (several, required): Maps each column in the database with a property of a converter.

A typical example is the generic converter Date3Converter, that allows to store in the database 3
columns and in Java a single property of type java.util.Date.

<mul ti pl e- property-mappi ng property="del i veryDate">
<converter class="org.openxava. converters. Date3Converter"/>
<cnp-field converter-property="day" colum="DAYDELI VERY" cnp-type="int"/>
<cnp-field converter-property="nmonth" col um="MONTHDELI VERY" cnp-type="int"/>
<cnp-field converter-property="year" colum="YEARDELI VERY" cnp-type="int"/>

</ mul ti pl e- property-nappi ng>

DAYDELIVERY, MONTHDELIVERY and YEARDELIVERY are 3 columns in database that store
the delivery date, and day, month and year are properties of Date3Converter. And here

Date3Converter:

OpenXava 3.0 - Classic XML Components Page 93

package org.openxava. convert ers;

import java.util.*;

i mport org.openxava. util.*;

| **
* |n java a <tt>java.util.Date</tt> and in database 3 col ums of

* integer type. <p>

*

* @ut hor Javi er Pani za

*/

public class Date3Converter inplenments | MiltipleConverter { Il (1)

private int day;
private int nonth;

private int year;

public Object toJdava() throws Conversi onException { Il (2)

return Dates.create(day, nonth, year);

public void toDB((hject javaOhject) throws Conversi onException { Il (3)
if (javaCbject == null) {
set Day(0);
set Mont h(0) ;
set Year (0) ;

return;

if (!'(javaQbject instanceof java.util.Date)) {
t hr ow new Conver si onException("conversion_db_util date_expected");
}
java.util.Date date = (java.util.Date) java(bject;
Cal endar cal = Cal endar. getlnstance();
cal . setTi ne(date);
set Day(cal . get (Cal endar. DAY_OF_MONTH)) ;
set Mont h(cal . get (Cal endar. MONTH) + 1);
set Year (cal . get (Cal endar. YEAR)) ;

public int getYear() {

return year;

OpenXava 3.0 - Classic XML Components Page 94

public int getDay() {

return day;

public int getMnth() {

return nonth;

public void setYear(int i) {

year = i;

public void setDay(int i) {
day = i;

public void setMnth(int i) {

month = i;

}

This converter must implement IMultipleConverter (1). This forces it to have a toJava() (2)
method that must return a Java object from its property values (in this case year, month and day).
The returned object is the mapped property (in this case deliveryDate). The calculator must have
the method toDB () (3) too; this method receives the value of the property (a delivery date) and has
to split it and to put the result in the converter properties (year, month and day).

5.5 Reference to aggregate mapping

A reference to an aggregate contains data that in the relational model are stored in the same table as
the main entity. For example, if you have an aggregate Address associated to a Customer, the
address data is stored in the same data table as the customer data. How can you map this case with
OpenXava?

Let's see. In the model you can have:

<entity>
<ref erence nane="address" nodel ="Address" required="true"/>

</entity>

OpenXava 3.0 - Classic XML Components Page 95

<aggr egat e nane="Address" >
<i npl enent s interface="org. openxava.test.ejb. I WthGty"/>
<property nane="street" type="String" size="30" required="true"/>
<property nane="zi pCode" type="int" size="5" required="true"/>
<property nane="city" type="String" size="20" required="true"/>
<ref erence nane="state" required="true"/>

</ aggr egat e>

Simply a reference to an aggregate. And for mapping it you can do:

<entity-mappi ng tabl e=" XAVATEST@epar at or GUSTOVER" >

<pr operty- mappi ng property="address_street" col um="STREET"/>

<pr operty-mappi ng property="address_zi pCode" col um="2ZlI PCODE"' cnp-type="String">
<converter class="org.openxava. converters.|ntegerStringConverter"/>

</ pr operty- mappi ng>

<pr operty- mappi ng property="address_city" colum="C TY"/>

<r ef er ence- mappi ng reference="address_st ate" >
<r ef er ence- mappi ng-det ai | col utm="STATE" r ef er enced- nodel - property="id"/>

</ r ef er ence- nappi ng>

</ entity-nappi ng>

You see how the aggregate members are mapped within the entity mapping that contains it. The
only thing that you have to do is using the name of the reference as a prefix with an underline (in
this case address_). You can observe that in the case of aggregates you can map references,
properties and that you can use converters in the usual way.

5.6 Aggregate used in collection mapping

In case that you have a collection of aggregates, for example the invoice details, obviously the detail
data is stored in a different table as the heading data. In this case the aggregate must have its own
mapping. Let's see the example:

Here the model part of Invoice:

<entity>

<col | ecti on name="details" m ni nun¥"1">
<reference nodel =" nvoi ceDetail"/>

</col | ecti on>

</entity>

<aggr egat e nane="Invoi ceDetail ">

<property nane="oi d" type="String" key="true" hidden="true">

<def aul t - val ue- cal cul at or

OpenXava 3.0 - Classic XML Components Page 96

cl ass="or g. openxava. t est. cal cul at ors. | nvoi ceDet ai | G dCal cul at or"
on-create="true"/>
</ property>
<property name="serviceType">
<val i d- val ues>
<val i d-val ue val ue="speci al "/ >
<val i d-val ue val ue="urgent"/>
</vali d- val ues>
</ pr operty>
<property nanme="quantity" type="int" size="4" required="true"/>
<property nanme="unitPrice" stereotype="MNEY" required="true"/>
<property nane="anount" stereotype="MNEY">
<cal cul at or cl ass="org. openxava.test. cal cul at ors. Det ai | Amount Cal cul at or" >
<set property="unitPrice"/>
<set property="quantity"/>
</ cal cul at or >
</ pr operty>
<ref erence nodel ="Product" required="true"/>
<property nane="del i veryDate" type="java.util.Date">
<def aul t - val ue- cal cul at or
cl ass="or g. openxava. cal cul at ors. Current Dat eCal cul ator"/ >
</ pr operty>
<ref erence nanme="sol dBy" nodel ="Sel |l er"/>
<property nane="renarks" stereotype="MEMI'/ >

</ aggr egat e>

You can see a collection of InvoicebDetail which is an aggregate. InvoiceDetail has to be
mapped this way:

<aggr egat e- mappi ng aggr egat e="1 nvoi ceDetai | " t abl e=" XAVATEST@epar at or @ NVO CEDETAI L" >
<r ef erence- mappi ng reference="invoi ce"> (1)
<r ef er ence- mappi ng- det ai
col um="1NvO CE_YEAR"
r ef er enced- nodel - property="year"/>
<r ef er ence- nappi ng- det ai
col umm="1 NV CE_NUVBER'
r ef er enced- nodel - property="nunber"/ >
</ r ef er ence- mappi ng>
<property-mappi ng property="oid" colum="Q D'/ >
<property-mappi ng property="serviceType" col utm="SERVI CETYPE"/ >
<property-mappi ng property="unitPrice" colum="UN TPRI CE'/ >
<property-mappi ng property="quantity" col um="QUANTI TY"/>

<r ef er ence- mappi ng ref erence="product ">

OpenXava 3.0 - Classic XML Components Page 97

<r ef er ence- mappi ng- det ai |
col um=" PRODUCT_NUVBER'
r ef er enced- nodel - pr oper t y="nunber"/ >
</ r ef er ence- nappi ng>
<mul ti pl e- property-mappi ng property="del i veryDate">
<converter class="org. openxava. converters. Dat e3Converter"/>
<cnp-field
converter-property="day" col um="DAYDELI VERY" cnp-type="int"/>
<cnp-field
converter-property="nonth" col um="MONTHDELI VERY" cnp-type="int"/>
<cnp-field
converter-property="year" colum="YEARDEL| VERY" cnp-type="int"/>

</ mul ti pl e- property-nappi ng>
<r ef er ence- mappi ng reference="sol dBy" >
<r ef er ence- nappi ng- det ai |
col um=" SCLDBY_NUMBER'
r ef er enced- nodel - pr opert y="nunber"/ >
</ r ef er ence- mappi ng>
<pr operty- mappi ng property="remarks" col um="REMARKS"/ >

</aggregate-mapping>

The aggregate mapping must be below of the main entity mapping. A component must have as
many aggregate mappings as aggregates used in collections. The aggregate mapping has the same
possibilities than entity mapping, with the exception that it's required to map a reference to the
container object although maybe this reference is not defined in model. That is, although you do not
define a reference to Invoice in InvoiceDetail OpenXava adds it automatically and you must
map it (1).

5.7 Converters by default

You have seen how to declare a converter in a property mapping. But what happens, if you do not
declare a converter? In reality in OpenXava all properties (except the key properties) have a
converter by default. The default converters are defined in OpenXava/xava/default-converters.xml,
that has a content like this:

<?xm version = "1.0" encoding = "I SO 8859- 1" ?>

<I DOCTYPE converters SYSTEM "dtds/converters. dtd">

<l--

In your project use the nane 'converters.xm' or 'conversores.xni'

-->

<converters>

OpenXava 3.0 - Classic XML Components Page 98

<for-type type="java.lang. String"
converter-class="org. openxava. converters. Tri nStri ngConverter"

cnp-type="java.l ang. String"/>

<for-type type="int"
converter-class="org. openxava. converters. | nt eger N\unber Converter"

cnp-type="j ava. | ang. | nt eger"/ >

<for-type type="java.l ang. | nt eger"
converter-class="org. openxava. converters. | nt eger Nunber Converter"

cnp-type="j ava.l ang. | nt eger"/ >

<for-type type="bool ean"
converter-class="org. openxava. convert ers. Bool ean01Converter"

cnp-type="java. |l ang. | nteger"/>

<for-type type="java.l ang. Bool ean"
converter-class="org. openxava. convert ers. Bool ean01Converter"

cnp-type="j ava. | ang. | nt eger "/ >

<for-type type="I ong"
converter-class="org. openxava. converters. LongNunber Converter"

cnp-type="j ava. | ang. Long"/ >

<for-type type="java.l ang. Long"
converter-class="org. openxava. convert ers. LongNunber Converter"

cnp-type="j ava. | ang. Long"/ >

<for-type type="java. mat h. Bi gDeci mal "
converter-class="org. openxava. converters. Bi gDeci mal Nunber Converter"”

cnp-type="j ava. mat h. Bi gDeci mal "/ >
<for-type type="java.util.Date"
converter-class="org. openxava. converters. Dat elUti | SQ_.Converter"

cnp-type="j ava. sql . Date"/ >

</ converters>

If you use a property of a type that is not defined here, by default OpenXava will assign the
converter NoConversionConverter, a silly converter that don't perform anything.

In the case of key properties and references no converter are assigned; applying a converter to key

OpenXava 3.0 - Classic XML Components Page 99

properties can be problematic in certain circumstances, but even if you want to perform a conversion
you can declare a converter explicitly in your mapping.

If you wish to modify the behavior of default converters in your application, you do not modify the
OpenXava file, but you create your own converters.xml file in the folder xava of your project. You
can assign a converter by default to a stereotype (using <for-stereotype/>).

5.8 Default mapping (new in v2.1.3)

Since version 2.1.3 OpenXava allows to define components without mapping, and it assumed a
default mapping for it. For example, you can write:

<?xm version="1.0" encodi ng="1SO 8859-1"?>
<! DOCTYPE conponent SYSTEM "dtds/ conponent . dtd">
<conponent nane="Pupi | ">

<entity>
<property nanme="nunber" type="int" key="true"
size="2" required="true"/>
<property nane="nane" type="String"
si ze="40" required="true"/>
<r ef erence nane="teacher"/>

</entity>

</component>

This component is mapped to the table pupil, and the properties number and name are mapped to
the columns number and name. The reference teacher is mapped to a column named
teacher_number (if the key property of Teacher is named number).

5.9 Object/relational philosophy

OpenXava has been born and has been developed in an environment when it was necessary to work
with legacy database without changing its structure. The result is that OpenXava:

« Provides great flexibility when mapping with legacy database.

« Does not provide some features natural for OOT and that requires to change database scheme, as
inheritance support or polymorphic queries.

Another cool feature of OpenXava mapping is that applications are 100% portables from JBoss
CMP2 to Websphere CMP2 without writing a single line of code. Furthermore, the portability
between Hibernate, JPA and EJB2 version of an application is very high, the mapping and all
automatic controllers are 100% portable, obviously the custom EJB2, JPA or Hibernate code is not
so portable.

OpenXava 3.0 - Classic XML Components Page 100

6 Aspects

6.1 Introduction to AOP

AOP (Aspect Oriented Programming) introduces a new way for reusing code. In fact aspects
complement some shortcomings in traditional Object Oriented Programming.

Which problems does AOP resolve? Sometime you have a functionality that is common to a group
of classes but using inheritance is not practical (in Java we only have single inheritance) or not
ethical (because there isn't a is-a relationship). Moreover the system may be already written, or
maybe you need to include or not this functionality on demand. AOP is an easy way to resolve these
problems.

What is an aspect? An aspect is a bunch of code that can be scattered as you wish in your
application.

The Java language has a complete AOP support by means of the Aspect] project.

OpenXava adds some support for the aspects concept since version 1.2.1. At the moment the support
is small and OpenXava is still far away from an AOP framework, but the support of aspects in
OpenXava is useful.

6.2 Aspects definition
The aspects.xml file inside the xava folder of your project is used to define aspects.

The file syntax is:

<aspect s>
<aspect ... [> ... (1)
<apply ... [I> ... (2)
</aspects>

(1)aspect (several, optional): To define aspects.
(2)apply (several, optional): To apply the defined aspects to the selected models.

With aspect (1) you can define an aspect (that is a group of features) with a name, and using apply
(2) you achieve that a set of models (entities or aggregates) will have these features automatically.

Let's see the aspect syntax:

<aspect
nane="nane" (1)
>
<postcreate-calculator .../> ... (2)
<post | oad-cal cul ator .../> ... (3)
<post nodi fy-cal cul ator .../> ... (4)
<prerenove-cal cul ator .../> ... (5)
</aspect>

OpenXava 3.0 - Classic XML Components Page 101

(1)name (required): Name for this aspect. It must be unique.

(2)postcreate-calculator (several, optional): All model with this aspect will have this
postcreate-calculator implicitly.

(3)postload-calculator (several, optional): All model with this aspect will have this postload-
calculator implicitly.

(4)postmodify-calculator (several, optional): All model with this aspect will have this
postmodify-calculator implicitly.

(5)preremove-calculator (several, optional): All model with this aspect will have this
preremove-calculator implicitly.

Furthermore, you need to assign the defined aspects to your models. The syntax to do that is:

<apply
aspect ="aspect " (1)
f or - nodel s="nodel s" (2)
except - f or - nodel s="nodel s" (3)
/>

(1)aspect (required): The name of the aspect that you want to apply.

(2)for-models (optional): A comma separated list of models to which the aspect is applied to. It's
mutually exclusive with except-for-models attribute.

(3)except-for-models (optional): A comma separated list of models to be excluded when apply
this aspect. In this case the aspect applies to all models excepts the indicated ones. It's mutually
exclusive with for-models attribute.

If you use neither for-models nor except-for-models, then the aspect will apply to all models in
the application. Models are the names of components (for its entities) or aggregates.

A simple example may be:

<aspect name="M/Aspect" >
<post cr eat e- cal cul at or
cl ass="com nyconpany. nyappl i cati on. cal cul at ors. M/Cal cul ator"/ >

</ aspect >

<apply aspect="MyAspect"/>

Whenever a new object is created (saved in database for the first time), then the logic of
MyCalculator 18 executed. And this for all models.

At the moment only these few calculators are supported. We expect to extend the power of aspects
for OpenXava in the future. Anyway the existing calculators offer interesting possibilities. Let's see
an example in the next section.

6.3 AccessTracking: A practical application of aspects

The current OpenXava distribution includes the AccessTracking project. This project defines an
aspect that allows you to track all access to the data in your application. Actually, this project allows

OpenXava 3.0 - Classic XML Components Page 102

your application to comply the Spanish Data Protection Law (Ley de Proteccion de Datos) including
high level security data. Although it's generic enough to be useful in a broad variety of scenarios.

6.3.1 The aspect definition

You can find the aspect definition in AccessTracking/xava/aspects.xml:

<?xm version = "1.0" encoding = "I SO 8859-1"?>

<! DOCTYPE aspects SYSTEM "dtds/aspects. dtd">

<I-- AccessTracking -->

<aspect s>

<aspect name="AccessTracki ng">

<post cr eat e- cal cul at or
cl ass="or g. openxava. t racki ng. AccessTr acki ngCal cul at or" >
<set property="accessType" val ue="Create"/>

</ post cr eat e- cal cul at or>

<post | oad- cal cul at or
cl ass="or g. openxava. t racki ng. AccessTr acki ngCal cul at or" >
<set property="accessType" val ue="Read"/>

</ post | oad- cal cul at or >

<post nodi f y- cal cul at or
cl ass="or g. openxava. t racki ng. AccessTr acki ngCal cul at or" >
<set property="accessType" val ue="Update"/>

</ post nodi f y- cal cul at or >

<pr er enove- cal cul at or
cl ass="or g. openxava. t racki ng. AccessTr acki ngCal cul at or" >
<set property="accessType" val ue="Del ete"/>

</ pr er enove- cal cul at or >

</ aspect >

</aspects>

When you apply this aspect to your components, then the code of AccessTrackingCalculator is
executed each time a object is created, loaded, modified or removed. AccessTrackingCalculator
writes a record into a database table with information about the access.

In order to apply this aspect you need to write your aspects.xml like this:

<?xm version = "1.0" encoding = "I SO 8859-1"?>

<! DOCTYPE aspects SYSTEM "dtds/aspects. dtd">

OpenXava 3.0 - Classic XML Components Page 103

<aspect s>

<apply aspect="AccessTracki ng" for-nodel s="Warehouse, |nvoice"/>

</aspects>

In this way this aspect is applied to warehouse and Invoice. All access to these entities will be
record in a database table.

6.3.2 Setup AccessTracking

If you want to use the AccessTracking aspect in your project you have to follow the next setup
steps:

« Add AccessTracking as referenced project.

« Create the table in your database to store the tracking of accesses. You can find the CREATE
TABLE:S in AccessTracking/data/access-tracking-db.script file.

+ You have to include the hibernate.dialect property in your configuration files. You can see
examples of this in OpenXavaTest/jboss-hypersonic.properties and other
OpenXavaTest/xxx.properties files.

+ Inside the AccessTracking project you need to select a configuration (editing build.xml) and
regenerate hibernate code (using the ant target generateHibernate) for AccessTracking project.

- Edit the file of your project build/ejb/META-INF/MANIFEST.MF to add the next jars into the
classpath: ./lib/tracking.jar ./lib/ehcache.jar ./lib/antlr.jar ./lib/asm.jar
./lib/cglib.jar ./lib/hibernate3.jar ./lib/dom4j.jar.(This step isn't needed if you
use only POJOs, not EJB CMP2, new in v2.0)

Also you need to modify the target createEJBJars (only if you are using EJB2 CMP) and
deployWar of your build.xml in this way:

<target name="creat eEJBJars"> <I-- "createBEJBJars' only if you use EIB2 QW -->
<ant antfile="../AccessTracking/build.xml" target="createEJBTracker"/>
</target>
<target name="depl oyVar" >
<ant antfile="../AccessTracking/build.xml" target="createTracker"/>
</target>

After these steps, you have to apply the aspect in your application. Create a file in your project
xava/aspects.xml:

<?xm version = "1.0" encoding = "I SO 8859- 1" ?>

OpenXava 3.0 - Classic XML Components Page 104

<! DOCTYPE aspects SYSTEM "dt ds/aspects. dtd">

<aspect s>

<apply aspect="AccessTracki ng"/>

</aspects>

Now you only have to deploy the war for your project. (new in v2.0)

In the case that you are using EJB2 CMP you have to regenerate the code, deploying EJB and
deploying war for your project.

All access are recorded in a table with the name TRACKING.ACCESS. If you want you can deploy
the module web or the portlet of AccessTracking project in order to have a web application to browse
the accesses.

For more details you can have a look at the OpenXavaTest project.

OpenXava 3.0 - Classic XML Components Page 105

7 Miscellaneous

7.1 Many-to-many relationships

In OpenXava there is no direct concept of a many-to-many relationship, only collections are
availables. Nevertheless modeling a many-to-many relationship in OpenXava is easy. You only need
to define collections in both sides of the relationship.

For example, if you have customers and states, and a customer can work in several states, and,
obviously, in a state several customers can work, then you have a many-to-many (using relational
nomenclature) relationship. Suppose that you have a table CUSTOMER (without reference to state),
a table STATE (without reference to customer) and a table CUSTOMER_STATE (to link both
tables). Then you can model this case in this way:

<conponent nane="Cust oner" >

<entity>

<col | ecti on nanme="st at es"> (1)
<ref erence nodel =" Cust oner St ate"/ >

</ col | ecti on>

</entity>

<aggr egat e nane="Cust oner St at e" > (2)
<reference name="custoner" key="true"/> (3)
<ref erence nanme="state" key="true"/> (4)

</ aggr egat e>

</ conponent >

You define in customer a collection of aggregates (1), each aggregate (CustomerState) (2)
contains a reference to a state (4), and, of course, a reference of its container entity (Customer)

3).

Then you map this collection in the usual way:

<conponent nanme="Cust oner" >

<aggr egat e- nappi ng aggr egat e="Cust oner St at e" t abl e=" CUSTOVER_STATE" >
<r ef er ence- mappi ng ref erence="cust oner" >
<r ef er ence- mappi ng- det ai |
col um=" CUSTOVER" (1)
r ef er enced- nodel - pr operty="nunber"/>
</ ref er ence- mappi ng>

<r ef erence- mappi ng reference="state">

<r ef er ence- mappi ng- det ai |

OpenXava 3.0 - Classic XML Components Page 106

col umm="STATE" (2)
r ef er enced- nodel - property="id"/>
</ r ef er ence- mappi ng>
</ aggr egat e- mappi ng>

</ conponent >

CustomersState is mapped to CUSTOMER_STATE, a table that only contains two columns, one to
link to CUSTOMER (1) and other to link to STATE (2).

At model and mapping level all is right, but the User Interface generated by default by OpenXava is
somewhat cumbersome in this case. Although with the next refinements to the view part your many-
to-many collection will be just fine:

<conponent nane="Cust oner" >
<vi ew>
<col | ecti on-vi ew col | ecti on="st at es" >
<list-properties>state.id, state.name</|ist-properties> (1)
</ col | ecti on-vi ew>
<menber s>
states
</ menber s>
</ vi ew>
<vi ew nodel =" Cust oner St at e" >
<reference-view reference="state" frame="fal se"/> (2)

</ vi ew>

</ conponent >

In this view you can see how we define explicitly (1) the properties to be shown in list of the
collection states. This is needed because we have to show the properties of the state, not the
CustomerState ones. Additionally, we define that reference to state in Customerstate view to be
showed without frames (2), this is to avoid two ugly nested frames.

By this easy way you can define a collection to map a many-to-many relationship in the database. If
you want a bidirectional relationship only need to create a customers collection in state entity,
this collection may be of the aggregate type stateCustomer and must be mapped to the table
CUSTOMER_STATE. All in analogy to the example here.

OpenXava 3.0 - Classic XML Components Page 107

	1 Introduction
	2 Model
	2.1 Java Implementation
	2.2 Business Component
	2.3 Entity and aggregates
	2.4 Entity
	2.5 Bean
	2.6 EJB (2)
	2.7 Implements (3)
	2.8 Property (4)
	2.8.1 Stereotype
	2.8.2 IMAGES_GALLERY stereotype (new in v2.0)
	2.8.3 Concurrency and version property (new in v2.2.3)
	2.8.4 Valid values
	2.8.5 Calculator
	2.8.6 Default value calculator
	2.8.7 Validator
	2.8.8 Default validator (new in v2.0.3)

	2.9 Reference (5)
	2.9.1 Default value calculator in references

	2.10 Collection (6)
	2.11 Method (7)
	2.12 Finder (8)
	2.13 Postcreate calculator (9)
	2.14 Postmodify calculator (11)
	2.15 Postload and preremove calculator (10, 12)
	2.16 Validator (13)
	2.17 Remove validator (14)
	2.18 Aggregate
	2.18.1 Reference to aggregate
	2.18.2 Collection of aggregates

	3 View
	3.1 Layout
	3.1.1 Groups
	3.1.2 Sections
	3.1.3 Layout philosophy

	3.2 Property view
	3.2.1 Label format
	3.2.2 Value change event
	3.2.3 Actions of property
	3.2.4 Choosing an editor (new in v2.1.3)

	3.3 Reference view
	3.3.1 Choose view
	3.3.2 Customizing frame
	3.3.3 Custom search action
	3.3.4 Custom creation action
	3.3.5 Custom modification action (new in v2.0.4)
	3.3.6 Descriptions list (combos)
	3.3.7 Reference search on change event (new in v2.2.5)

	3.4 Collection view
	3.4.1 Custom edit/view action
	3.4.2 Custom list actions
	3.4.3 Default list actions (new in v2.1.4)
	3.4.4 Custom detail actions
	3.4.5 Refining collection view default behavior (new in v2.0.2)

	3.5 View property
	3.6 View actions (new in v2.0.3)
	3.7 Transient component: Only for creating views (new in v2.1.3)

	4 Tabular data
	4.1 Initial properties and emphasize rows
	4.2 Filters and base condition
	4.3 Pure SQL select
	4.4 Default order

	5 Object/relational mapping
	5.1 Entity mapping
	5.2 Property mapping
	5.3 Reference mapping
	5.4 Multiple property mapping
	5.5 Reference to aggregate mapping
	5.6 Aggregate used in collection mapping
	5.7 Converters by default
	5.8 Default mapping (new in v2.1.3)
	5.9 Object/relational philosophy

	6 Aspects
	6.1 Introduction to AOP
	6.2 Aspects definition
	6.3 AccessTracking: A practical application of aspects
	6.3.1 The aspect definition
	6.3.2 Setup AccessTracking

	7 Miscellaneous
	7.1 Many-to-many relationships

