
REFERENCE GUIDE

VERSION 3.0

OpenXava 3.0 1

www.princexml.com
Prince - Personal Edition
This document was created with Prince, a great way of getting web content onto paper.

° ° ° ° °

Table of Contents

Chapter 1: Overview...4
Chapter 2: My first OpenXava project ...7
Chapter 3: Model ...15
Chapter 4: View ..56
Chapter 5: Tabular data ...96
Chapter 6: Object/relational mapping... 103
Chapter 7: Controllers... 114
Chapter 8: Application .. 138
Chapter 9: Customizing .. 144

Table of Contents

OpenXava 3.0 2

° ° ° ° °

Table of Contents

OpenXava 3.0 3

° ° ° ° °

Chapter 1: Overview

Presentation
OpenXava is a framework to develop JavaEE/J2EE applications quickly and
easily.
The underlaying philosophy is to define with Java annotations or XML and to
program with Java, the more definition and less programming the better.
The main goal is to make the more typical things in a business application
easily, while you still have the necessary flexibility to develop the most
advances features as you like.
Below you can see some basic concepts of OpenXava.

Business component
The fundamental pieces to create applications in OpenXava are the business
components. In OpenXava context a business component is a Java class
(althought also exists a XML version) that contains all needed information
about a business concept that allows you to create applications on it. For
example, all needed information that the system has to know about the
concept of invoice is defined in the file Invoice.java. In a business component
you can define:

• The data structure.
• Validations, calculations and in general all logic associated with the

business concept.
• The possibles views, i. e. the configuration of all possible user

interfaces for this component.
• The possibilities for the tabular data presentation. This is used in list

mode (data navigation), reports, export to excel, etc.
• Object-relational mapping, this includes information about database

tables and how to convert it to the objects of your Java application
This splitting way is good for work groups, and allows to develop generic
business component for using in different projects.

OpenXava 3.0 4

Controllers
The business component does not define the things that user can do in the
application; this is defined in controllers. The controllers are specified in the
file xava/controllers.xml of your project; in addition OpenXava has a set of
predefined controllers in OpenXava/xava/default-controllers.xml.
A controller is a set of actions. An action is a button or link that a user can
click.
The controllers are separated from the business components because one
controller can be assigned to several business components. For example, a
controller to make CRUD operations, to print in PDF format or to export to
plain files, etc. can be used and reused for components like invoices,
customers, suppliers, etc.

Application
An OpenXava application is a set of modules. A module joins a business
component with one or more controllers.
Each module of the application is what the end user uses, and generally it is
configured as a portlet within a portal.

Project structure
A typical OpenXava project usually contains the these folders:

• [root]: In the root you can find build.xml (with the Ant task).
• src[source folder]: Contains your Java source code.
• xava: XML files to configure your OpenXava application. The main

ones are application.xml and controllers.xml.
• i18n: Resource files with labels and messages in several languages.
• properties[source folder]: Property files to configure your

application.
• data: Useful to hold the scripts to create the tables of your

application, if needed.
• web: Web content. Usually JSP files, lib and classes. Most of the

content is generated automatically, but you can put here your own
JSPs or other custom web resources.

Chapter 1: Overview

OpenXava 3.0 5

° ° ° ° °

Chapter 1: Overview

OpenXava 3.0 6

° ° ° ° °

Chapter 2: My first OX project

Create a new project
First open your Eclipse and make its workspace the one that comes with the
OpenXava distribution.
Using the appropriate Eclipse Wizard create a new Java Project named
Management. Now you have a new empty Java project in the workspace, the
next step is to give it the correct shape for an OpenXava project.
Go to the project OpenXavaTemplate and edit the file CreateNewProject.xml
in this way:

<property name="project" value="Management" />

Now execute CreateNewProject.xml using Ant. You can do it with Right Button
on CreateNewProject.xml > Run as > Ant Build
Select the project Management and press F5 for refreshing.
And now you have a new project ready to start working, but before
continuing you need to configure the database.

Configure database
OpenXava generates a JavaEE/J2EE application intended to be deployed in a
Java Application Server (since v2.0 OpenXava applications also run in a simple
servlet container, as Tomcat). In OpenXava you only need to indicate the
Data Source JNDI and then configure the data source in your application
server. Configuring a data source in an application server is out of the scope
of this guide, nevertheless you have below detailed instructions to configure a
database in order to run this first project using the Tomcat included in
OpenXava distribution as application server and Hypersonic as database. This
Tomcat is in the folder openxava-3.x/tomcat.
With Tomcat stopped edit the file context.xml in Tomcat's directory conf. In
this file add the next entry:

OpenXava 3.0 7

<Resource name="jdbc/ManagementDS" auth="Container" type="javax.sql.DataSource"
maxActive="20" maxIdle="5" maxWait="10000"
username="sa" password="" driverClassName="org.hsqldb.jdbcDriver"
url="jdbc:hsqldb:hsql://localhost:1666"/>

The main thing here is the JNDI name, this is the only thing referenced from
OpenXava, in this case ManagementDS. The driverClassName and url
attributes depend on your particular database, in this case Hypersonic is
used.

Your first business component
Creating an OpenXava business component is easy: The definition of each
component is a Java class with annotations. In order to begin you have to
create a class called Warehouse:

• Put on src folder and use the Right Button > New > Package
• Create a package named org.openxava.management.model
• Put on package org.openxava.management.model and use Right

Button > New > Class
• Create a class named Warehouse

Now edit your new class and write this code:

package org.openxava.management.model;

import javax.persistence.*;
import org.openxava.annotations.*;

@Entity
public class Warehouse {

@Id @Column(length=3) @Required
private int number;

@Column(length=40) @Required
private String name;

public int getNumber() {
return number;

}

public void setNumber(int number) {
this.number = number;

}

public String getName() {
return name;

Chapter 2: My first OX project

OpenXava 3.0 8

http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Entity
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html

}

public void setName(String name) {
this.name = name;

}

}

This class contains (and it will be contain) all data needed by the application
about the Warehouse business concept. At the moment we only have data
structure, but in this class you can put the mapping against the database,
the business logic, the visual presentation, the tabular data management, etc.
Really this class is an Entity that follows the EJB3 standard. For defining a
class as a entity you only need to use the @Entity annotation in the class
declaration.
In entity you define properties, let's see how:

@Id // 1
@Column(length=3) // 2
@Required // 3
private int number; // 4
private int getNumber() { // 4

return number;
}
private void setNumber(int number) { // 4

this.number = number;
}

This is its meaning:
1. @Id: Indicates if this property is part of the key. The key is a unique

identifier of the object and usually matches with the primary key of a
database table.

2. @Column(length=): Length of data. It's optional, but useful to
display better user interfaces and generating database tables.

3. @Required: Indicates if it's required to validate the existence of data
for this property just before creation or modification.

4. The property defined in the usual way for a Java class. All valid types
for a Java property are applicable here, including integrated types, JDK
classes and custom classes.

The possibilities of the property definition go far from what is shown here,
you can see a more complete explanation in Model chapter.

Chapter 2: My first OX project

OpenXava 3.0 9

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html

The table
Before testing the application you have to create the table in database.
Follow these steps:

• Start your database server: From command line go to openxava-3.x/
tomcat/bin folder and execute:

• In Linux/Unix: ./start-hsqldb.sh management-db 1666
• In Windows: start-hsqldb management-db 1666

• Create the table:
• Edit Management/build.xml. Search the ant target

updateSchema.
• Put a correct value for schema.path, in this case “../

OpenXavaTest/lib/hsqldb.jar”.
• Execute the ant target updateSchema.

• Start Tomcat and now everything is ready.

Executing your application
After your hard work it is time to see the fruit of your sweat. Let's go.

• Execute the ant target deployWar.
• Open an internet browser and go to http://localhost:8080/Management/

xava/module.jsp?application=Management&module=Warehouse
And now you can play with your module and see its behavior.
Also you can deploy your module as a JSR-168 portlet, in this way:

• Execute ant target generatePortlets.
• Take the file Management.war in the folder openxava-3.x/

workspace.dist/Management.dist and deploy it into your Portal Server.

Automating the tests
Although it seems that the most natural way to test an application is to open
a browser and use it like a final user; in fact it is more productive
automating the tests, in this way as your system grows, you have it tied and
you avoid to break it when you advance.
OpenXava uses a test system based on JUnit and HttpUnit. The OpenXava
JUnit tests simulate the behavior of a real user with a browser. This way you
can replicate exactly the same tests that you can do directly with an internet
browser. The advantage of this approach is that you can test easily all layers

Chapter 2: My first OX project

OpenXava 3.0 10

http://localhost:8080/Management/xava/module.jsp?application=Management&module=Warehouse
http://localhost:8080/Management/xava/module.jsp?application=Management&module=Warehouse

of your program from user interface to database.
If you test the module manually you usually create a new record, search it,
modify and finally delete it. Let's do this automatically:
First you must create a package for the test classes,
org.openxava.management.tests, and then add the WarehouseTest class to it,
with next code:

package org.openxava.management.tests;

import org.openxava.tests.*;

/**
* @author Javier Paniza
*/

public class WarehouseTest extends ModuleTestBase {

public WarehouseTest(String testName) {
super(testName, "Management", "Warehouse"); // 1

}

public void testCreateReadUpdateDelete() throws Exception {
// Create
execute("CRUD.new"); // 2
setValue("number", "7"); // 3
setValue("name", "JUNIT Warehouse");
execute("CRUD.save");
assertNoErrors(); // 4
assertValue("number", ""); // 5
assertValue("name", "");

// Read
setValue("number", "7");
execute("CRUD.search");
assertValue("number", "7");
assertValue("name", "JUNIT Warehouse");

// Update
setValue("name", "JUNIT Warehouse MODIFIED");
execute("CRUD.save");
assertNoErrors();
assertValue("number", "");
assertValue("name", "");

// Verify if modified
setValue("number", "7");
execute("CRUD.search");
assertValue("number", "7");
assertValue("name", "JUNIT Warehouse MODIFIED");

// Delete
execute("CRUD.delete");
assertMessage("Warehouse deleted successfully"); // 6

Chapter 2: My first OX project

OpenXava 3.0 11

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html

}

}

You can learn from this example:
1. Constructor: In the constructor you indicate the application and

module name.
2. execute: Allows to simulate a button or link click. As an argument

you send the action name; you can view the action names in
OpenXava/xava/default-controllers.xml (the predefined controllers) and
Management/xava/controllers.xml (the customized ones). Also if you
move the mouse over the link your browser will show you the
JavaScript code with the OpenXava action to execute. That is
execute(“CRUD.new”) is like click in 'new' button in the user interface.

3. setValue: Assigns a value to a form control. That is, setValue(“name”,
“Pepe”) has the same effect than typing in the field 'name' the text
“Pepe”. The values are always alphanumeric because they are
assigned to a HTML form.

4. assertNoErrors: Verify that there are no errors. In the user interface
errors are red messages showed to user and added by the application
logic.

5. assertValue: Verify if the value in the form field is the expected one.
6. assertMessage: Verify if the application has shown the indicated

informative message.
You can see that is very easy to test that a module works; writing this code
can take 5 minutes, but at end you will save hours of work, because from
now on you can test your module just in 1 second, and because when you
break the Warehouse module (maybe touch in another part of your
application) your test warns you just in time.
For more details have a look at the JavaDoc API of
org.openxava.tests.ModuleTestBase and examine the examples in
org.openxava.test.tests of OpenXavaTest.
By default the test runs against the module in alone (non portal) mode (that
is deployed with deployWar). But if you want it's possible to test against the
portlet version (that is deployed with generatePortlets). You only need to edit
the file properties/xava-junit.properties and write:

liferay.url=web/guest

Chapter 2: My first OX project

OpenXava 3.0 12

This is for testing against Liferay. Also it's possible to test against a
JetSpeed2 portal, look at OpenXavaTest/properties/xava-junit.properties to
learn more.

The labels
Now everything works well, but a little detail remains yet. Maybe you want to
define the labels to be show to the user. The way is to write a file with all
labels, thus you can translate your product to another language with no
problems.
To define the labels you only have to edit the file
Management-labels_en.properties in i18n folder. Edit that file and add:

Warehouse=Warehouse

You do not have to put all properties, because the more common cases
(number, name, description and a big etc) is already included with OpenXava
in English, Spanish, Polish, French, German, Indonesian and Catalan.
If you wish the version in an other language (Spanish for example), you only
need to copy and paste with the appropriate suffix. For example, you can
have a Management-labels_es.properties with the next content:

Warehouse=Almacén

The OpenXava default labels and messages are in OpenXava/i18n/
Labels.properties and OpenXava/i18n/Messages.properties. If you want to
override some of these resources you do not need to edit these files, instead,
you can use the same key names in the resource files of your project, then
your labels and messages will be used instead of the standard ones of
OpenXava (new in v2.0.3). For example, if you want to change the standard
message in list mode ''There are 23663 objects in list” for other, you have to
add to your Management-messages_en.properties this entry:

list_count is in Messages_en.properties of OpenXava, this is an example
of overriding a standard openxava message
list_count=There are {0} records in list

Now, your application will show “There are 23663 records in list” instead of
the default OpenXava message “'There are 23663 objects in list”.
If you want to know more about how to define labels of your OpenXava
elements please look in OpenXavaTest/i18n.

Chapter 2: My first OX project

OpenXava 3.0 13

° ° ° ° °

Chapter 2: My first OX project

OpenXava 3.0 14

° ° ° ° °

Chapter 3: Model

The model layer in an object oriented application contains the business logic,
that is the structure of the data and all calculations, validations and
processes associated to this data.
OpenXava is a model oriented framework where the model is the most
important, and the rest (e.g. user interface) depends on it.
The way to define the model in OpenXava is using plain Java classes
(although a XML version is also available). OpenXava provides generates a full
featured application from your model definition.

Business Component
The basic unit to create an OpenXava application is the business component.
A business component is defined using a Java class called Entity. This class is
a regular EJB3 entity, or in other words, a POJO class with annotations that
follows the Java Persistence API (JPA) standard.
JPA is the Java standard for persistence, that is, for objects that store its
state in a database. If you know how to develop using POJOs with JPA, you
already know how to develop OpenXava applications.
Using a simple Java class you can define a Business Component with:

• Model: Data structure, validations, calculations, etc.
• View: How the model can be shown to the user.
• Tabular data: How the data of the component is displayed in list

mode (in tabular format).
• Object/relational mapping: How to store and retrieve the object

state from database.
This chapter explains how to define the model part, that is, all about
structure, validations, calculations, etc.

Entity
In order to define the model part you have to define a Java class with
annotations. In addition to its own annotations, OpenXava supports
annotations from JPA and Hibernate Validator. This Java class is an entity, that

OpenXava 3.0 15

/home/javi/openxava/openxava-3.0/doc/model-xml_en.html
http://en.wikipedia.org/wiki/Plain_Old_Java_Object
http://en.wikipedia.org/wiki/Java_Persistence_API
http://java.sun.com/javaee/technologies/persistence.jsp
http://validator.hibernate.org

is, a persistent class that represents a business concept.
In this chapter JPA is used to indicate that it's a standard Java Persistent API
annotations, HV for indicating it's a Hibernate Validator annotation, and OX
for indicating that is an annotation of OpenXava.
This is the syntax for a entity:

@Entity // 1
@EntityValidator // 2
@RemoveValidator // 3
public class EntityName { // 4
// Properties // 5
// References // 6
// Collections // 7
// Methods // 8
// Finders // 9
// Callback methods // 10

}

1. @Entity (JPA, one, required): Indicates that this class is a JPA entity,
in other words, its instances will be persistent objects.

2. @EntityValidator (OX, several, optional): Executes a validation at
model level. This validator can receive the value of various model
properties. To validate a single property it is better to use a property
level validator.

3. @RemoveValidator (OX, several, optional): It's executed before
removal, and can deny the object removing.

4. Class declaration: As a regular Java class. You can use extends and
implements.

5. Properties: Regular Java properties. They represent the main state of
the object.

6. References: References to other entities.
7. Collections: Collections of references to other entities.
8. Methods: Java methods with the business logic.
9. Finders: Finder methods are static method that do searches using JPA

query facilities.
10. Callback methods: JPA callbacks methods for insert logic on creating,

modifying, loading, removing, etc.

Properties
A property represents the state of an object that can be read and in some
cases updated. The object does not have the obligation to store physically

Chapter 3: Model

OpenXava 3.0 16

http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Entity
http://java.sun.com/javaee/5/docs/api/javax/persistence/Entity.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/EntityValidator.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/RemoveValidator.html

the property data, it only must return it when required.
The syntax to define a property is:

@Stereotype // 1
@Column(length=) @Max @Length(max=) @Digits(integerDigits=) // 2
@Digits(fractionalDigits=) // 3
@Required @Min @Range(min=) @Length(min=) // 4
@Id // 5
@Hidden // 6
@SearchKey // 7
@Version // 8
@DefaultValueCalculator // 9
@PropertyValidator // 10
private type propertyName; // 11
public type getPropertyName() { ... } // 11
public void setPropertyName(type newValue) { ... } // 11

1. @Stereotype (OX, optional): Allows to specify a special behavior for
some properties.

2. @Column(length=) (JPA), @Max (HV), @Length(max=) (HV),
@Digits(integerDigits=) (HV, optional, usually you only use one of
them): Length in characters of property, except in @Max case that is
the max value. Useful to generate user interfaces. If you do not
specify the size, then a default value is assumed. This default value is
associated to the stereotype or type and is obtained from
default-size.xml.

3. @Digits(fractionalDigits=) (HV, optional): Scale (size of decimal part)
of property. Only applies to numeric properties. If you do not specify
the scale, then a default value is assumed. This default value is
associated to the stereotype or type and is obtained from
default-size.xml.

4. @Required (OX), @Min (HV), @Range(min=) (HV), @Length(min=)
(HV) (optional, usually you only use one of them): Indicates if this
property is required. In the case of @Min, @Range and @Length you
have to put a value greather than zero for min in order to assume
that the property is required. By default a property is required for key
properties hidden (new in v2.1.3) and false in all other cases. On
saving OpenXava verifies if the required properties are present. If this
is not the case, then saving is not done and a validation error list is
returned. The logic to determine if a property is present or not can
be configured by creating a file called validators.xml in your project.
You can see the syntax in OpenXava/xava/validators.xml.

Chapter 3: Model

OpenXava 3.0 17

http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/Stereotype.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/Column.html
http://www.hibernate.org/hib_docs/validator/api/org/hibernate/validator/Max.html
http://www.hibernate.org/hib_docs/validator/api/org/hibernate/validator/Length.html
http://www.hibernate.org/hib_docs/validator/api/org/hibernate/validator/Length.html
http://www.hibernate.org/hib_docs/validator/api/org/hibernate/validator/Length.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/Required.html
http://www.hibernate.org/hib_docs/validator/api/org/hibernate/validator/Min.html
http://www.hibernate.org/hib_docs/validator/api/org/hibernate/validator/Range.html
http://www.hibernate.org/hib_docs/validator/api/org/hibernate/validator/Length.html

5. @Id (JPA, optional): Indicates that this property is part of the key. At
least one property (or reference) must be key. The combination of key
properties (and key references) must be mapped to a group of
database columns that do not have duplicate values, typically the
primary key.

6. @Hidden (OX, optional): A hidden property has a meaning for the
developer but not for the user. The hidden properties are excluded
when the automatic user interface is generated. However at Java code
level they are present and fully functional. Even if you put it explicitly
into a view the property will be shown in the user interface.

7. @SearchKey (OX, optional): The search key properties are used by
the user as key for searching objects. They are editable in user
interface of references allowing to the user type its value for
searching. OpenXava uses the @Id properties for searching by default,
and if the id properties are hidden then it uses the first property in
the view. With @SearchKey you can choose explicitly the properties
for searching.

8. @Version (JPA, optional): A version property is used for optimistic
concurrency control. If you want control concurrency you only need to
have a property marked as @Version in your entity. Only a single
version property should be used per entity. The following types are
supported for version properties: int, Integer, short, Short, long, Long,
Timestamp. The version properties are considered hidden.

9. @DefaultValueCalculator (OX, one, optional): Implements the logic
to calculate the default (initial) value for this property. A property with
@DefaultValueCalculator has setter and it is persistent.

10. @PropertyValidator (OX, several, optional): Implements the validation
logic to execute on this property before modifying or creating the
object that contains it.

11. Property declaration: A regular Java property declaration with its
getters and setters. You can create a calculated property using only a
getter with no field nor setter. Any type legal for JPA is available, you
only need to provide a Hibernate Type to allow saving in database
and an OpenXava editor to render as HTML.

Stereotype
A stereotype (@Stereotype) is the way to determine a specific behavior of a
type. For example, a name, a comment, a description, etc. all correspond to

Chapter 3: Model

OpenXava 3.0 18

http://java.sun.com/javaee/5/docs/api/javax/persistence/Id.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/Hidden.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/SearchKey.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/Version.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/DefaultValueCalculator.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/PropertyValidator.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/Stereotype.html

the Java type java.lang.String but you surely wish validators, default sizes,
visual editors, etc. different in each case and you need to tune finer; you can
do this assigning a stereotype to each case. That is, you can have the next
sterotypes NAME, MEMO or DESCRIPTION and assign them to your properties.
OpenXava comes with these generic stereotypes:

• DINERO, MONEY
• FOTO, PHOTO, IMAGEN, IMAGE
• TEXTO_GRANDE, MEMO, TEXT_AREA
• ETIQUETA, LABEL
• ETIQUETA_NEGRITA, BOLD_LABEL
• HORA, TIME
• FECHAHORA, DATETIME
• GALERIA_IMAGENES, IMAGES_GALLERY (setup instructions)
• RELLENADO_CON_CEROS, ZEROS_FILLED
• TEXTO_HTML, HTML_TEXT (text with editable format)
• IMAGE_LABEL, ETIQUETA_IMAGEN (image depending on property

content)
• EMAIL
• TELEFONO, TELEPHONE
• WEBURL
• IP
• ISBN
• TARJETA_CREDITO, CREDIT_CARD
• LISTA_EMAIL, EMAIL_LIST

Now you will learn how to define your own stereotype. You will create one
called PERSON_NAME to represent names of persons.
Edit (or create) the file editors.xml in your folder xava. And add:

<editor url="personNameEditor.jsp">
<for-stereotype stereotype="PERSON_NAME"/>

</editor>

This way you define the editor to render for editing and displaying properties
of stereotype PERSON_NAME.
Furthermore it is useful to indicate the default size; you can do this by
editing default-size.xml of your project:

<for-stereotype name="PERSON_NAME" size="40"/>

Thus, if you do not put the size in a property of type PERSON_NAME a value
of 40 is assumed.

Chapter 3: Model

OpenXava 3.0 19

Not so common is changing the validator for required, but if you wish to
change it you can do it adding to validators.xml of your project the next
definition:

<required-validator>
<validator-class class="org.openxava.validators.NotBlankCharacterValidator"/>
<for-stereotype stereotype="PERSON_NAME"/>

</required-validator>

Now everything is ready to define properties of stereotype PERSON_NAME:

@Stereotype("PERSON_NAME")
private String name;

In this case a value of 40 is assumed as size, String as type and the
NotBlankCharacterValidator validator is executed to verify if it is required.

IMAGES_GALLERY stereotype
If you want that a property of your component hold a gallery of images. You
only have to declare your property with the IMAGES_GALLERY stereotype, in
this way:

@Stereotype("IMAGES_GALLERY")
private String photos;

Furthermore, in the mapping part you have to map your property to a table
column suitable to store a String with a length of 32 characters
(VARCHAR(32)).
And everything is done.
In order to support this stereotype you need to setup the system
appropriately for your application.
First, create a table in your database to store the images:

CREATE TABLE IMAGES (
ID VARCHAR(32) NOT NULL PRIMARY KEY,
GALLERY VARCHAR(32) NOT NULL,
IMAGE BLOB);

CREATE INDEX IMAGES01
ON IMAGES (GALLERY);

The type of IMAGE column can be a more suitable one for your database to
store byte [] (for example LONGVARBINARY) .
And finally you need to define the mapping in your persistence/
hibernate.cfg.xml file, thus:

Chapter 3: Model

OpenXava 3.0 20

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html

<hibernate-configuration>
<session-factory>

...
<mapping resource="GalleryImage.hbm.xml"/>
...

</session-factory>
</hibernate-configuration>

After this you can use the IMAGES_GALLERY stereotype in all components of
your application.

Concurrency and version property
Concurrency is the ability of the application to allow several users to save
data at same time without losing data. OpenXava uses the optimistic
concurrency of JPA. Using optimistic concurrency the records are not locked
allowing high concurrency without losing data integrity.
For example, if a user A read a record and then a user B read the same
record, modify it and save the changes, when the user A try to save the
record he receives an error, then he need to refresh the data and retry his
modification.
For activating concurrency support for an entity you only need to declare a
property using @Version, in this way:

@Version
private int version;

This property is for use of persistence engine, your application or your user
must not use this property directly.

Enums
OpenXava supports Java 5 enums. An enum allows you to define a property
that can hold one of the indicated values only .
It's easy to use, let's see this example:

private Distance distance;
public enum Distance { LOCAL, NATIONAL, INTERNATIONAL };

The distance property only can take the following values: LOCAL, NATIONAL
or INTERNATIONAL, and as you have not put @Required no value (null) is
allowed too.
At user interface level the current implementation uses a combo. The label

Chapter 3: Model

OpenXava 3.0 21

http://java.sun.com/javaee/5/docs/api/javax/persistence/Version.html

for each value is obtained from the i18n files.
At database level the value is by default saved as an integer (0 for LOCAL, 1
for NATIONAL, 2 for INTERNATIONAL and null for no value), but you can
configure easily to use another type and work with no problem with legate
databases. See more about this in mapping chapter.

Calculated properties
The calculated properties are read only (only have getter) and not persistent
(they do not match with any column of database table).
A calculated property is defined in this way:

@Depends("unitPrice") // 1
@Max(9999999999L) // 2
public BigDecimal getUnitPriceInPesetas() {

if (unitPrice == null) return null;
return unitPrice.multiply(new BigDecimal("166.386")).setScale(0, BigDecimal.ROUND_HALF_UP);

}

According to the above definition now you can use the code in this way:

Product product = ...
product.setUnitPrice(2);
BigDecimal result = product.getUnitPriceInPesetas();

And result will hold 332.772.
When the property unitPriceInPesetas is displayed to the user it's not
editable, and its editor has a length of 10, indicated using
@Max(9999999999L) (2). Also, because of you use @Depends("unitPrice") (1)
when the user will change the value of the unitPrice property in the user
interface the unitPriceInPesetas property will be recalculated and its value will
be refreshed to the user.
From a calculated property you have direct access to JDBC connections, here
is an example:

@Max(999)
public int getDetailsCount() {

// An example of using JDBC
Connection con = null;
try {

con = DataSourceConnectionProvider.getByComponent("Invoice").getConnection(); // 1
String table = MetaModel.get("InvoiceDetail").getMapping().getTable();
PreparedStatement ps = con.prepareStatement("select count(*) from " + table +

" where INVOICE_YEAR = ? and INVOICE_NUMBER = ?");

Chapter 3: Model

OpenXava 3.0 22

http://java.sun.com/j2se/1.5.0/docs/api/java/math/BigDecimal.html
http://java.sun.com/j2se/1.5.0/docs/api/java/math/BigDecimal.html
http://java.sun.com/j2se/1.5.0/docs/api/java/math/BigDecimal.html
http://java.sun.com/j2se/1.5.0/docs/api/java/math/BigDecimal.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Connection.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/PreparedStatement.html

ps.setInt(1, getYear());
ps.setInt(2, getNumber());
ResultSet rs = ps.executeQuery();
rs.next();
Integer result = new Integer(rs.getInt(1));
ps.close();
return result;

}
catch (Exception ex) {

log.error("Problem calculating details count of an Invoice", ex);
// You can throw any runtime exception here
throw new SystemException(ex);

}
finally {

try {
con.close();

}
catch (Exception ex) {
}

}
}

Yes, the JDBC code is ugly and awkward, but sometimes it can help to solve
performance problems. The DataSourceConnectionProvider class allows you to
obtain a connection associated to the same data source that the indicated
entity (Invoice in this case). This class is for your convenience, but you can
access to a JDBC connection using JNDI or any other way you want. In fact,
in a calculated property you can write any code that Java allows you.

Default value calculator
With @DefaultValueCalculator you can associate logic to a property, in this
case the property is readable and writable. This calculator is for calculating
its initial value. For example:

@DefaultValueCalculator(CurrentYearCalculator.class)
private int year;

In this case when the user tries to create a new Invoice (for example) he will
find that the year field already has a value, that he can change it if he
wants to do. The logic for generating this value is in the
CurrentYearCalculator class, that it's:

package org.openxava.calculators;

import java.util.*;

Chapter 3: Model

OpenXava 3.0 23

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/ResultSet.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Integer.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Integer.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html
http://java.sun.com/j2se/1.5.0/docs/api/org/omg/CORBA/SystemException.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/DefaultValueCalculator.html

/**
* @author Javier Paniza
*/
public class CurrentYearCalculator implements ICalculator {

public Object calculate() throws Exception {
Calendar cal = Calendar.getInstance();
cal.setTime(new java.util.Date());
return new Integer(cal.get(Calendar.YEAR));

}

}

It's possible customize the behaviour of a calculator setting the value of its
properties, as following:

@DefaultValueCalculator(
value=org.openxava.calculators.StringCalculator.class,
properties={ @PropertyValue(name="string", value="GOOD") }

)
private String relationWithSeller;

In this case for calculating the default value OpenXava instances
StringCalculator and then injects the value "GOOD" in the property string of
StringCalculator, and finally it calls to the calculate() method in order to
obtain the default value for relationWithSeller. As you see, the use of
@PropertyValue annotation allows you create reusable calculators.
@PropertyValue allows to inject the value from other displayed properties, in
this way:

@DefaultValueCalculator(
value=org.openxava.test.calculators.CarrierRemarksCalculator.class,
properties={

@PropertyValue(name="drivingLicenceType", from="drivingLicence.type")
}

)
private String remarks;

In this case before to execute the calculator OpenXava fills the
drivingLicenceType property of CarrierRemarksCalculator with the value of the
displayed property type from the reference drivingLicence. As you see the
from attribute supports qualified properties (reference.property).
Also you can use @PropertyValue without from nor value:

@DefaultValueCalculator(value=DefaultProductPriceCalculator.class, properties=
@PropertyValue(name="familyNumber")

)

Chapter 3: Model

OpenXava 3.0 24

http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Calendar.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Calendar.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Date
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Integer.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Calendar.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/PropertyValue.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html

In this case OpenXava takes the value of the displayed property
familyNumber and inject it in the property familyNumber of the calculator;
that is @PropertyValue(name="familiyNumber") is equivalent to
@PropertyValue(name="familiyNumber", from="familyNumber").
From a calculator you have direct access to JDBC connections, here is an
example:

@DefaultValueCalculator(value=DetailsCountCalculator.class,
properties= {

@PropertyValue(name="year"),
@PropertyValue(name="number"),

}
)
private int detailsCount;

And the calculator class:

package org.openxava.test.calculators;

import java.sql.*;

import org.openxava.calculators.*;
import org.openxava.util.*;

/**
* @author Javier Paniza
*/
public class DetailsCountCalculator implements IJDBCCalculator { // 1

private IConnectionProvider provider;
private int year;
private int number;

public void setConnectionProvider(IConnectionProvider provider) { // 2
this.provider = provider;

}

public Object calculate() throws Exception {
Connection con = provider.getConnection();
try {

PreparedStatement ps = con.prepareStatement(
"select count(*) from XAVATEST.INVOICEDETAIL “ +
“where INVOICE_YEAR = ? and INVOICE_NUMBER = ?");

ps.setInt(1, getYear());
ps.setInt(2, getNumber());
ResultSet rs = ps.executeQuery();
rs.next();
Integer result = new Integer(rs.getInt(1));
ps.close();
return result;

}
finally {

Chapter 3: Model

OpenXava 3.0 25

http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Connection.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/PreparedStatement.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/ResultSet.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Integer.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Integer.html

con.close();
}

}

public int getYear() {
return year;

}

public int getNumber() {
return number;

}

public void setYear(int year) {
this.year = year;

}

public void setNumber(int number) {
this.number = number;

}

}

To use JDBC your calculator must implement IJDBCCalculator (1) and then it
will receive an IConnectionProvider (2) that you can use within calculate().
OpenXava comes with a set of predefined calculators, you can find them in
org.openxava.calculators.

Default values on create
You can indicate that the value will be calculated just before creating
(inserting into database) an object for the first time.
Usually for the key case you use the JPA standard. For example, if you want
to use an identity (auto increment) column as key:

@Id @Hidden
@GeneratedValue(strategy=GenerationType.IDENTITY)
private Integer id;

You can use other generation techniques, for example, a database sequence
can be defined in this JPA standard way:

@SequenceGenerator(name="SIZE_SEQ", sequenceName="SIZE_ID_SEQ", allocationSize=1)
@Hidden @Id @GeneratedValue(strategy=GenerationType.SEQUENCE, generator="SIZE_SEQ")
private Integer id;

If you want to generate a unique identifier of type String and 32 characters,
you can use a Hibernate extesion of JPA:

Chapter 3: Model

OpenXava 3.0 26

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Integer.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Integer.html

@Id @GeneratedValue(generator="system-uuid") @Hidden
@GenericGenerator(name="system-uuid", strategy = "uuid")
private String oid;

Look at section 9.1.9 of JPA 1.0 specification (part of JSR-220) for learning
more about @GeneratedValues.
If you want to use your own logic for generating the value on create, or you
want a generated new value for a non-key property then you cannot use the
JPA @GeneratedValue, although it's easy to solve these cases using JPA. You
only need to add this code to your class:

@PrePersist
private void calculateCounter() {

counter = new Long(System.currentTimeMillis()).intValue();
}

The JPA @PrePersist annotation does that this method will be executed before
inserting the data the first time in database, in this method you can calculate
the value for your key or non-key properties with your own logic.

Property validator
A @PropertyValidator executes validation logic on the value assigned to the
property just before storing. A property may have several validators:

@PropertyValidators ({
@PropertyValidator(value=ExcludeStringValidator.class, properties=

@PropertyValue(name="string", value="MOTO")
),
@PropertyValidator(value=ExcludeStringValidator.class, properties=

@PropertyValue(name="string", value="COCHE"),
onlyOnCreate=true

)
})
private String description;

The technique to configure the validator (with @PropertyValue) is exactly the
same than in calculators. With the attribute onlyOnCreate=”true” you can
define that the validation will be executed only when the object is created,
and not when it is modified.
The validator code is:

package org.openxava.test.validators;

Chapter 3: Model

OpenXava 3.0 27

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Long.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/System.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/PropertyValidator.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/PropertyValue.html

import org.openxava.util.*;
import org.openxava.validators.*;

/**
* @author Javier Paniza
*/

public class ExcludeStringValidator implements IPropertyValidator { // 1

private String string;

public void validate(
Messages errors, // 2
Object value, // 3
String objectName, // 4
String propertyName) // 5
throws Exception {
if (value==null) return;
if (value.toString().indexOf(getString()) >= 0) {

errors.add("exclude_string", propertyName, objectName, getString());
}

}

public String getString() {
return string==null?"":string;

}

public void setString(String string) {
this.string = string;

}

}

A validator has to implement IPropertyValidator (1), this obliges to the
calculator to have a validate() method where the validation of property is
executed. The arguments of validate() method are:

1. Messages errors: A object of type Messages that represents a set of
messages (like a smart collection) and where you can add the
validation errors that you find.

2. Object value: The value to validate.
3. String objectName: Object name of the container of the property to

validate. Useful to use in error messages.
4. String propertyName: Name of the property to validate. Useful to

use in error messages.
As you can see when you find a validation error you have to add it (with
errors.add()) by sending a message identifier and the arguments. If you want
to obtain a significant message you need to add to your i18n file the next
entry:

Chapter 3: Model

OpenXava 3.0 28

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html

exclude_string={0} cannot contain {2} in {1}

If the identifier sent is not found in the resource file, this identifier is shown
as is; but the recommended way is always to use identifiers of resource files.
The validation is successful if no messages are added and fails if messages
are added. OpenXava collects all messages of all validators before saving and
if there are messages, then it display them and does not save the object.
The package org.openxava.validators contains some common validators.

Default validator (new in v2.0.3)
You can define a default validator for properties depending of its type or
stereotype. In order to do it you have to use the file xava/validators.xml of
your project to define in it the default validators.
For example, you can define in your xava/validators.xml the following:

<validators>
<default-validator>

<validator-class
class="org.openxava.test.validators.PersonNameValidator"/>

<for-stereotype stereotype="PERSON_NAME"/>
</default-validator>

</validators>

In this case you are associating the validator PersonNameValidator to the
stereotype PERSON_NAME. Now if you define a property as the next one:

@Required @Stereotype("PERSON_NAME")
private String name;

This property will be validated using PersonNameValidator although the
property itself does not define any validator. PersonNameValidator is applied
to all properties with PERSON_NAME stereotype.
You can also assign a default validator to a type.
In validators.xml files you can also define the validators for determine if a
required value is present (executed when you use @Required). Moreover you
can assign names (alias) to validator classes.
You can learn more about validators examining OpenXava/xava/validators.xml
and OpenXavaTest/xava/validators.xml.

Chapter 3: Model

OpenXava 3.0 29

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html

References
A reference allows access from an entity to another entity. A reference is
translated to Java code as a property (with its getter and its setter) whose
type is the referenced model Java type. For example a Customer can have a
reference to his Seller, and that allows you to write code like this:

Customer customer = ...
customer.getSeller().getName();

to access to the name of the seller of that customer.
The syntax of reference is:

@Required // 1
@Id // 2
@DefaultValueCalculator // 3
@ManyToOne(// 4

optional=false // 1
)
private type referenceName; // 4
public type getReferenceName() { ... } // 4
public void setReferenceName(type newValue) { ... } // 4

1. @ManyToOne(optional=false) (JPA), @Required (OX) (optional, the
JPA is the preferred one): Indicates if the reference is required. When
saving OpenXava verifies if the required references are present, if not
the saving is aborted and a list of validation errors is returned.

2. @Id (JPA, optional): Indicates if the reference is part of the key. The
combination of key properties and reference properties should map to
a group of database columns with unique values, typically the primary
key.

3. @DefaultValueCalculator (OX, one, optional): Implements the logic
for calculating the initial value of the reference. This calculator must
return the key value, that can be a simple value (only if the key of
referenced object is simple) or key object (a special object that wraps
the key).

4. Reference declaration: A regular Java reference declaration with its
getters and setters. The reference is marked with @ManyToOne (JPA)
and the type must be another entity.

A little example of references:

@ManyToOne
private Seller seller; // 1
public Seller getSeller() {

return seller;

Chapter 3: Model

OpenXava 3.0 30

http://java.sun.com/javaee/5/docs/api/javax/persistence/ManyToOne.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/Required.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/Id.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/DefaultValueCalculator.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/ManyToOne.html

}
public void setSeller(Seller seller) {

this.seller = seller;
}

@ManyToOne(fetch=FetchType.LAZY)
private Seller alternateSeller; // 2
public Seller getAlternateSeller() {

return alternateSeller;
}
public void setAlternateSeller(Seller alternateSeller) {

this.alternateSeller = alternateSeller;
}

1. A reference called seller to the entity of Seller entity.
2. A reference called alternateSeller to the entity Seller. In this case we

use fetch=FetchType.LAZY, in this way the data is readed from
database on demand. This is the more efficient approach, but it's not
the JPA default, therefore it's advisable to use always
fetch=FetchType.LAZY when declaring the references.

If you assume that this is in an entity named Customer, you could write:

Customer customer = ...
Seller seller = customer.getSeller();
Seller alternateSeller = customer.getAlternateSeller();

Default value calculator in references
In a reference @DefaultValueCalculator works like in a property, only that it
has to return the value of the reference key.
For example, in the case of a reference with simple key, you can write:

@ManyToOne(optional=false, fetch=FetchType.LAZY) @JoinColumn(name="FAMILY")
@DefaultValueCalculator(value=IntegerCalculator.class, properties=

@PropertyValue(name="value", value="2")
)
private Family family;

The calculate() method is:

public Object calculate() throws Exception {
return new Integer(value);

}

Chapter 3: Model

OpenXava 3.0 31

http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/DefaultValueCalculator.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Integer.html

As you can see an integer is returned, that is, the default value for family is
2.
In the case of composed key:

@ManyToOne(fetch=FetchType.LAZY)
@JoinColumns({

@JoinColumn(name="ZONE", referencedColumnName="ZONE"),
@JoinColumn(name="WAREHOUSE", referencedColumnName="NUMBER")

})
@DefaultValueCalculator(DefaultWarehouseCalculator.class)
private Warehouse warehouse;

And the calculator code:

package org.openxava.test.calculators;

import org.openxava.calculators.*;

/**
* @author Javier Paniza
*/
public class DefaultWarehouseCalculator implements ICalculator {

public Object calculate() throws Exception {
WarehouseKey key = new WarehouseKey();
key.setNumber(4);
key.setZoneNumber(4);
return key;

}

}

Returns an object of type WarehouseKey.

Using references as key
You can use references as key, or as part of the key. You have to declare
the reference as @Id, and use an id class, as following:

@Entity
@IdClass(AdditionalDetailKey.class)
public class AdditionalDetail {

// JoinColumn is also specified in AditionalDetailKey because
// a bug in Hibernate, see http://opensource.atlassian.com/projects/hibernate/browse/ANN-361
@Id @ManyToOne(fetch=FetchType.LAZY)
@JoinColumn(name="SERVICE")
private Service service;

@Id @Hidden

Chapter 3: Model

OpenXava 3.0 32

http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/Id.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Entity

private int counter;

...

}

Also, you need to write your key class:

public class AdditionalDetailKey implements java.io.Serializable {

@ManyToOne(fetch=FetchType.LAZY)
@JoinColumn(name="SERVICE")
private Service service;

@Hidden
private int counter;

// equals, hashCode, toString, getters and setters
...

}

You need to write the key class although the key would be only a reference
with only a join column.
It's better to use this feature only when you are working against legate
databases, if you have control over the schema use an autogenerated id
instead.

Collections
You can define a collection of references to entities. A collection is a Java
property of type java.util.Collection.
Here syntax for collection:

@Size // 1
@Condition // 2
@OrderBy // 3
@XOrderBy // 4
@OneToMany/@ManyToMany // 5
private Collection collectionName; // 5
public Collection getCollectionName() { ... } // 5
public void setCollectionName(Collection newValue) { ... } // 5

1. @Size (HV, optional): Minimum (min) and/or maximum (max) number
of expected elements. This is validated just before saving.

2. @Condition (OX, optional): Restricts the elements that appear in the
collection.

Chapter 3: Model

OpenXava 3.0 33

http://java.sun.com/j2se/1.5.0/docs/api/java/io/Serializable.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/locks/Condition.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collection.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collection.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collection.html
http://www.hibernate.org/hib_docs/validator/api/org/hibernate/validator/Size.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/Condition.html

3. @OrderBy (JPA, optional): The elements in collections will be in the
indicated order.

4. @XOrderBy (OX, optional): The @OrderBy of JPA does not allow to
use qualified properties (properties of references). @XOrderBy does
allow it.

5. Collection declaration: A regular Java collection declaration with its
getters and setters. The collection is marked with @OneToMany (JPA)
or @ManyToMany (JPA) and the type must be another entity.

Let's have a look at some examples. First a simple one:

@OneToMany (mappedBy="invoice")
private Collection deliveries;
public Collection getDeliveries() {

return deliveries;
}
public void setDeliveries(Collection deliveries) {

this.deliveries = deliveries;
}

If you have this within an Invoice, then you are defining a deliveries
collection associated to that Invoice. The details to make the relationship are
defined in the object/relational mapping.You use mappedBy="invoice" to
indicate that the reference invoice of Delivery is used to mapping this
collection.
Now you can write a code like this:

Invoice invoice = ...
for (Delivery delivery: invoice.getDeliveries()) {

delivery.doSomething();
}

To do something with all deliveries associated to an invoice.
Let's look at another example a little more complex, but still in Invoice:

@OneToMany (mappedBy="invoice", cascade=CascadeType.REMOVE) // 1
@OrderBy("serviceType desc") // 2
@org.hibernate.validator.Size(min=1) // 3
private Collection details;

1. Using REMOVE as cascade type produces that when the user removes
an invoice its details are also removed.

2. With @OrderBy you force that the details will be returned ordered by
serviceType.

3. The restriction @Size(min=1) requires at least one detail for the
invoice to be valid.

Chapter 3: Model

OpenXava 3.0 34

http://java.sun.com/javaee/5/docs/api/javax/persistence/OrderBy.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/XOrderBy.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/OneToMany.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/ManyToMany.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collection.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collection.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collection.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collection.html

You have full freedom to define how the collection data is obtained, with
@Condition you can overwrite the default condition:

@Condition(
"${warehouse.zoneNumber} = ${this.warehouse.zoneNumber} AND " +
"${warehouse.number} = ${this.warehouse.number} AND " +
"NOT (${number} = ${this.number})"

)
public Collection getFellowCarriers() {

return null;
}

If you have this collection within Carrier, you can obtain with this collection
all carriers of the same warehouse but not himself, that is the list of his
fellow workers. As you see you can use this in the condition in order to
reference the value of a property of current object. @Condition only applied
to the user interface generated by OpenXava, if you call directly to
getFellowCarriers() it will be returns null.
If with this you have not enough, you can write the logic that returns the
collection. The previous example can be written in the following way too:

public Collection getFellowCarriers() {
Query query = XPersistence.getManager().createQuery("from Carrier c where " +

"c.warehouse.zoneNumber = :zone AND " +
"c.warehouse.number = :warehouseNumber AND " +
"NOT (c.number = :number) ");

query.setParameter("zone", getWarehouse().getZoneNumber());
query.setParameter("warehouseNumber", getWarehouse().getNumber());
query.setParameter("number", getNumber());
return query.getResultList();

}

As you see this is a conventional getter method. Obviously it must return a
java.util.Collection whose elements are of type Carrier.
The references in collections are bidirectional, this means that if in a Seller
you have a customers collection, then in Customer you must have a
reference to Seller. But it's possible that in Customer you have more than
one reference to Seller (for example, seller and alternateSeller) JPA does not
know which to choose, becase of this you have the attribute mappedBy of
@OneToMany. You can use it in this way:

@OneToMany(mappedBy="seller")
private Collection customers;

To indicate that the reference seller and not alternateSeller will be used in
this collection.

Chapter 3: Model

OpenXava 3.0 35

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/locks/Condition.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collection.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collection.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/Query.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collection.html

The @ManyToMany (JPA) anotation allows to define a collection with
many-to-many multiplicity. As following:

@Entity
public class Customer {

...
@ManyToMany
private Collection<State> states;
...

}

In this case a customer have a collection of states, but a state can be
present in several customers.

Methods
Methods are defined in an OpenXava entity (really a JPA entity) as in a
regular Java class. For example:

public void increasePrice() {
setUnitPrice(getUnitPrice().multiply(new BigDecimal("1.02")).setScale(2));

}

Methods are the sauce of the objects, without them the object only would be
a silly wrapper of data. When possible it is better to put the business logic in
methods (model layer) instead of in actions (controller layer).

Finders
A finder is a special static method that allows you to find an object or a
collection of objects that follow some criteria.
Some examples:

public static Customer findByNumber(int number) throws NoResultException {
Query query = XPersistence.getManager().createQuery(
"from Customer as o where o.number = :number");
query.setParameter("number", number);
return (Customer) query.getSingleResult();

}

public static Collection findAll() {
Query query = XPersistence.getManager().createQuery("from Customer as o");
return query.getResultList();

}

Chapter 3: Model

OpenXava 3.0 36

http://java.sun.com/javaee/5/docs/api/javax/persistence/ManyToMany.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Entity
http://java.sun.com/j2se/1.5.0/docs/api/java/math/BigDecimal.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/Query.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collection.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/Query.html

public static Collection findByNameLike(String name) {
Query query = XPersistence.getManager().createQuery(
"from Customer as o where o.name like :name order by o.name desc");
query.setParameter("name", name);
return query.getResultList();

}

This methods can be used this way:

Customer customer = Customer.findByNumber(8);
Collection javieres = Customer.findByNameLike(“%JAVI%”);

As you see, using finder methods creates a more readable code than using
the verbose query API of JPA. But this is only a style recomendation, you can
choose do not write finder methods and to use directly JPA queries.

Entity validator
An @EntityValidator allows to define a validation at model level. When you
need to make a validation on several properties at a time, and that validation
does not correspond logically with any of them, then you can use this type of
validation.
Its syntax is:

@EntityValidator(
value=class, // 1
onlyOnCreate=(true|false), // 2
properties={ @PropertyValue ... } // 3

)

1. value (required): Class that implements the validation logic. It has to
be of type IValidator.

2. onlyOnCreate (optional): If true the validator is executed only when
creating a new object, not when an existing object is modified. The
default value is false.

3. properties (several @PropertyValue, optional): To set a value of the
validator properties before executing it.

An example:

@EntityValidator(value=org.openxava.test.validators.CheapProductValidator.class, properties= {
@PropertyValue(name="limit", value="100"),
@PropertyValue(name="description"),
@PropertyValue(name="unitPrice")

Chapter 3: Model

OpenXava 3.0 37

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collection.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/Query.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collection.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/EntityValidator.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/PropertyValue.html

})
public class Product {

And the validator code:

package org.openxava.test.validators;

import java.math.*;

/**
* @author Javier Paniza
*/

public class CheapProductValidator implements IValidator { // 1

private int limit;
private BigDecimal unitPrice;
private String description;

public void validate(Messages errors) { // 2
if (getDescription().indexOf("CHEAP") >= 0 ||

getDescription().indexOf("BARATO") >= 0 ||
getDescription().indexOf("BARATA") >= 0) {
if (getLimiteBd().compareTo(getUnitPrice()) < 0) {

errors.add("cheap_product", getLimitBd()); // 3
}

}
}

public BigDecimal getUnitPrice() {
return unitPrice;

}

public void setUnitPrice(BigDecimal decimal) {
unitPrice = decimal;

}

public String getDescription() {
return description==null?"":description;

}

public void setDescription(String string) {
description = string;

}

public int getLimit() {
return limit;

}

public void setLimit(int i) {
limit = i;

}

private BigDecimal getLimitBd() {

Chapter 3: Model

OpenXava 3.0 38

http://java.sun.com/j2se/1.5.0/docs/api/java/math/BigDecimal.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/math/BigDecimal.html
http://java.sun.com/j2se/1.5.0/docs/api/java/math/BigDecimal.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/math/BigDecimal.html

return new BigDecimal(Integer.toString(limit));
}

}

This validator must implement IValidator (1), this forces you to write a
validate(Messages messages) (2). In this method you add the error message
ids (3) (whose texts are in the i18n files). And if the validation process (that
is the execution of all validators) produces some error, then OpenXava does
not save the object and displays the errors to the user.
In this case you see how description and unitPrice properties are used to
validate, for that reason the validation is at model level and not at individual
property level, because the scope of validation is more than one property.
You can define more than one validator for entity using @EntityValidators, as
following:

@EntityValidators({
@EntityValidator(value=org.openxava.test.validators.CheapProductValidator.class, properties= {

@PropertyValue(name="limit", value="100"),
@PropertyValue(name="description"),
@PropertyValue(name="unitPrice")

}),
@EntityValidator(value=org.openxava.test.validators.ExpensiveProductValidator.class, properties= {

@PropertyValue(name="limit", value="1000"),
@PropertyValue(name="description"),
@PropertyValue(name="unitPrice")

}),
@EntityValidator(value=org.openxava.test.validators.ForbiddenPriceValidator.class,

properties= {
@PropertyValue(name="forbiddenPrice", value="555"),
@PropertyValue(name="unitPrice")

},
onlyOnCreate=true

)
})
public class Product {

Remove validator
The @RemoveValidator is a level model validator too, but in this case it is
executed just before removing an object, and it has the possibility to deny
the deletion.
Its syntax is:

Chapter 3: Model

OpenXava 3.0 39

http://java.sun.com/j2se/1.5.0/docs/api/java/math/BigDecimal.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Integer.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/RemoveValidator.html

@RemoveValidator(
value=class, // 1
properties={ @PropertyValue ... } // 2

)

1. class (required): Class that implements the validation logic. Must
implement IRemoveValidator.

2. properties (several @PropertyValue, optional): To set the value of the
validator properties before executing it.

An example can be:

@RemoveValidator(value=DeliveryTypeRemoveValidator.class,
properties=@PropertyValue(name="number")

)
public class DeliveryType {

And the validator:

package org.openxava.test.validators;

import org.openxava.test.model.*;
import org.openxava.util.*;
import org.openxava.validators.*;

/**
* @author Javier Paniza
*/
public class DeliveryTypeRemoveValidator implements IRemoveValidator { // 1

private DeliveryType deliveryType;
private int number; // We use this (instaed of obtaining it from deliveryType)

// for testing @PropertyValue for simple properties

public void setEntity(Object entity) throws Exception { // 2
this.deliveryType = (DeliveryType) entity;

}

public void validate(Messages errors) throws Exception {
if (!deliveryType.getDeliveries().isEmpty()) {

errors.add("not_remove_delivery_type_if_in_deliveries", new Integer(getNumber())); // 3
}

}

public int getNumber() {
return number;

}

public void setNumber(int number) {
this.number = number;

}

Chapter 3: Model

OpenXava 3.0 40

http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/PropertyValue.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Integer.html

}

As you see this validator must implement IRemoveValidator (1) this forces
you to write a setEntity() (2) method that receives the object to remove. If
validation error is added to the Messages object sent to validate() (3) the
validation fails. If after executing all validations there are validation errors,
then OpenXava does not remove the object and displays a list of validation
messages to the user.
In this case it verifies if there are deliveries that use this delivery type before
deleting it.
As in the case of @EntityValidator you can use several @RemoveValidator for
entity using @RemoveValidators annotation.

JPA callback methods
With @PrePersist you can plug in your own logic to execute just before
creating the object as persistent object.
As following:

@PrePersist
private void prePersist() {

setDescription(getDescription() + " CREATED");
}

In this case each time that a DeliveryType is created a suffix to description is
added.
As you see, this is exactly the same as in other methods but is automatically
executed just before creation.
With @PreUpdate you can plug in some logic to execute after the state of
the object is changed and just before it is stored in the database, that is, just
before executing UPDATE against database.
As following:

@PreUpdate
private void preUpdate() {

setDescription(getDescription() + " MODIFIED");
}

In this case whenever that a DeliveryType is modified a suffix is added to its
description.
As you see, this is exactly the same as in other methods, but it is executed

Chapter 3: Model

OpenXava 3.0 41

http://java.sun.com/javaee/5/docs/api/javax/persistence/PrePersist.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/PreUpdate.html

just before modifying.
You can use all the JPA callback annotations: @PrePersist, @PostPersist,
@PreRemove, @PostRemove, @PreUpdate, @PostUpdate and @PostLoad.

Embeddable classes
As stated in JPA specification:
"An entity may use other fine-grained classes to represent entity state. Instances
of these classes, unlike
entity instances themselves, do not have persistent identity. Instead, they exist
only as embedded objects
of the entity to which they belong. Such embedded objects belong strictly to their
owning entity, and are
not sharable across persistent entities."
The embeddable class syntax is:

@Embeddable // 1
public class EmbeddableName { // 2
// Properties // 3
// References // 4
// Methods // 5

}

1. @Embeddable (JPA, one, required): Indicates that this class is a
embeddable class of JPA, in other words, its instances will be part of
persistent objects.

2. Class declaration: As a regular Java class. You can use extends and
implements.

3. Properties: Regular Java properties.
4. References: References to entities. This is not supported by JPA 1.0

(EJB 3.0), but the Hibernate implementation support it.
5. Methods: Java methods with the business logic.

Embedded reference
This example is an embedded (annotated with @Embedded) Address that is
referenced from the main entity.
In the main entity you can write:

Chapter 3: Model

OpenXava 3.0 42

http://java.sun.com/javaee/5/docs/api/javax/persistence/PrePersist.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/PostPersist.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/PreRemove.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/PostRemove.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/PreUpdate.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/PostUpdate.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/PostLoad.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/Embeddable.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/Embedded.html

@Embedded
private Address address;

And you have to define the Address class as embeddable:

package org.openxava.test.model;

import javax.persistence.*;
import org.openxava.annotations.*;

/**
*
* @author Javier Paniza
*/

@Embeddable
public class Address implements IWithCity { // 1

@Required @Column(length=30)
private String street;

@Required @Column(length=5)
private int zipCode;

@Required @Column(length=20)
private String city;

// ManyToOne inside an Embeddable is not supported by JPA 1.0 (see at 9.1.34),
// but Hibernate implementation supports it.
@ManyToOne(fetch=FetchType.LAZY, optional=false) @JoinColumn(name="STATE")
private State state; // 2

public String getCity() {
return city;

}

public void setCity(String city) {
this.city = city;

}

public String getStreet() {
return street;

}

public void setStreet(String street) {
this.street = street;

}

public int getZipCode() {
return zipCode;

}

public void setZipCode(int zipCode) {

Chapter 3: Model

OpenXava 3.0 43

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/org/omg/PortableServer/POAManagerPackage/State.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html

this.zipCode = zipCode;
}

public State getState() {
return state;

}

public void setState(State state) {
this.state = state;

}

}

As you see an embeddable class can implement an interface (1) and contain
references (2), among other things, but it cannot has persistent collections
nor to use JPA callbacks methods.
This code can be used this way, for reading:

Customer customer = ...
Address address = customer.getAddress();
address.getStreet(); // to obtain the value

Or in this other way to set a new address:

// to set a new address
Address address = new Address();
address.setStreet(“My street”);
address.setZipCode(46001);
address.setCity(“Valencia”);
address.setState(state);
customer.setAddress(address);

In this case you have a simple reference (not collection), and the generated
code is a simple JavaBean, whose life cycle is associated to its container
object, that is, the Address is removed and created through the Customer. An
Address never will have its own life and cannot be shared by other Customer.

Embedded collections
Embedded collections are not supported by JPA 1.0. But you can simulate
them using collections to entities with cascade type REMOVE or ALL.
OpenXava manages these collections in a special way, as they were
embedded collections.
Now an example of an embedded collection. In the main entity (for example
Invoice) you can write:

Chapter 3: Model

OpenXava 3.0 44

http://java.sun.com/j2se/1.5.0/docs/api/org/omg/PortableServer/POAManagerPackage/State.html
http://java.sun.com/j2se/1.5.0/docs/api/org/omg/PortableServer/POAManagerPackage/State.html

@OneToMany (mappedBy="invoice", cascade=CascadeType.REMOVE)
private Collection details;

Note that you use CascadeType.REMOVE, and InvoiceDetail is an entity, not
an embeddable class:

package org.openxava.test.model;

import java.math.*;

import javax.persistence.*;

import org.hibernate.annotations.Columns;
import org.hibernate.annotations.Type;
import org.hibernate.annotations.Parameter;
import org.hibernate.annotations.GenericGenerator;
import org.openxava.annotations.*;
import org.openxava.calculators.*;
import org.openxava.test.validators.*;

/**
*
* @author Javier Paniza
*/

@Entity
@EntityValidator(value=InvoiceDetailValidator.class,

properties= {
@PropertyValue(name="invoice"),
@PropertyValue(name="oid"),
@PropertyValue(name="product"),
@PropertyValue(name="unitPrice")

}
)
public class InvoiceDetail {

@ManyToOne // Lazy fetching produces a fails on removing a detail from invoice
private Invoice invoice;

@Id @GeneratedValue(generator="system-uuid") @Hidden
@GenericGenerator(name="system-uuid", strategy = "uuid")
private String oid;

private ServiceType serviceType;
public enum ServiceType { SPECIAL, URGENT }

@Column(length=4) @Required
private int quantity;

@Stereotype("MONEY") @Required
private BigDecimal unitPrice;

@ManyToOne(fetch=FetchType.LAZY, optional=false)

Chapter 3: Model

OpenXava 3.0 45

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collection.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/Type.html
http://java.sun.com/j2se/1.5.0/docs/api/org/omg/Dynamic/Parameter.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Entity
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/math/BigDecimal.html

private Product product;

@DefaultValueCalculator(CurrentDateCalculator.class)
private java.util.Date deliveryDate;

@ManyToOne(fetch=FetchType.LAZY)
private Seller soldBy;

@Stereotype("MEMO")
private String remarks;

@Stereotype("MONEY") @Depends("unitPrice, quantity")
public BigDecimal getAmount() {

return getUnitPrice().multiply(new BigDecimal(getQuantity()));
}

public boolean isFree() {
return getAmount().compareTo(new BigDecimal("0")) <= 0;

}

@PostRemove
private void postRemove() {

invoice.setComment(invoice.getComment() + "DETAIL DELETED");
}

public String getOid() {
return oid;

}
public void setOid(String oid) {

this.oid = oid;
}
public ServiceType getServiceType() {

return serviceType;
}
public void setServiceType(ServiceType serviceType) {

this.serviceType = serviceType;
}
public int getQuantity() {

return quantity;
}
public void setQuantity(int quantity) {

this.quantity = quantity;
}
public BigDecimal getUnitPrice() {

return unitPrice==null?BigDecimal.ZERO:unitPrice;
}
public void setUnitPrice(BigDecimal unitPrice) {

this.unitPrice = unitPrice;
}

public Product getProduct() {
return product;

}

public void setProduct(Product product) {

Chapter 3: Model

OpenXava 3.0 46

http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Date
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/math/BigDecimal.html
http://java.sun.com/j2se/1.5.0/docs/api/java/math/BigDecimal.html
http://java.sun.com/j2se/1.5.0/docs/api/java/math/BigDecimal.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/math/BigDecimal.html
http://java.sun.com/j2se/1.5.0/docs/api/java/math/BigDecimal.html
http://java.sun.com/j2se/1.5.0/docs/api/java/math/BigDecimal.html

this.product = product;
}

public java.util.Date getDeliveryDate() {
return deliveryDate;

}

public void setDeliveryDate(java.util.Date deliveryDate) {
this.deliveryDate = deliveryDate;

}

public Seller getSoldBy() {
return soldBy;

}

public void setSoldBy(Seller soldBy) {
this.soldBy = soldBy;

}

public String getRemarks() {
return remarks;

}

public void setRemarks(String remarks) {
this.remarks = remarks;

}

public Invoice getInvoice() {
return invoice;

}

public void setInvoice(Invoice invoice) {
this.invoice = invoice;

}

}

As you see this is a complex entity, with calculators, validators, references
and so on. Also you have to define a reference to the container class
(invoice). In this case when an Invoice is removed all its details are removed
too. Moreover there are differences at user interface level (you can learn
more on view chapter).

Inheritance
OpenXava supports Java and JPA inheritance.
For example you can define a @MappedSuperclass in this way:

package org.openxava.test.model;

Chapter 3: Model

OpenXava 3.0 47

http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Date
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Date
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://www.hibernate.org/hib_docs/annotations/reference/en/html/entity.html#d0e788
http://java.sun.com/javaee/5/docs/api/javax/persistence/MappedSuperclass.html

import javax.persistence.*;

import org.hibernate.annotations.*;
import org.openxava.annotations.*;

/**
* Base class for defining entities with a UUID oid. <p>
*
* @author Javier Paniza
*/

@MappedSuperclass
public class Identifiable {

@Id @GeneratedValue(generator="system-uuid") @Hidden
@GenericGenerator(name="system-uuid", strategy = "uuid")
private String oid;

public String getOid() {
return oid;

}

public void setOid(String oid) {
this.oid = oid;

}

}

You can define another @MappedSuperclass that extends from this one, for
example:

package org.openxava.test.model;

import javax.persistence.*;

import org.openxava.annotations.*;

/**
* Base class for entities with a 'name' property. <p>
*
* @author Javier Paniza
*/
@MappedSuperclass
public class Nameable extends Identifiable {

@Column(length=50) @Required
private String name;

public String getName() {
return name;

}

public void setName(String name) {

Chapter 3: Model

OpenXava 3.0 48

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html

this.name = name;
}

}

Now you can use Identifiable or Nameable for defining your entities, as
following:

package org.openxava.test.model;

import javax.persistence.*;

/**
*
* @author Javier Paniza
*/

@Entity
@DiscriminatorColumn(name="TYPE")
@DiscriminatorValue("HUM")
@Table(name="PERSON")
@AttributeOverrides(

@AttributeOverride(name="name", column=@Column(name="PNAME"))
)
public class Human extends Nameable {

@Enumerated(EnumType.STRING)
private Sex sex;
public enum Sex { MALE, FEMALE };

public Sex getSex() {
return sex;

}
public void setSex(Sex sex) {

this.sex = sex;
}

}

And now, the real entity inheritance, an entity that extends other entity:

package org.openxava.test.model;

import javax.persistence.*;

/**
*
* @author Javier Paniza
*/

@Entity
@DiscriminatorValue("PRO")

Chapter 3: Model

OpenXava 3.0 49

http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Entity
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Entity

public class Programmer extends Human {

@Column(length=20)
private String mainLanguage;

public String getMainLanguage() {
return mainLanguage;

}

public void setMainLanguage(String mainLanguage) {
this.mainLanguage = mainLanguage;

}

}

You can create an OpenXava module for Human and Programmer (not for
Identifiable or Nameble directly). In the Programmer module the user can only
access to programmers, in the other hand using Human module the user can
access to Human and Programmer objects. Moreover when the user tries to
view the detail of a Programmer from the Human module the Programmer
view will be show. True polymorphism.
About mapping, @AttributeOverrides is supported, but, at the moment, only a
single table per class hierarchy mapping strategy works.

Composite key
The preferred way for defining the key of an entity is a single autogenerated
key (annotated with @Id and @GeneratedValue), but sometimes, for example
when you go against legate database, you need to have an entity mapped to
a table that uses several column as key. This case can be solved with JPA
(therefore with OpenXava) in two ways, using @IdClass or using
@EmbeddedId

Id class
In this case you use @IdClass in your entity to indicate a key class, and you
mark the key properties as @Id in your entity:

package org.openxava.test.model;

import javax.persistence.*;

import org.openxava.annotations.*;

Chapter 3: Model

OpenXava 3.0 50

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/AttributeOverrides.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/Id.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/GeneratedValue.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/IdClass.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/EmbeddedId.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/IdClass.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/Id.html

import org.openxava.jpa.*;

/**
*
* @author Javier Paniza
*/

@Entity
@IdClass(WarehouseKey.class)
public class Warehouse {

@Id
// Column is also specified in WarehouseKey because a bug in Hibernate, see
// http://opensource.atlassian.com/projects/hibernate/browse/ANN-361
@Column(length=3, name="ZONE")
private int zoneNumber;

@Id @Column(length=3)
private int number;

@Column(length=40) @Required
private String name;

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public int getNumber() {
return number;

}

public void setNumber(int number) {
this.number = number;

}

public int getZoneNumber() {
return zoneNumber;

}

public void setZoneNumber(int zoneNumber) {
this.zoneNumber = zoneNumber;

}

}

You also need to declare your id class, a serializable regular class with all
key properties from the entity:

Chapter 3: Model

OpenXava 3.0 51

http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Entity
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html

package org.openxava.test.model;

import java.io.*;

import javax.persistence.*;

/**
*
* @author Javier Paniza
*/

public class WarehouseKey implements Serializable {

@Column(name="ZONE")
private int zoneNumber;
private int number;

@Override
public boolean equals(Object obj) {

if (obj == null) return false;
return obj.toString().equals(this.toString());

}

@Override
public int hashCode() {

return toString().hashCode();
}

@Override
public String toString() {

return "WarehouseKey::" + zoneNumber+ ":" + number;
}

public int getNumber() {
return number;

}

public void setNumber(int number) {
this.number = number;

}

public int getZoneNumber() {
return zoneNumber;

}

public void setZoneNumber(int zoneNumber) {
this.zoneNumber = zoneNumber;

}

}

Chapter 3: Model

OpenXava 3.0 52

http://java.sun.com/j2se/1.5.0/docs/api/java/io/Serializable.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Override.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Override.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Override.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html

Embedded id
In this case you have a reference to a @Embeddable object marked as
@EmbeddedId:

package org.openxava.test.model;

import javax.persistence.*;

import org.openxava.annotations.*;

/**
*
* @author Javier Paniza
*/

@Entity
public class Warehouse {

@EmbeddedId
private WarehouseKey key;

@Column(length=40) @Required
private String name;

public WarehouseKey getKey() {
return key;

}

public void setKey(WarehouseKey key) {
this.key = key;

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

}

And you key is an embeddable class that holds the key properties:

package org.openxava.test.model;

import javax.persistence.*;

/**
*
* @author Javier Paniza
*/

Chapter 3: Model

OpenXava 3.0 53

http://java.sun.com/javaee/5/docs/api/javax/persistence/Embeddable.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/EmbeddedId.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Entity
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html

@Embeddable
public class WarehouseKey implements java.io.Serializable {

@Column(length=3, name="ZONE")
private int zoneNumber;

@Column(length=3)
private int number;

public int getNumber() {
return number;

}

public void setNumber(int number) {
this.number = number;

}

public int getZoneNumber() {
return zoneNumber;

}

public void setZoneNumber(int zoneNumber) {
this.zoneNumber = zoneNumber;

}

}

Chapter 3: Model

OpenXava 3.0 54

http://java.sun.com/j2se/1.5.0/docs/api/java/io/Serializable.html

° ° ° ° °

Chapter 3: Model

OpenXava 3.0 55

° ° ° ° °

Chapter 4: View

OpenXava generates a default user interface from the model. In many simple
cases this is enough, but sometimes it is necessary to model with precision
the format of the user interface or view. In this chapter you will learn how to
do this.

Layout
The @View annotation can be used in an entity or embeddable class in order
to define the layout of its members in the user interface.
The syntax for @View is:

@View(
name="name", // 1
members="members" // 2

)
public class MyEntity {

1. name (optional): This name identifies the view, and can be used in
other OpenXava places (for example in application.xml) or from
another entity. If the view has no name then the view is assumed as
the default one, that is the natural form to display an object of this
type.

2. members (optional): Indicates the members to display and its layout
in the user interface. By default it displays all members (excluding
hidden ones) in the order in which are declared in the model. Inside
members you can use section and group elements for layout
purposes; or action element for showing a link associated to a custom
action inside your view.

You can define several views for an entity using the @Views annotation.
By default (if you do not use @View) all members are displayed in the order
of the model, and one for each line.
For example, a model like this:

@Entity
@IdClass(ClerkKey.class)
public class Clerk {

OpenXava 3.0 56

http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/View.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/text/View.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/Views.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Entity

@Id @Required
@Column(length=3, name="ZONE")
private int zoneNumber;

@Id @Required
@Column(length=3, name="OFFICE")
private int officeNumber;

@Id @Required
@Column(length=3, name="NUMBER")
private int number;

@Required @Column(length=40)
private String name;

// Getters and setters
...

}

Generates a view that looks like this:

You can choose the members to display and its order, with the members
attribute:

@Entity
@IdClass(ClerkKey.class)
@View(members="zoneNumber; officeNumber; number")
public class Clerk {

In this case name is not shown.
Also you can use members for tunning the layout:

@View(members=
"zoneNumber, officeNumber, number;" +
"name"

)

You can observe that the member names are separated by commas or by
semicolon, this is used to indicate layout. With comma the member is placed
just the following (at right), and with semicolon the next member is put

Chapter 4: View

OpenXava 3.0 57

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Entity
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/text/View.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/text/View.html

below (in the next line). Hence the previous view is displayed in this way:

Groups
With groups you can lump a set of related properties and it has visual effect.
For defining a group you only need to put the name of the group and after it
its members within square brackets. Just in this way:

@View(members=
"id [zoneNumber, officeNumber, number];" +
"name"

)

In this case the result is:

You can see the three properties within the group are displayed inside a
frame, and name is displayed outside this frame. The semicolon before name
causes it to appear below, if not it appears at right.
You can put several groups in a view:

@View(members=
"general [" +
" number;" +
" type;" +
" name;" +
"]" +
"contact [" +
" telephone;" +
" email;" +
" website;" +
"]"

)

Chapter 4: View

OpenXava 3.0 58

http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/text/View.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/text/View.html

In this case the groups are shown one next to the other:

If you want one below the other then you must use a semicolon after the
group, like this:

@View(members=
"general [" +
" number;" +
" type;" +
" name;" +
"];" +
"contact [" +
" telephone;" +
" email;" +
" website;" +
"]"

)

In this case the view is shown this way:

Chapter 4: View

OpenXava 3.0 59

http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/text/View.html

Nested groups are allowed. This is a pretty feature that allows you to layout
the elements of the user interface in a flexible and simple way. For example,
you can define a view as this:

@View(members=
"invoice;" +
"deliveryData [" +
" type, number;" +
" date;" +
" description;" +
" shipment;" +
" transportData [" +
" distance; vehicle; transportMode; driverType;" +
"]" +
" deliveryByData [" +
" deliveredBy;" +
" carrier;" +
" employee;" +
"]" +
"]"

)

Chapter 4: View

OpenXava 3.0 60

http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/text/View.html

And the result will be:

Sometimes it's useful to layout members aligned by columns, like in a table.
For example, the next view:

@View(name="Amounts", members=
"year, number;" +
"amounts [" +

"customerDiscount, customerTypeDiscount, yearDiscount;" +
"amountsSum, vatPercentage, vat;" +

"]"
)

...will be displayed as following:

Chapter 4: View

OpenXava 3.0 61

http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/text/View.html

This is ugly. It would be better to have all data aligned by columns. You can
define the group in this way:

@View(name="Amounts", members=
"year, number;" +
"amounts [#" +

"customerDiscount, customerTypeDiscount, yearDiscount;" +
"amountsSum, vatPercentage, vat;" +

"]"
)

Note that now you use [# instead of [. Now you obtain this result:

Now, thanks to the #, the members are aligned by columns.
This feature is also available for the sections (see below).

Sections
Furthermore the members can be organized in sections. For defining a
section you only need to put the name of the section and after it its
members within braces. Let's see an example from the Invoice entity:

@View(members=
"year, number, date, paid;" +
"comment;" +
"customer { customer }" +
"details { details }" +
"amounts { amountsSum; vatPercentage; vat }" +
"deliveries { deliveries }"

)

Chapter 4: View

OpenXava 3.0 62

http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/text/View.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/text/View.html

The visual result is:

The sections are rendered as tabs that the user can click to see the data
contained in that section. You can observe how in the view you put members
of all types (not only properties); thus, customer is a reference, details and
deliveries are collections.
Nested sections are allowed. For example, you can define a view as this:

@View(name="NestedSections", members=
"year, number, date;" +
"customer { customer }" +
"data {" +
" details { details }" +
" amounts {" +
" vat { vatPercentage; vat }" +
" amountsSum { amountsSum }" +
" }" +
"}" +
"deliveries { deliveries }"

)

Chapter 4: View

OpenXava 3.0 63

http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/text/View.html

In this case you will obtain a user interface like this:

As in the groups case, the sections allow using # for aligning by columns,
like this:

@View(name="AlignedAmountsInSection", members=
"year, number;" +
"customer { customer }" +
"details { details }" +
"amounts {#" +

"customerDiscount, customerTypeDiscount, yearDiscount;" +
"amountsSum, vatPercentage, vat;" +

"}"
)

With the same effect as in the group case.

Layout philosophy
It's worth to notice that you have groups instead of frames and sections
instead of tabs. Because OpenXava tries to maintain a high level of
abstraction, that is, a group is a set of members semantically related, and
the sections allow to split the data into parts. This is useful, if there is a big
amount of data that cannot be displayed simultaneous. The fact that the
group is displayed as frames or sections in a tabbed pane is only an
implementation issue. For example, OpenXava (maybe in future) can choose
to display sections (for example) with trees or so.

Chapter 4: View

OpenXava 3.0 64

http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/text/View.html

Rules for view annotations
You can annotate a member (property, reference or collection) with several
annotations that refine its display style and behaviour. Moreover you can
define that effect of these annotations only applies to some views.
For example if you have an entity as this one:

@Entity
@Views({

@View(members= "number; type; name; address"),
@View(name="A", members= "number; type; name; address; seller"),
@View(name="B", members= "number; type; name; seller; alternateSeller"),
@View(name="C", members="number; type; name; address; deliveryPlaces")

})
public class Customer {

And you want the name property will be read only. You can annotate it in
this way:

@ReadOnly
private String name;

In this way name is read only in all views. However, you may want that
name will be read only only on views B and C, then you can define the
member as following:

@ReadOnly(forViews="B, C")
private String name;

Another way for defining this same case is:

@ReadOnly(notForViews="DEFAULT, A")
private String name;

Using notForViews you indicate the views where name property is not read
only. DEFAULT is used for referencing to the default view, the view with no
name.
Some annotations have one or more values, for example for indicating which
view of the referenced type will be used for displaying a reference you use
the @ReferenceView annotation:

@ReferenceView("Simple")
private Seller seller;

In this case when the seller is displayed the view Simple, defined in Seller
class, is used.

Chapter 4: View

OpenXava 3.0 65

http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Entity
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/text/View.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/text/View.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/text/View.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/text/View.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html

What if you want to use Simple view of Seller only in B view of Customer?
It's easy:

@ReferenceView(forViews="B", value="Simple")
private Seller seller;

What if you want to use Simple view of Seller only in B view of Customer
and the VerySimple view of Seller for A view of Customer? In this case you
have to use several @ReferenceView grouping them with @ReferenceViews,
just in this way:

@ReferenceViews({
@ReferenceView(forViews="B", value="Simple"),
@ReferenceView(forViews="A", value="VerySimple")

})

These rules apply to all the annotations in this chapter, except @View and
@Views.

Property customization
You can refine the visual aspect and behavior of a property in a view using
the next annotations:

@ReadOnly // 1
@LabelFormat // 2
@DisplaySize // 3
@OnChange // 4
@Action // 5
@Editor // 6
private type propertyName;

All these annotations follow the rules for view annotations and all they are
optionals. OpenXava always assumes a correct default values if they are
omitted.

1. @ReadOnly (OX): If you mark a property with this annotation it never
will be editable by the final user in this view. An alternative to this is
to make the property editable or not editable programmatically using
org.openxava.view.View.

2. @LabelFormat (OX): Format to display the label of this property. Its
value can be LabelFormatType.NORMAL, LabelFormatType.SMALL or
LabelFormatType.NO_LABEL.

Chapter 4: View

OpenXava 3.0 66

http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/Action.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/ReadOnly.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/view/View.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/LabelFormat.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/LabelFormatType.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/LabelFormatType.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/LabelFormatType.html

3. @DisplaySize (OX): The size in characters of the editor in the User
Interface used to display this property. The editor display only the
characters indicated by @DisplaySize but it allows to the user to entry
until the total size of the property. If @DisplaySize is not specified,
the value of the size of the property is assumed.

4. @OnChange (OX): Action to execute when the value of this property
changes. Only one @OnChange action per view is allowed.

5. @Action (OX): Actions (showed as links, buttons or images to the
user) associated (visually) to this property and that the final user can
execute. It's possible to define several @Action for each view.

6. @Editor (OX): Name of the editor to use for displaying the property
in this view. The editor must be declared in OpenXava/xava/
default-editors.xml or xava/editors.xml of your project.

Label format
A simple example of using @LabelFormat:

@LabelFormat(LabelFormatType.SMALL)
private int zipCode;

In this case the zip code is displayed as:

The LabelFormatType.NORMAL format is the default style (with a normal label
at the left) and the LabelFormatType.NO_LABEL simply does not display the
label.

Property value change event
If you wish to react to the event of a value change of a property you can
use @OnChange as following:

@OnChange(OnChangeCustomerNameAction.class)
private String name;

The code to execute is:

Chapter 4: View

OpenXava 3.0 67

http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/DisplaySize.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/OnChange.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/Action.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/Editor.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/LabelFormat.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/LabelFormatType.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/LabelFormatType.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/OnChange.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html

package org.openxava.test.actions;

import org.openxava.actions.*;
import org.openxava.test.model.*;

/**
* @author Javier Paniza
*/
public class OnChangeCustomerNameAction extends OnChangePropertyBaseAction { // 1

public void execute() throws Exception {
String value = (String) getNewValue(); // 2
if (value == null) return;
if (value.startsWith("Javi")) {

getView().setValue("type", Customer.Type.STEADY); // 3
}

}

}

The action has to implement IOnChangePropertyAction although it is more
convenient to extend it from OnChangePropertyBaseAction (1). Within the
action you can use getNewValue() (2) that provides the new value entered by
user, and getView() (3) that allows you to access programmatically the View
(change values, hide members, make them editable and so on).

Actions of property
You can also specify actions (@Action) that the user can click directly:

@Action("Delivery.generateNumber")
private int number;

In this case instead of an action class you have to write the action identifier
that is the controller name and the action name. This action must be
registered in controllers.xml in this way:

<controller name="Delivery">
...
<action name="generateNumber" hidden="true"

class="org.openxava.test.actions.GenerateDeliveryNumberAction">
<use-object name="xava_view"/>

</action>
...

</controller>

The actions are displayed as a link or an image beside the property. Like
this:

Chapter 4: View

OpenXava 3.0 68

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/Type.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/view/View.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/Action.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/Action.html

By default the action link is present only when the property is editable, but if
the property is read only (@ReadOnly) or calculated then it is always present.
You can use the attribute alwaysEnabled to true so that the link is always
present, even if the property is not editable. As following:

@Action(value="Delivery.generateNumber", alwaysEnabled=true)

The attribute alwaysEnabled is optional and its default value is false.
The code of previous action is:

package org.openxava.test.actions;

import org.openxava.actions.*;

/**
* @author Javier Paniza
*/
public class GenerateDeliveryNumberAction extends ViewBaseAction {

public void execute() throws Exception {
getView().setValue("number", new Integer(77));

}

}

A simple but illustrative implementation. You can use any action defined in
controllers.xml and its behavior is the normal for an OpenXava action. In the
chapter 7 you will learn more details about actions.
Optionally you can make your action an IPropertyAction (this is only available
for actions associated to properties with @Action annotation), thus the
container view and the property name are injected in the action by
OpenXava. The above action class could be rewritten in this way:

package org.openxava.test.actions;

import org.openxava.actions.*;
import org.openxava.view.*;

/**
* @author Javier Paniza
*/
public class GenerateDeliveryNumberAction

extends BaseAction
implements IPropertyAction { // 1
private View view;
private String property;

Chapter 4: View

OpenXava 3.0 69

http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/ReadOnly.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/Action.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Integer.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/IPropertyAction.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/text/View.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html

public void execute() throws Exception {
view.setValue(property, new Integer(77)); // 2

}

public void setProperty(String property) { // 3
this.property = property;

}
public void setView(View view) { // 4

this.view = view;
}

}

This action implements IPropertyAction (1), this required that the class
implements setProperty() (3) and setView() (4), these values are injected in
the action object before call to execute() method, where they can be used
(2). In this case you does not need to inject xava_view object when defining
the action in controllers.xml. The view injected by setView() (4) is the inner
view that contains the property, for example, if the property is inside an
aggregate the view is the view of that aggregate not the main view of the
module. Thus, you can write more reusable actions.

Choosing an editor
An editor display the property to the user and allows him to edit its value.
OpenXava uses by default the editor associated to the stereotype or type of
the property, but you can specify a concrete editor for display a property
using @Editor.
For example, OpenXava uses a combo for editing the properties of type
enum, but if you want to display a property of this type in some particular
view using a radio button you can define that view in this way:

@Editor(forViews="TypeWithRadioButton", value="ValidValuesRadioButton")
private Type type;
public enum Type { NORMAL, STEADY, SPECIAL };

In this case for displaying/editing the editor ValidValuesRadioButton will be
used, instead of default one. ValidValueRadioButton is defined in OpenXava/
xava/default-editors.xml as following:

<editor name="ValidValuesRadioButton" url="radioButtonEditor.jsp"/>

This editor is included with OpenXava, but you can create your own editors
with your custom JSP code and declare them in the file xava/editors.xml of

Chapter 4: View

OpenXava 3.0 70

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Integer.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/text/View.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/Editor.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/Type.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/Type.html

your project.
This feature is for changing the editor only in one view. If you want to
change the editor for a type, steroetype or a property of a model at
application level then it's better to configure it using xava/editors.xml file.

Reference customization
You can refine the visual aspect and behavior of a reference in a view using
the next annotations:

@ReferenceView // 1
@ReadOnly // 2
@NoFrame // 3
@NoCreate // 4
@NoModify // 5
@NoSearch // 6
@AsEmbedded // 7
@SearchAction // 8
@DescriptionsList // 9
@LabelFormat // 10
@Action // 11
@OnChange // 12
@OnChangeSearch // 13
@ManyToOne
private type referenceName;

All these annotations follow the rules for view annotations and all they are
optionals. OpenXava always assumes a correct default values if they are
omitted.

1. @ReferenceView (OX): If you omit this annotation, then the default
view of the referenced object is used. With this annotation you can
indicate that it uses another view.

2. @ReadOnly (OX): If you use this annotation the reference never will
be editable by final user in this view. An alternative is to make the
property editable/uneditable programmatically using
org.openxava.view.View.

3. @NoFrame (OX): If the reference is displayed with no frame. By
default the references are displayed with frame.

4. @NoCreate (OX): By default the final user can create new objects of
the referenced type from here. If you use this annotation this will not
be possible.

5. @NoModify (OX): By default the final user can modify the current
referenced object from here. If you use this annotation this will not be
possible.

Chapter 4: View

OpenXava 3.0 71

http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/Action.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/ReferenceView.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/ReadOnly.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/view/View.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/NoFrame.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/NoCreate.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/NoModify.html

6. @NoSearch (OX): By default the user will have a link to make
searches with a list, filters, etc. If you use this annotation this will not
be possible.

7. @AsEmbedded (OX): By default in the case of a reference to an
embeddable the user can create and edit its data, while in the case
of a reference to an entity the user can only to choose an existing
entity. If you put @AsEmbedded then the user interface for references
to entities behaves as a in the embedded case, allowing to the user
to create a new object and editing its data directly. It has no effect in
case of a reference to embeddables. Warning! If you remove an entity
its referenced entities are not removed, even if they are displayed
using @AsEmbedded.

8. @SearchAction (OX): Allows you to specify your own action for
searching when the user click in the search link. Only one by view is
allowed.

9. @DescriptionsList (OX): Display the data as a list of descriptions,
typically as a combo. Useful when there are few elements of the
referenced object.

10. @LabelFormat (OX): Format to display the label of the reference. It
only applies if this reference is annotated with @DescriptionsList.
Works as in property case.

11. @Action (OX): Actions (showed as links, buttons or images to the
user) associated (visually) to this reference and that the final user can
execute. Works as in property case. You can define several actions for
each reference in the same view.

12. @OnChange (OX): Action to execute when the value of this reference
changes. Only one @OnChange action by view is allowed.

13. @OnChangeSearch (OX): Allows you to specify your own action for
searching when the user type a new key. Only one by view is
allowed.

If you do not use any of these annotations OpenXava draws a reference
using the default view. For example, if you have a reference like this:

@ManyToOne
private Family family;

Chapter 4: View

OpenXava 3.0 72

http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/NoSearch.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/AsEmbedded.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/SearchAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/DescriptionsList.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/LabelFormat.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/Action.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/OnChange.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/OnChangeSearch.html

The user interface will look like this:

Choose view
The most simple customization is to specify the view of the referenced object
that you want to use. This is done by means of @ReferenceView:

@ManyToOne(fetch=FetchType.LAZY)
@ReferenceView("Simple")
private Invoice invoice;

In the Invoice entity you must have a view named Simple:

@Entity
@Views({

...
@View(name="Simple", members="year, number, date, yearDiscount;"),
...

})
public class Invoice {

Thus, instead of using the default view of Invoice (that shows all invoice data)
OpenXava will use the next one:

Customizing frame
If you combine @NoFrame with groups you can group visually a property that
is not a part of a reference with that reference, for example:

@View(members=
...

Chapter 4: View

OpenXava 3.0 73

http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/ReferenceView.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Entity
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/text/View.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/NoFrame.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/text/View.html

"seller [" +
" seller; " +
" relationWithSeller;" +
"]" +
...

)
public class Customer {

...
@ManyToOne(fetch=FetchType.LAZY)
@NoFrame
private Seller seller;
...

}

And the result:

Custom search action
The final user can search a new value for the reference simply by keying the
new code and leaving the editor the data of reference is obtained; for
example, if the user keys "1" on the seller number field, then the name (and
the other data) of the seller "1" will be automatically filled. Also the user can
click in the lantern, in this case the user will go to a list where he can filter,
order, etc, and mark the wished object.
To define your custom search logic you have to use @SearchAction in this
way:

@ManyToOne(fetch=FetchType.LAZY) @SearchAction("MyReference.search")
private Seller seller;

When the user clicks in the lantern your action is executed, which must be
defined in controllers.xml.

Chapter 4: View

OpenXava 3.0 74

http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/SearchAction.html

<controller name="MyReference">
<action name="search" hidden="true"

class="org.openxava.test.actions.MySearchAction"
image="images/search.gif">
<use-object name="xava_view"/>
<use-object name="xava_referenceSubview"/>
<use-object name="xava_tab"/>
<use-object name="xava_currentReferenceLabel"/>

</action>
...

</controller>

The logic of your MySearchAction is up to you. You can, for example, refining
the standard search action to filter the list for searching, as follows:

package org.openxava.test.actions;

import org.openxava.actions.*;

/**
* @author Javier Paniza
*/

public class MySearchAction extends ReferenceSearchAction {

public void execute() throws Exception {
super.execute(); // The standard search behaviour
getTab().setBaseCondition("${number} < 3"); // Adding a filter to the list

}

}

You will learn more about actions in chapter 7.

Custom creation action
If you do not use @NoCreate annotation the user will have a link to create a
new object. By default when a user clicks on this link, a default view of the
referenced object is displayed and the final user can type values and click a
button to create it. If you want to define your custom actions (among them
your create custom action) in the form used when creating a new object, you
must have a controller named as component but with the suffix Creation. If
OpenXava see this controller it uses it instead of the default one to allow
creating a new object from a reference. For example, you can write in your
controllers.xml:

<!--
Because its name is WarehouseCreation (model name + Creation) it is used

Chapter 4: View

OpenXava 3.0 75

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/NoCreate.html

by default for create from reference, instead of NewCreation.
Action 'new' is executed automatically.
-->
<controller name="WarehouseCreation">

<extends controller="NewCreation"/>
<action name="new" hidden="true"

class="org.openxava.test.actions.CreateNewWarehouseFromReferenceAction">
<use-object name="xava_view"/>

</action>
</controller>

In this case when the user clicks on the 'create' link, the user is directed to
the default view of Warehouse and the actions in WarehouseCreation will be
allowed.
If you have an action called 'new', it will be executed automatically before all.
It can be used to initialize the view used to create a new object.

Custom modification action
If you do not use @NoModify the user will have a link to modify the current
referenced object. By default when a user clicks on this link, a default view of
the referenced object is displayed and the final user can modify values and
click a button to update it. If you want to define your custom actions (among
them your update custom action) in the form used when modifying the
current object, you must have a controller named as component but with the
suffix Modification. If OpenXava see this controller it uses it instead of the
default one to allow modifying the current object from a reference. For
example, you can write in your controllers.xml:

<!--
Because its name is WarehouseModification (model name + Modification) it is used
by default for modifying from reference, instead of Modification.
The action 'search' is executed automatically.
-->
<controller name="WarehouseModification">

<extends controller="Modification"/>
<action name="search" hidden="true"

class="org.openxava.test.actions.ModifyWarehouseFromReferenceAction">
<use-object name="xava_view"/>

</action>
</controller>

In this case when the user clicks on the 'modify' link, the user is directed to
the default view of Warehouse and the actions in WarehouseModification will
be allowed.

Chapter 4: View

OpenXava 3.0 76

http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/NoModify.html

If you have an action called 'search', it will be executed automatically before
all. It is used to initialize the view with the object to modify.

Descriptions list (combos)
With @DescriptionsList you can instruct OpenXava to visualize references as a
descriptions list (actually a combo). This can be useful, if there are only a few
elements and these elements have a significant name or description.
The syntax is:

@DescriptionsList(
descriptionProperties="properties", // 1
depends="depends", // 2
condition="condition", // 3
orderByKey="true|false", // 4
order="order" // 5

)

1. descriptionProperties (optional): The property or properties to show
in the list, if not specified, the property named description,
descripcion, name or nombre is assumed. If the referenced object
does not have a property called this way then it is required to specify
a property name here. It allows to set more than one property
separated by commas. To the final user the values are concatenated.

2. depends (optional): It's used in together with condition. It can be
achieve that the list content depends on another value displayed in
the main view (if you simply type the name of the member) or in the
same view (if you type this. before the name of the member).

3. condition (optional): Allows to specify a condition (with SQL style) to
filter the values that are shown in the description list.

4. orderByKey (optional): By default the data is ordered by description,
but if you set this property to true it will be ordered by key.

5. order (optional): Allows to specify an order (with SQL style) for the
values that are shown in the description list.

The simplest usage is:

@ManyToOne(fetch=FetchType.LAZY)
@DescriptionsList
private Warehouse warehouse;

Chapter 4: View

OpenXava 3.0 77

http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/DescriptionsList.html

That displays a reference to warehouse in this way:

In this case it shows all warehouses, although in reality it uses the
baseCondition and the filter specified in the default @Tab of Warehouse. You
will see more about tabs in chapter 5.
If you want, for example, to display a combo with the product families and
when the user chooses a family, then another combo will be filled with the
subfamilies of the chosen family. An implementation can look like this:

@ManyToOne(fetch=FetchType.LAZY)
@DescriptionsList(orderByKey=true) // 1
private Family family;

@ManyToOne(fetch=FetchType.LAZY) @NoCreate // 2
@DescriptionsList(

descriptionProperties="description", // 3
depends="family", // 4
condition="${family.number} = ?" // 5
order="${description} desc" // 6

)
private Subfamily subfamily;

Chapter 4: View

OpenXava 3.0 78

http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/Tab.html

Two combos are displayed one with all families loaded and the other one
empty. When the user chooses a family, then the second combo is filled with
all its subfamilies.
In the case of Family the property description of Family is shown, since the
default property to show is 'description' or 'name'. The data is ordered by
key and not by description (1). In the case of Subfamily (2) the link to create
a new subfamily is not shown and the property to display is 'description' (in
this case this maybe omitted).
With depends (4) you make that this combo depends on the reference family,
when change family in the user interface, this descriptions list is filled
applying the condition condition (5) and sending as argument (to set value to
?) the new family value. And the entries are ordered descending by
description (6).
In condition and order you put the property name inside a ${} and the
arguments as ?. The comparator operators are the SQL operators.
You can specify several properties to be shown as description:

@ManyToOne(fetch=FetchType.LAZY)
@ReadOnly
@DescriptionsList(descriptionProperties="level.description, name")
private Seller alternateSeller;

In this case the concatenation of the description of level and the name is
shown in the combo. Also you can see how it is possible to use qualified
properties (level.description).
If you use @ReadOnly in a reference annotated as @DescriptionsList, then
the description (in this case level.description + name) is displayed as a simple
text property instead of using a combo.

Reference value change event
If you wish to react to the event of a value change of a reference you can
write:

@ManyToOne(fetch=FetchType.LAZY)
@OnChange(OnChangeCarrierInDeliveryAction.class)
private Carrier carrier;

In this case your action listens to the change of carrier number.
The code to execute is:

Chapter 4: View

OpenXava 3.0 79

http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/ReadOnly.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/DescriptionsList.html

package org.openxava.test.actions;

import org.openxava.actions.*;

/**
* @author Javier Paniza
*/
public class OnChangeCarrierInDeliveryAction

extends OnChangePropertyBaseAction { // 1

public void execute() throws Exception {
if (getNewValue() == null) return;
getView().setValue("remarks", "The carrier is " + getNewValue());
addMessage("carrier_changed");

}

}

The action implements IOnChangePropertyAction, by means of
OnChangePropertyBaseAction (1), although it's a reference. We receive the
change of the key property of the reference; in this case carrier.number. The
rest is as in the property case.

Reference search on change event
The user can search the value of a reference simply typing its key. For
example, if there is a reference to Subfamily, the user can type the subfamily
number and automatically the subfamily data is loaded in the view. This is
done using a default on change action that does the search. You can specify
your own action for search when key change using @OnChangeSearch
annotation, just in this way:

@ManyToOne(fetch=FetchType.LAZY)
@OnChangeSearch(OnChangeSubfamilySearchAction.class)
private Subfamily subfamily;

This action is executed for doing the search, instead of the standard action,
when the user changes the subfamily number.
The code to execute is:

package org.openxava.test.actions;

import org.openxava.actions.*;

/**
*
* @author Javier Paniza
*/

Chapter 4: View

OpenXava 3.0 80

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/Actions.html

public class OnChangeSubfamilySearchAction
extends OnChangeSearchAction { // 1

public void execute() throws Exception {
if (getView().getValueInt("number") == 0) {

getView().setValue("number", new Integer("1"));
}
super.execute();

}

}

The action implements IOnChangePropertyAction, by means of
OnChangeSearchAction (1), although it's a reference. It receives the change of
the key property of the reference; in this case subfamily.number.
This case is an example of refining the behaviour of on change search,
because it extends from OnChangeSearchAction, that is the default action for
searching, and calls to super.execute(). Also it's possible to do a regular on
change action (extending from OnChangePropertyBaseAction for example)
overriding completely the search logic.

Collection customization
You can refine the visual aspect and behavior of a collection in a view using
the next annotations:

@CollectionView // 1
@ReadOnly // 2
@EditOnly // 3
@NoCreate // 4
@NoModify // 5
@AsEmbedded // 6
@ListProperties // 7
@RowStyle // 8
@EditAction // 9
@ViewAction // 10
@NewAction // 11
@SaveAction // 12
@HideDetailAction // 13
@RemoveAction // 14
@RemoveSelectedAction // 15
@ListAction // 16
@DetailAction // 17
@OneToMany/@ManyToMany
private Collection collectionName;

Chapter 4: View

OpenXava 3.0 81

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Integer.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/IOnChangePropertyAction.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collection.html

All these annotations follow the rules for view annotations and all they are
optionals. OpenXava always assumes a correct default values if they are
omitted.

1. @CollectionView (OX): The view of the referenced object (each
collection element) which is used to display the detail. By default the
default view is used.

2. @ReadOnly (OX): If you set it then the final user only can view
collection elements, he cannot add, delete or modify elements.

3. @EditOnly (OX): If you set it then the final user can modify existing
elements, but not add or remove collection elements.

4. @NoCreate (OX): If you set it then the final user doesn't get the link
to create new objects of the referenced object type. It does not apply
to embedded collections.

5. @NoModify (OX): If you set it then the final user doesn't get the link
to modify the objects of the referenced object type. It does not apply
to embedded collections.

6. @AsEmbedded (OX): By default the embedded collections (with
cascade type REMOVE or ALL) allow the users to create and to edit
elements, while the regular collections allow only to choose existing
entities to add to (or remove from) the collection. If you put
@AsEmbedded then the collection behaves as a embedded collection
even though it hasn't cascade type REMOVE or ALL, allowing to the
user to add objects and editing them directly. It has no effect in case
of embedded collections.

7. @ListProperties (OX): Properties to show in the list for visualization
of the collection. You can qualify the properties. By default it shows
all persistent properties of the referenced object (excluding references
and calculated properties).

8. @RowStyle (OX): To give a special style to some rows. Behaves
equals that in the Tab case. It does not works for calculated
collections. It's possible to define several @RowStyle for each view.

9. @EditAction (OX): Allows you to define your custom action to begin
the editing of a collection element. This is the action showed in each
row of the collection, if the collection is editable. Only one
@EditAction per view is allowed.

10. @ViewAction (OX): Allows you to define your custom action to view a
collection element. This is the action showed in each row, if the
collection is read only. Only one @ViewAction per view is allowed.

Chapter 4: View

OpenXava 3.0 82

http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/CollectionView.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/ReadOnly.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/EditOnly.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/NoCreate.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/NoModify.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/AsEmbedded.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/ListProperties.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/RowStyle.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/EditAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/ViewAction.html

11. @NewAction (OX): Allows you to define your custom action to start
adding a new element to the collection. This is the action executed
on click in 'Add' link. Only one @ViewAction per view is allowed.

12. @SaveAction (OX): Allows you to define your custom action to save
the collection element. This is the action executed on click in 'Save
detail' link. Only one @SaveAction per view is allowed.

13. @HideDetailAction (OX): Allows you to define your custom action to
hide the detail view. This is the action executed on click in 'Close'
link. Only one @HideDetailAction per view is allowed.

14. @RemoveAction (OX): Allows you to define your custom action to
remove the element from the collection. This is the action executed
on click in 'Remove detail' link. Only one @RemoveAction per view is
allowed.

15. @RemoveSelectedAction (OX): Allows you to define your custom
action to remove the selected elements from the collection. This is
the action executed when a user select some rows and then click in
'Remove selected' link. Only one @RemoveSelectedAction per view is
allowed.

16. @ListAction (OX): To add actions in list mode; usually actions which
scope is the entire collection. It's possible to define several
@ListAction for each view.

17. @DetailAction (OX): To add actions in detail mode, usually actions
which scope is the detail that is being edited. It's possible to define
several @DetailAction for each view.

If you do not use any of these annotations then the collection is displayed
using the persistent properties in list mode and the default view to represent
the detail; although in typical scenarios the properties of the list and the view
for detail are specified:

@CollectionView("Simple"),
@ListProperties("number, name, remarks, relationWithSeller, seller.level.description, type")
@OneToMany(mappedBy="seller")
private Collection<Customer> customers;

Chapter 4: View

OpenXava 3.0 83

http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/NewAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/SaveAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/HideDetailAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/RemoveAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/RemoveSelectedAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/ListAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/DetailAction.html

And the collection is displayed:

You see how you can put qualified properties into the properties list (as
seller.level.description).
When the user clicks on ('Edit'), then the view Simple of Customer will be
rendered; for this you must have defined a view called Simple in the
Customer entity (the model of the collection elements).
This view is also used if the user click on ('Add') in an embedded
collection, otherwise OpenXava does not show this view, instead it shown a
list of entities to add.
If the view Simple of Customer is like this:

@View(name="Simple", members="number; type; name; address")

Chapter 4: View

OpenXava 3.0 84

http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/text/View.html

On clicking in a detail the following will be shown:

Custom edit/view action

You can refine easily the behavior when the ('Edit') link is clicked using
@EditAction:

@EditAction("Invoice.editDetail")
@OneToMany (mappedBy="invoice", cascade=CascadeType.REMOVE)
private Collection<InvoiceDetail> details;

You have to define Invoices.editDetail in controllers.xml:

<controller name="Invoice">
...
<action name="editDetail" hidden="true"

image="images/edit.gif"
class="org.openxava.test.actions.EditInvoiceDetailAction">
<use-object name="xava_view"/>

</action>

Chapter 4: View

OpenXava 3.0 85

http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/EditAction.html

...
</controller>

And finally write your action:

package org.openxava.test.actions;

import java.text.*;

import org.openxava.actions.*;

/**
* @author Javier Paniza
*/
public class EditInvoiceDetailAction extends EditElementInCollectionAction { // 1

public void execute() throws Exception {
super.execute();
DateFormat df = new SimpleDateFormat("dd/MM/yyyy");
getCollectionElementView().setValue(// 2

"remarks", "Edit at " + df.format(new java.util.Date()));
}

}

In this case you only refine hence your action extends (1)
EditElementInCollectionAction. In this case you only specify a default value for
the remarks property. Note that to access the view that displays the detail
you can use the method getCollectionElementView() (2).
Also it's possible to remove the edit action from the User Interface, in this
way:

@EditAction("")
@OneToMany (mappedBy="invoice", cascade=CascadeType.REMOVE)
private Collection<InvoiceDetail> details;

You only need to put an empty string as value for the action. Although in
most case it's enough to define the collection as @ReadOnly.
The technique to refine the view action (the action for each row, if the
collection is read only) is the same but using @ViewAction instead of
@EditAction.

Custom list actions
Adding our custom list actions (actions that apply to entire collections) is
easy using @ListAction:

Chapter 4: View

OpenXava 3.0 86

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html
http://java.sun.com/j2se/1.5.0/docs/api/java/text/DateFormat.html
http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Date
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/ReadOnly.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/ViewAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/EditAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/ListAction.html

@ListAction("Carrier.translateName")
private Collection<Carrier> fellowCarriers;

Now a new link is shown to the user:

Also you need to define the action in controllers.xml:

<controller name="Carrier">
...
<action name="translateName" hidden="true"

class="org.openxava.test.actions.TranslateCarrierNameAction">
</action>
...

</controller>

And the action code:

package org.openxava.test.actions;

import java.util.*;
import org.openxava.actions.*;
import org.openxava.test.model.*;

/**
* @author Javier Paniza
*/
public class TranslateCarrierNameAction extends CollectionBaseAction { // 1

public void execute() throws Exception {
Iterator it = getSelectedObjects().iterator(); // 2
while (it.hasNext()) {

Carrier carrier = (Carrier) it.next();

Chapter 4: View

OpenXava 3.0 87

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Iterator.html

carrier.translate();
}

}

}

The action extends CollectionBaseAction (1), this way you can use methods as
getSelectedObjects() (2) that returns a collection with the objects selected by
the user. There are others useful methods, as getObjects() (all elements
collection), getMapValues() (the collection values in map format) and
getMapsSelectedValues() (the selected elements in map format).
As in the case of detail actions (see next section) you can use
getCollectionElementView().
Also it's possible to use actions for list mode as list actions for a collection.

Default list actions
If you want to add some custom list actions to all the collection of your
application you can do it creating a controller called
DefaultListActionsForCollections in your own xava/controllers.xml file as
following:

<controller name="DefaultListActionsForCollections">
<extends controller="Print"/>
<action name="exportAsXML"

class="org.openxava.test.actions.ExportAsXMLAction">
</action>

</controller>

In this way all the collections will have the actions of Print controller (for
export to Excel and generate PDF report) and your own ExportAsXMLAction.
This has the same effect of @ListAction (look at custom list actions section)
but it applies to all collections at once.
This feature does not apply to calculated collections.

Custom detail actions
Also you can add your custom actions to the detail view used for editing
each element. This is accomplish by means of @DetailAction annotation.
These actions are applicable only to one element of collection. For example:

Chapter 4: View

OpenXava 3.0 88

http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/ListAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/DetailAction.html

@DetailAction("Invoice.viewProduct")
@OneToMany (mappedBy="invoice", cascade=CascadeType.REMOVE)
private Collection<InvoiceDetail> details;

In this way the user has another link to click in the detail of the collection
element:

You need to define the action in controllers.xml:

<controller name="Invoice">
...
<action name="viewProduct" hidden="true"

class="org.openxava.test.actions.ViewProductFromInvoiceDetailAction">
<use-object name="xava_view"/>
<use-object name="xavatest_invoiceValues"/>

</action>
...

</controller>

And the code of your action:

package org.openxava.test.actions;

import java.util.*;
import javax.ejb.*;

import org.openxava.actions.*;

/**
* @author Javier Paniza
*/
public class ViewProductFromInvoiceDetailAction

extends CollectionElementViewBaseAction // 1
implements INavigationAction {

private Map invoiceValues;

public void execute() throws Exception {
try {

setInvoiceValues(getView().getValues());
Object number =

getCollectionElementView().getValue("product.number"); // 2
Map key = new HashMap();
key.put("number", number);
getView().setModelName("Product"); // 3
getView().setValues(key);
getView().findObject();
getView().setKeyEditable(false);

Chapter 4: View

OpenXava 3.0 89

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Map.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Map.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/HashMap.html

getView().setEditable(false);
}
catch (ObjectNotFoundException ex) {

getView().clear();
addError("object_not_found");

}
catch (Exception ex) {

ex.printStackTrace();
addError("system_error");

}
}

public String[] getNextControllers() {
return new String [] { "ProductFromInvoice" };

}

public String getCustomView() {
return SAME_VIEW;

}

public Map getInvoiceValues() {
return invoiceValues;

}

public void setInvoiceValues(Map map) {
invoiceValues = map;

}

}

You can see that it extends CollectionElementViewBaseAction (1) thus it has
available the view that displays the current element using
getCollectionElementView() (2). Also you can get access to the main view
using getView() (3). In chapter 7 you will see more details about writing
actions.
Also, using the view returned by getCollectionElementView() you can add and
remove programmatically detail and list actions with addDetailAction(),
removeDetailAction(), addListAction() and removeListAction(), see API doc for
org.openxava.view.View.

Refining collection view default behavior
Using @NewAction, @SaveAction, @HideDetailAction, @RemoveAction and
@RemoveSelectedAction you can refine the default behavior of collection
view. For example if you want to refine the behavior of save a detail action
you can define your view in this way:

Chapter 4: View

OpenXava 3.0 90

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Map.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Map.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/view/View.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/NewAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/SaveAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/HideDetailAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/RemoveAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/RemoveSelectedAction.html

@SaveAction("DeliveryDetail.save")
@OneToMany (mappedBy="delivery", cascade=CascadeType.REMOVE)
private Collection<DeliveryDetail> details;

You must have an action DeliveryDetails.save in your controllers.xml:

<controller name="DeliveryDetail">
...
<action name="save"

class="org.openxava.test.actions.SaveDeliveryDetailAction">
<use-object name="xava_view"/>

</action>
...

</controller>

And define your action class for saving:

package org.openxava.test.actions;

import org.openxava.actions.*;

/**
* @author Javier Paniza
*/

public class SaveDeliveryDetailAction extends SaveElementInCollectionAction { // 1

public void execute() throws Exception {
super.execute();
// Here your own code // 2

}

}

The more common case is extending the default behavior, for that you have
to extend the original class for saving a collection detail (1), that is
SaveElementInCollection action, then call to super from execute() method (2),
and after it, writing your own code.
Also it's possible to remove any of these actions from User Interface, for
example, you can define a collection in this way:

@RemoveSelectedAction("")
@OneToMany (mappedBy="delivery", cascade=CascadeType.REMOVE)
private Collection<DeliveryDetail> details;

In this case the action for removing the selected elements in the collection
will be missing in the User Interface. As you see, only it's needed to declare
an empty string as the name of the action.

Chapter 4: View

OpenXava 3.0 91

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html

Transient properties for UI controls
With @Transient (JPA) you define a property that is not stored in database
but you want to show to the user. You can use it to provide UI controls to
allow the user to manage his user interface.
An example:

@Transient
@DefaultValueCalculator(value=EnumCalculator.class,

properties={
@PropertyValue(name="enumType", value="org.openxava.test.model.Delivery$DeliveredBy")
@PropertyValue(name="value", value="CARRIER")

}
)
@OnChange(OnChangeDeliveryByAction.class)
private DeliveredBy deliveredBy;
public enum DeliveredBy { EMPLOYEE, CARRIER }

You can see that the syntax is exactly the same as in the case of a regular
property of an entity; you can even use enum and @DefaultValueCalculator.
After defining the property you can use it in the view as usual, for example
with @OnChange or putting it as member of a view.

View actions
In addition of associating actions to a property, reference or collection, you
also can define arbitrary actions inside your view, in any place. In order to do
this we use the qualified name of action using brackets () as suffix, in this
way:

@View(members=
"number;" +
"type;" +
"name, Customer.changeNameLabel();" +
...

The visual effect will be:

You can see the link 'Change name label' that will execute the action

Chapter 4: View

OpenXava 3.0 92

http://java.sun.com/javaee/5/docs/api/javax/persistence/Transient.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/DefaultValueCalculator.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/OnChange.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/text/View.html

Customer.changeNameLabel on click on it.
If the container view of the action is not editable, the action is not present. If
you want that the action is always enabled, even if the view is not editable,
you have to use put the word ALWAYS between the brackets, as following:

@View(name="Simple", members=
"number;" +
"type;" +
"name, Customer.changeNameLabel(ALWAYS);" +
...

The standard way to expose actions to the user is using the controllers
(actions in a bar), the controllers are reusable between views, but sometimes
you will need an action specific to a view, and you want display it inside the
view (not in the button bar), for these cases the view actions may be useful.
See more about actions in chapter 7.

Transient class: Only for creating views
In OpenXava it is not possible to have a view without model. Thus if you
want to draw an arbitrary user interface, you need to create a class, not to
declare it as entity and define your view in it.
An transient class is not associated to any table of the database, typically it's
used only for display User Interfaces not related to any data in database.
An example can be:

package org.openxava.test.model;

import javax.persistence.*;

import org.openxava.annotations.*;

/**
* Example of an transient OpenXava model class (not persistent). <p>
*
* This can be used, for example, to display a dialog,
* or any other graphical interface.<p>
*
* Note that is not marked as @Entity

*
* @author Javier Paniza
*/

@Views({
@View(name="Family1", members="subfamily"),
@View(name="Family2", members="subfamily"),

Chapter 4: View

OpenXava 3.0 93

http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/text/View.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/text/View.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/text/View.html

@View(name="WithSubfamilyForm", members="subfamily"),
@View(name="Range", members="subfamily; subfamilyTo")

})
public class FilterBySubfamily {

@ManyToOne(fetch=FetchType.LAZY) @Required
@NoCreate(forViews="Family1, Family2")
@NoModify(forViews="Family2, WithSubfamilyForm")
@NoSearch(forViews="WithSubfamilyForm")
@DescriptionsLists({

@DescriptionsList(forViews="Family1",
condition="${family.number} = 1", order="${number} desc"

),
@DescriptionsList(forViews="Family2",

condition="${family.number} = 2"
)

})
private Subfamily subfamily;

@ManyToOne(fetch=FetchType.LAZY)
private Subfamily subfamilyTo;

public Subfamily getSubfamily() {
return subfamily;

}

public void setSubfamily(Subfamily subfamily) {
this.subfamily = subfamily;

}

public Subfamily getSubfamilyTo() {
return subfamilyTo;

}

public void setSubfamilyTo(Subfamily subfamilyTo) {
this.subfamilyTo = subfamilyTo;

}

}

For defining a model class as transient you only need to define a regular
Java class without @Entity annotation. You mustn't put the mapping
annotations nor declare properties as key.
This way you can design a dialog that can be useful, for example, to print a
report of families or products filtered by subfamily.
With this simple trick you can use OpenXava as a simple and flexible
generator for user interfaces although the displayed data won't be stored.

Chapter 4: View

OpenXava 3.0 94

http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/text/View.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/text/View.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/Entity.html

° ° ° ° °

Chapter 4: View

OpenXava 3.0 95

° ° ° ° °

Chapter 5: Tabular data

Tabular data is data that is displayed in table format. If you create a
conventional OpenXava module, then the user can manage the component
data with a list like this:

This list allows user to:
• Filter by any columns or a combination of them.
• Order by any column with a single click.
• Display data by pages, and therefore the user can work efficiently

with millions of records.
• Customize the list: add, remove and change the column order (with

the little pencil in the left top corner). This customizations are
remembered by user.

• Generic actions to process the objects in the list: generate PDF
reports, export to Excel or remove the selected objects.

OpenXava 3.0 96

The default list is enough for many cases, moreover the user can customize
it. Nevertheless, sometimes it is convenient to modify the list behavior. For
this you have the @Tab annotation within the entity definition.
The syntax of @Tab is:

@Tab(
name="name", // 1
filter=filter class, // 2
rowStyles=array of @RowStyle, // 3
properties="properties", // 4
baseCondition="base condition", // 5
defaultOrder="default order" // 6

)
public class MyEntity {

1. name (optional): You can define several tabs in a entity (using @Tabs
annotation), and set a name for each one. This name is used to
indicate the tab that you want to use (usually in application.xml).

2. filter (optional): Allows to define programmatically some logic to apply
to the values entered by user when he filters the list data.

3. rowStyles (optional): A simple way to specify a different visual style
for some rows. Normally to emphasize rows that fulfill certain
condition. You specify an array of @RowStyle, in this way you can use
several styles for a tab.

4. properties (optional): The list of properties to show initially. Can be
qualified (that is you can specify referenceName.propertyName at any
depth level).

5. baseCondition (optional): Condition to be fulfilled by the displayed
data. It's added to the user condition if needed.

6. defaultOrder (optional): To specify the initial order for data.

Initial properties and emphasize rows
The most simple customization is to indicate the properties to show initially:

@Tab(
rowStyles=@RowStyle(style="highlight", property="type", value="steady"),
properties="name, type, seller.name, address.city, seller.level.description, address.state.name"

)

These properties are shown the first time the module is executed, after that
the user will have the option to change the properties to display. Also you

Chapter 5: Tabular data

OpenXava 3.0 97

http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/Tab.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/Tabs.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/RowStyle.html

see how you can use qualified properties (properties of references) in any
level.
In this case you can see also how to indicate a @RowStyle; you are saying
that the object which property type has the value steady will use the style
highlight. The style has to be defined in the CSS style-sheet. The highlight
style are already defined in OpenXava, but you can define more.
The visual effect of above is:

Filters and base condition
A common technique is to combine a filter with a base condition:

@Tab(name="Current",
filter=CurrentYearFilter.class,
properties="year, number, amountsSum, vat, detailsCount, paid, customer.name",
baseCondition="${year} = ?"

)

The condition has to have SQL syntax, you can use ? for arguments and the
property names inside ${}. In this case a filter is used to set the value of
the argument. The filter code is:

package org.openxava.test.filters;

import java.util.*;

import org.openxava.filters.*;

/**
* @author Javier Paniza
*/

Chapter 5: Tabular data

OpenXava 3.0 98

http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/RowStyle.html

public class CurrentYearFilter implements IFilter { // (1)

public Object filter(Object o) throws FilterException { // (2)
Calendar cal = Calendar.getInstance();
cal.setTime(new java.util.Date());
Integer year = new Integer(cal.get(Calendar.YEAR));
Object [] r = null;
if (o == null) { // (3)

r = new Object[1];
r[0] = year;

}
else if (o instanceof Object []) { // (4)

Object [] a = (Object []) o;
r = new Object[a.length + 1];
r[0] = year;
for (int i = 0; i < a.length; i++) {

r[i+1]=a[i];
}

}
else { // (5)

r = new Object[2];
r[0] = year;
r[1] = o;

}

return r;
}

}

A filter gets the arguments of user type for filtering in lists and for
processing, it returns the value that is sent to OpenXava to execute the
query. As you see it must implement IFilter (1), this force it to have a
method named filter (2) that receives a object with the value of arguments
and returns the filtered value that will be used as query argument. These
arguments can be null (3), if the user does not type values, a simple object
(5), if the user types a single value or an object array (4), if the user types
several values. The filter must consider all cases. The filter of this example
adds the current year as first argument, and this value is used for filling the
arguments in the baseCondition of the tab.
To sum up, the tab that you see above only shows the invoices of the
current year.
Another case:

@Tab(name="DefaultYear",
filter=DefaultYearFilter.class,
properties="year, number, customer.number, customer.name, amountsSum, " +

"vat, detailsCount, paid, importance",
baseCondition="${year} = ?"

Chapter 5: Tabular data

OpenXava 3.0 99

http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Calendar.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Calendar.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Date
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Integer.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Integer.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Calendar.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object

)

In this case the filter is:

package org.openxava.test.filters;

import java.util.*;

import org.openxava.filters.*;

/**
* @author Javier Paniza
*/

public class DefaultYearFilter extends BaseContextFilter { // (1)

public Object filter(Object o) throws FilterException {
if (o == null) {

return new Object [] { getDefaultYear() }; // (2)
}
if (o instanceof Object []) {

List c = new ArrayList(Arrays.asList((Object []) o));
c.add(0, getDefaultYear()); // (2)
return c.toArray();

}
else {

return new Object [] { getDefaultYear(), o }; // (2)
}

}

private Integer getDefaultYear() throws FilterException {
try {

return getInteger("xavatest_defaultYear"); // (3)
}
catch (Exception ex) {

ex.printStackTrace();
throw new FilterException(
"Impossible to obtain default year associated with the session");

}
}

}

This filter extends BaseContextFilter, this allow you to access to the session
objects of OpenXava. You can see how it uses a method getDefaultYear() (2)
that call to getInteger() (3) which (as getString(), getLong() or the more
generic get()) that allows you to access to value of the session object
xavatest_defaultYear. This object is defined in controllers.xml this way:

<object name="xavatest_defaultYear" class="java.lang.Integer" value="1999"/>

Chapter 5: Tabular data

OpenXava 3.0 100

http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+List
http://java.sun.com/j2se/1.5.0/docs/api/java/util/ArrayList.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Arrays.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Integer.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html

The actions can modify it and its life is the user session life but it's private
for each module. This issue is treated in more detail in chapter 7.
This is a good technique for data shown in list mode to depend on the user
or the configuration that he has chosen.
Also it's possible to access environment variables inside a filter of type
BaseContextFilter, using getEnvironment() method, just in this way:

new Integer(getEnvironment().getValue("XAVATEST_DEFAULT_YEAR"));

For learning more about environment variables see the chapter 7 about
controllers.

Pure SQL select
You can write the complete select statement to obtain the tab data:

@Tab(name="CompleteSelect",
properties="number, description, family",
baseCondition=

"select" +
" ${number}, ${description}, XAVATEST@separator@FAMILY.DESCRIPTION " +
"from " +
" XAVATEST@separator@SUBFAMILY, XAVATEST@separator@FAMILY " +
"where " +
" XAVATEST@separator@SUBFAMILY.FAMILY = " +
" XAVATEST@separator@FAMILY.NUMBER"

)

Use it only in extreme cases. Normally it is not necessary, and if you use this
technique the user cannot customize his list.

Default order
Finally, setting a default order is very easy:

@Tab(name="Simple", properties="year, number, date",
defaultOrder="${year} desc, ${number} desc"

)

This specified the initial order and the user can choose any other order by
clicking in the heading of a column.

Chapter 5: Tabular data

OpenXava 3.0 101

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Integer.html

° ° ° ° °

Chapter 5: Tabular data

OpenXava 3.0 102

° ° ° ° °

Chapter 6: Object/relational mapping

Object relational mapping allows you to declare in which tables and columns
of your database the entity data will be stored.
Object/relational tools allow you to work with objects instead of tables and
columns, and to generate automatically the SQL code to read and update the
database. In this way you do not need direct access to the SQL database. Of
course you have to define precisely how to map your classes to your tables,
and this work is done using JPA mapping annotations.
The OpenXava entities are JPA entities, therefore the object/relational mapping
in OpenXava is done by means of the Java Persistence API (JPA). This chapter
shows the more basic mapping techniques and some special cases. If you
want to learn more about JPA you can look at the documentation of
Hibernate Annotations (the JPA implementation used by OpenXava by default),
or whatever JPA manual you want.

Entity mapping
The @Table annotation specifies the primary table for the annotated entity.
Additional tables may be specified using @SecondaryTable or
@SecondaryTables annotation.
If no @Table annotation is specified for an entity class, the default values
apply.
Example:

@Entity
@Table(name="CUST", schema="XAVATEST")
public class Customer {

Property mapping
The @Column annotation is used to specify a mapped column for a persistent
property or field. If no @Column annotation is specified, the default values
are applied.
A simple example:

OpenXava 3.0 103

http://en.wikipedia.org/wiki/Java_Persistence_API
http://www.hibernate.org/hib_docs/annotations/reference/en/html/entity.html
http://www.hibernate.org/hib_docs/annotations/reference/en/html/entity.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/Table.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/SecondaryTable.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/SecondaryTables.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Entity
http://java.sun.com/javaee/5/docs/api/javax/persistence/Column.html

@Column(name="DESC", length=512)
private String description;

An example annotating the getter:

@Column(name="DESC", nullable=false, length=512)
public String getDescription() { return description; }

Other examples:

@Column(name="DESC",
columnDefinition="CLOB NOT NULL",
table="EMP_DETAIL")

@Lob
private String description;

@Column(name="ORDER_COST", updatable=false, precision=12, scale=2)
private BigDecimal cost;

Reference mapping
The @JoinColumn annotation is used to specify a mapped column for a
reference.
Example:

@ManyToOne
@JoinColumn(name="CUST_ID")
private Customer customer;

If you need to define a mapping for the composite foreign keys use
@JoinColumns. This annotation groups @JoinColumn annotations for the same
reference.
When the @JoinColumns annotation is used, both the name and the
referencedColumnName elements must be specified in each such
@JoinColumn annotation.
Example:

@ManyToOne
@JoinColumns({

@JoinColumn(name="INV_YEAR", referencedColumnName="YEAR"),
@JoinColumn(name="INV_NUMBER", referencedColumnName="NUMBER")

})
private Invoice invoice;

Chapter 6: Object/relational mapping

OpenXava 3.0 104

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/math/BigDecimal.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/JoinColumn.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/JoinColumns.html

Collection mapping
When you use @OneToMany for a collection the mapping depends of the
reference used in the other part of the association, that is, usually it's not
needed to do anything. But if you are using @ManyToMany, maybe it's useful
to declare the @JoinTable, as following:

@ManyToMany
@JoinTable(name="CUSTOMER_STATE",

joinColumns=@JoinColumn(name="CUSTOMER"),
inverseJoinColumns=@JoinColumn(name="STATE")

)
private Collection<State> states;

If @JoinTable is missing the default values apply.

Embedded reference mapping
An embedded reference contains data that in the relational model are stored
in the same table as the main entity. For example, if you have an
embeddable Address associated to a Customer, the address data is stored in
the same data table as the customer data. How can you map this case with
JPA?
Just using @AttributeOverrides annotations, in this way:

@Embedded
@AttributeOverrides({

@AttributeOverride(name="street", column=@Column("ADDR_STREET")),
@AttributeOverride(name="zip", column=@Column("ADDR_ZIP"))
@AttributeOverride(name="city", column=@Column("ADDR_CITY")),
@AttributeOverride(name="country", column=@Column("ADDR_COUNTRY"))

})
private Address address;

If you do not use @AttributeOverrides default values are assumed.

Type conversion
The type conversion between Java and the relational database is a work for
the JPA implementation (OpenXava uses Hibernate by default). Usually, the
default type conversion is good for most cases, but if you work with legate
database perhaps you need to use the tips here.

Chapter 6: Object/relational mapping

OpenXava 3.0 105

http://java.sun.com/javaee/5/docs/api/javax/persistence/OneToMany.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/ManyToMany.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/JoinTable.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/AttributeOverrides.html

Given that OpenXava uses the type conversion facility provided by Hibernate
you can learn more on Hibernate documentation.

Property conversion
When the type of a Java property and the type of its corresponding column
in DB do not match you need to write a Hibernate Type in order to do your
custom type conversion.
For example, if you have a property of type String [], and you want to store
its value concatenating it in a single table column of VARCHAR type. Then
you must declare the conversion for your property in this way:

@Type(type="org.openxava.test.types.RegionsType")
private String [] regions;

The conversion logic in RegionsType is:

package org.openxava.test.types;

import java.io.*;
import java.sql.*;

import org.apache.commons.logging.*;
import org.hibernate.*;
import org.hibernate.usertype.*;
import org.openxava.util.*;

/**
*
* @author Javier Paniza
*/

public class RegionsType implements UserType { // 1

public int[] sqlTypes() {
return new int[] { Types.VARCHAR };

}

public Class returnedClass() {
return String[].class;

}

public boolean equals(Object obj1, Object obj2) throws HibernateException {
return Is.equal(obj1, obj2);

}

public int hashCode(Object obj) throws HibernateException {
return obj.hashCode();

}

public Object nullSafeGet(ResultSet resultSet, String[] names, Object owner) // 2

Chapter 6: Object/relational mapping

OpenXava 3.0 106

http://www.hibernate.org
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/Type.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Class.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/ResultSet.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object

throws HibernateException, SQLException
{

Object o = resultSet.getObject(names[0]);
if (o == null) return new String[0];
String dbValue = (String) o;
String [] javaValue = new String [dbValue.length()];
for (int i = 0; i < javaValue.length; i++) {

javaValue[i] = String.valueOf(dbValue.charAt(i));
}
return javaValue;

}

public void nullSafeSet(PreparedStatement ps, Object value, int index) // 3
throws HibernateException, SQLException

{
if (value == null) {

ps.setString(index, "");
return;

}
String [] javaValue = (String []) value;
StringBuffer dbValue = new StringBuffer();
for (int i = 0; i < javaValue.length; i++) {

dbValue.append(javaValue[i]);
}
ps.setString(index, dbValue.toString());

}

public Object deepCopy(Object obj) throws HibernateException {
return obj == null?null:((String []) obj).clone();

}

public boolean isMutable() {
return true;

}

public Serializable disassemble(Object obj) throws HibernateException {
return (Serializable) obj;

}

public Object assemble(Serializable cached, Object owner) throws HibernateException {
return cached;

}

public Object replace(Object original, Object target, Object owner) throws HibernateException {
return original;

}

}

The type converter has to implement org.hibernate.usertype.UserType (1). The
main methods are nullSafeGet (2) for read from database and to convert to
Java, and nullSafeSet (3) for writing the Java value into database.
OpenXava has generic Hibernate type converters in the org.openxava.types

Chapter 6: Object/relational mapping

OpenXava 3.0 107

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/SQLException.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/PreparedStatement.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/SQLException.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/StringBuffer.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/StringBuffer.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/Serializable.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://java.sun.com/j2se/1.5.0/docs/api/java/io/Serializable.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://java.sun.com/j2se/1.5.0/docs/api/java/io/Serializable.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://www.hibernate.org/hib_docs/v3/api/org/hibernate/usertype/UserType.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/types/package-summary.html

package ready to use. One of them is EnumLetterType, that allows to map
properties of enum type. For example, if you have a property like this:

private Distance distance;
public enum Distance { LOCAL, NATIONAL, INTERNATIONAL };

In this Java property 'LOCAL' is 1, 'NATIONAL' is 2 and 'INTERNATIONAL' is 3
when the property is stored in database. But what happens, if in the
database a single letter ('L', 'N' or 'I') is stored? In this case you can use
EnumLetterType in this way:

@Type(type="org.openxava.types.EnumLetterType",
parameters={

@Parameter(name="letters", value="LNI"),
@Parameter(name="enumType", value="org.openxava.test.model.Delivery$Distance")

}
)
private Distance distance;
public enum Distance { LOCAL, NATIONAL, INTERNATIONAL };

As you put 'LNI' as a value to letters, the type converter matches the 'L' to
1, the 'N' to 2 and the 'I' to 3. You also see how type converters are
configurable using its properties and this makes the converters more
reusable.

Multiple column conversion
With CompositeUserType you can map several table columns to a single Java
property. This is useful if you have properties of custom class that have itself
several attributes to store. Also it is used when you have to deal with legate
database schemes.
A typical example is the generic converter Date3Type, that allows to store in
the database 3 columns and in Java a single property of type java.util.Date.

@Type(type="org.openxava.types.Date3Type")
@Columns(columns = {

@Column(name="YEARDELIVERY"),
@Column(name="MONTHDELIVERY"),
@Column(name="DAYDELIVERY")

})
private java.util.Date deliveryDate;

DAYDELIVERY, MONTHDELIVERY and YEARDELIVERY are 3 columns in database
that store the delivery date. And here Date3Type:

Chapter 6: Object/relational mapping

OpenXava 3.0 108

http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/types/EnumLetterType.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/Type.html
http://java.sun.com/j2se/1.5.0/docs/api/org/omg/Dynamic/Parameter.html
http://java.sun.com/j2se/1.5.0/docs/api/org/omg/Dynamic/Parameter.html
http://www.hibernate.org/hib_docs/v3/api/org/hibernate/usertype/CompositeUserType.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/types/Date3Type.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/Type.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Date

package org.openxava.types;

import java.io.*;
import java.sql.*;

import org.hibernate.*;
import org.hibernate.engine.*;
import org.hibernate.type.*;
import org.hibernate.usertype.*;
import org.openxava.util.*;

/**
* In java a <tt>java.util.Date</tt> and in database 3 columns of
* integer type. <p>
*
* @author Javier Paniza
*/

public class Date3Type implements CompositeUserType { // 1

public String[] getPropertyNames() {
return new String[] { "year", "month", "day" };

}

public Type[] getPropertyTypes() {
return new Type[] { Hibernate.INTEGER, Hibernate.INTEGER, Hibernate.INTEGER };

}

public Object getPropertyValue(Object component, int property) throws HibernateException { // 2
java.util.Date date = (java.util.Date) component;
switch (property) {

case 0:
return Dates.getYear(date);

case 1:
return Dates.getMonth(date);

case 2:
return Dates.getYear(date);

}
throw new HibernateException(XavaResources.getString("date3_type_only_3_properties"));

}

public void setPropertyValue(Object component, int property, Object value)
throws HibernateException // 3

{
java.util.Date date = (java.util.Date) component;
int intValue = value == null?0:((Number) value).intValue();
switch (property) {

case 0:
Dates.setYear(date, intValue);

case 1:
Dates.setMonth(date, intValue);

case 2:
Dates.setYear(date, intValue);

}

Chapter 6: Object/relational mapping

OpenXava 3.0 109

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/Type.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/Type.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Date
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Date
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Date
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Date
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Number.html

throw new HibernateException(XavaResources.getString("date3_type_only_3_properties"));
}

public Class returnedClass() {
return java.util.Date.class;

}

public boolean equals(Object x, Object y) throws HibernateException {
if (x==y) return true;
if (x==null || y==null) return false;
return !Dates.isDifferentDay((java.util.Date) x, (java.util.Date) y);

}

public int hashCode(Object x) throws HibernateException {
return x.hashCode();

}

public Object nullSafeGet(ResultSet rs, String[] names, SessionImplementor session, Object owner)
throws HibernateException, SQLException // 4

{
Number year = (Number) Hibernate.INTEGER.nullSafeGet(rs, names[0]);
Number month = (Number) Hibernate.INTEGER.nullSafeGet(rs, names[1]);
Number day = (Number) Hibernate.INTEGER.nullSafeGet(rs, names[2]);

int iyear = year == null?0:year.intValue();
int imonth = month == null?0:month.intValue();
int iday = day == null?0:day.intValue();

return Dates.create(iday, imonth, iyear);
}

public void nullSafeSet(PreparedStatement st, Object value, int index, SessionImplementor session)
throws HibernateException, SQLException // 5

{
java.util.Date d = (java.util.Date) value;
Hibernate.INTEGER.nullSafeSet(st, Dates.getYear(d), index);
Hibernate.INTEGER.nullSafeSet(st, Dates.getMonth(d), index + 1);
Hibernate.INTEGER.nullSafeSet(st, Dates.getDay(d), index + 2);

}

public Object deepCopy(Object value) throws HibernateException {
java.util.Date d = (java.util.Date) value;
if (value == null) return null;
return (java.util.Date) d.clone();

}

public boolean isMutable() {
return true;

}

public Serializable disassemble(Object value, SessionImplementor session)
throws HibernateException

{
return (Serializable) deepCopy(value);

}

Chapter 6: Object/relational mapping

OpenXava 3.0 110

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Class.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Date
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Date
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Date
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/ResultSet.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/SQLException.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Number.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Number.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Number.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Number.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Number.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Number.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/PreparedStatement.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/SQLException.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Date
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Date
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Date
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Date
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Date
http://java.sun.com/j2se/1.5.0/docs/api/java/io/Serializable.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://java.sun.com/j2se/1.5.0/docs/api/java/io/Serializable.html

public Object assemble(Serializable cached, SessionImplementor session, Object owner)
throws HibernateException

{
return deepCopy(cached);

}

public Object replace(Object original, Object target, SessionImplementor session, Object owner)
throws HibernateException

{
return deepCopy(original);

}

}

As you see the type converter implements CompositeUserType (1). The key
methods are getPropertyValue (2) and setPropertyValue (3) to get and to set
values in the properties of the object of the composite type, and nullSafeGet
(4) and nullSafeSet (5) for reading and storing this object from and to
database.

Reference conversion
Reference conversion is not supported directly by Hibernate. But in some very
rare circumstances maybe you need to do conversion in the reference. In this
section we explain how to do it.
For example, you may have a reference to driver licence using two columns,
DRIVINGLICENCE_LEVEL and DRIVINGLICENCE_TYPE, and the
DRIVINGLICENCE_TYPE column does not admit null, but it's possible that the
object can have no reference to driving lincence in which case the column
DRIVINGLICENCE_TYPE hold an empty string. This is not a normal case if you
design the database using foreign keys, but if the database was designed by
a RPG programmer, for example, this was done in this way, because RPG
programmer are not used to cope with nulls.
That is, you need a conversion for DRIVINGLICENCE_TYPE, for transform null
to empty string. This can be achieve with a code like this:

// We apply conversion (null into an empty String) to DRIVINGLICENCE_TYPE column
// In order to do it, we create drivingLicence_level and drivingLicence_type
// We make JoinColumns not insertable nor updatable, we modify the get/setDrivingLincence methods
// and we create a drivingLicenceConversion() method.
@ManyToOne(fetch=FetchType.LAZY)
@JoinColumns({ // 1

@JoinColumn(name="DRIVINGLICENCE_LEVEL", referencedColumnName="LEVEL",

Chapter 6: Object/relational mapping

OpenXava 3.0 111

http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://java.sun.com/j2se/1.5.0/docs/api/java/io/Serializable.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://www.hibernate.org/hib_docs/v3/api/org/hibernate/usertype/CompositeUserType.html

insertable=false, updatable=false),
@JoinColumn(name="DRIVINGLICENCE_TYPE", referencedColumnName="TYPE",

insertable=false, updatable=false)
})
private DrivingLicence drivingLicence;
private Integer drivingLicence_level; // 2
private String drivingLicence_type; // 2

public DrivingLicence getDrivingLicence() { // 3
// In this way because the column for type of driving lincence does not admit null
try {

if (drivingLicence != null) drivingLicence.toString(); // to force load
return drivingLicence;

}
catch (EntityNotFoundException ex) {

return null;
}

}

public void setDrivingLicence(DrivingLicence licence) { // 4
// In this way because the column for type of driving lincence does not admit null
this.drivingLicence = licence;
this.drivingLicence_level = licence==null?null:licence.getLevel();
this.drivingLicence_type = licence==null?null:licence.getType();

}

@PrePersist @PreUpdate
private void drivingLicenceConversion() { // 5

if (this.drivingLicence_type == null) this.drivingLicence_type = "";
}

First, you have to use @JoinColumns with insertable=false and
updatable=false on all @JoinColumn (1), in this way the reference is readed
from database, but it is not write. Also define plain properties for storing the
foreign key of the reference (2).
Now you must write a getter, getDrivingLicence() (3), for returning null when
the reference is not found; and a setter, setDrivingLicence() (4), for assigning
the key of the reference to the correspoding plain properties.
Finally, you have to write a callback method, drivingLincenceConversion() (5),
to do the conversion work. This method will be automatically executed on
create and update.
This example shows how it's possible to wrap legate databases simply using
a little of programming and some basic resources from JPA.

Chapter 6: Object/relational mapping

OpenXava 3.0 112

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Integer.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/JoinColumns.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/JoinColumn.html

° ° ° ° °

Chapter 6: Object/relational mapping

OpenXava 3.0 113

° ° ° ° °

Chapter 7: Controllers

The controllers are used for defining actions (buttons, links, images) that final
user can click. The controllers are defined in the controllers.xml file that has
to be in the xava directory of your project.
The actions are not defined in components because there are a lot of generic
actions that can be applied to any component.
In OpenXava/xava you have a default-controllers.xml that contains a group of
generic controllers that can be used in your applications.
The controllers.xml file contains an element of type <controllers/> with the
syntax:

<controllers>
<env-var ... /> ... <!-- 1 -->
<object ... /> ... <!-- 2 -->
<controller ... /> ... <!-- 3 -->

</controllers>

1. env-var (several, optional): Variable that contains configuration
information. This variable can be accessed from the actions and
filters, and its value can be overwritten in each module.

2. object (several, optional): Defines Java object with session scope; that
is objects that are created for an user and exist during his session.

3. controller (several, required): A controller is a group of actions.

Environment variables
The environment variables contain configuration information. These variables
can be accessed from the actions and filters, and its value can be
overwritten in each module. Its syntax is:

<env-var
name="name" <!-- 1 -->
value="value" <!-- 2 -->

/>

1. name (required): Name of the environment variable in uppercase and
using underscore to separate words.

2. value (required): Value for the environment variable.

OpenXava 3.0 114

These are some example:

<env-var name="MYAPPLICATION_DEFAULT_YEAR" value="2007"/>
<env-var name="MYAPPLICATION_COLOR" value="RED"/>

Session objects
The Java objects declared in controllers.xml have session scope; that is, they
are objects that are created for a user and exist during his session. It's
syntax is:

<object
name="objectName" <!-- 1 -->
class="objectType" <!-- 2 -->
value="initialValue" <!-- 3 -->
scope="module|global" <!-- 4 New in v2.1 -->

/>

1. name (required): Name of the object, usually you use the application
name as prefix to avoid name collision in large projects.

2. class (required): Full qualified Java class for this object.
3. value (optional): Initial value for the object.
4. scope (optional): (New in v2.1) The default value is module. If you use

module scope each module will have its own copy of this object. If
you use global scope the same object will be shared by all modules
of all OpenXava applications (running in the same .war).

Defining session objects is very easy, you can see the defined ones in
OpenXava/xava/default-controllers.xml:

<object name="xava_view" class="org.openxava.view.View"/>
<object name="xava_referenceSubview" class="org.openxava.view.View"/>
<object name="xava_tab" class="org.openxava.tab.Tab"/>
<object name="xava_mainTab" class="org.openxava.tab.Tab"/>
<object name="xava_row" class="java.lang.Integer" value="0"/>
<object name="xava_language" class="org.openxava.session.Language"/>
<object name="xava_newImageProperty" class="java.lang.String"/>
<object name="xava_currentReferenceLabel" class="java.lang.String"/>
<object name="xava_activeSection" class="java.lang.Integer" value="0"/>
<object name="xava_previousControllers" class="java.util.Stack"/>
<object name="xava_previousViews" class="java.util.Stack"/>

These objects are used by OpenXava in order to work, although it is quite
normal that you use some of these from your actions. If you want to create
your own objects you can do it in your controllers.xml in the xava directory
of your project.

Chapter 7: Controllers

OpenXava 3.0 115

The controller and its actions
The syntax of controller is:

<controller
name="name" <!-- 1 -->

>
<extends ... /> ... <!-- 2 -->
<action ... /> ... <!-- 3 -->

</controller>

1. name (required): Name of the controller.
2. extends (several, optional): Allows to use multiple inheritance, to do

this the controller inherits all actions from other controller(s).
3. action (several, required): Implements the logic to execute when the

final user clicks a button or link.
The controllers consist of actions, and actions are the main things. Here is its
syntax:

<action
name="name" <!-- 1 -->
label="label" <!-- 2 -->
description="description" <!-- 3 -->
mode="detail|list|ALL" <!-- 4 -->
image="image" <!-- 5 -->
class="class" <!-- 6 -->
hidden="true|false" <!-- 7 -->
on-init="true|false" <!-- 8 -->
on-each-request="true|false" <!-- 9 New in v2.1.2 -->
before-each-request="true|false" <!-- 10 New in v2.2.5 -->
by-default="never|if-possible|almost-always|always" <!-- 11 -->
takes-long="true|false" <!-- 12 -->
confirm="true|false" <!-- 13 -->
keystroke="keystroke" <!-- 14 New in v2.0.1 -->

>
<set ... /> ... <!-- 15 -->
<use-object ... /> ... <!-- 16 -->

</action>

1. name (required): Action name that must be unique within its
controller, but it can be repeated in other controllers. When you
reference an action always use the format ControllerName.actionName.

2. label (optional): Button label or link text. It's much better to use i18n
files.

3. description (optional): Description text of the action. It's much better
to use i18n files.

4. mode (optional): Indicates in which mode the action has to be visible.
The default value is ALL, that means that this action is always visible.

Chapter 7: Controllers

OpenXava 3.0 116

5. image (optional): URL of the image associated with this action. In the
current implementation if you specify an image, it is shown to user in
link format.

6. class (optional): Implements the logic to execute. Must implement
IAction interface.

7. hidden (optional): A hidden action is not shown in the button bar,
although it can be used in all other places, for example to associate
it to an event, as action of a property, in collections, etc. The default
is false.

8. on-init (optional): If you set this property to true, then the action will
be executed automatically on initiating the module. The default is
false.

9. on-each-request (optional): (New in v2.1.2) If you set this property to
true, then the action will be executed automatically on each request
of the user, that is, on first module execution and before each user
action execution. In the moment of execution all OpenXava session
objects are setup and ready to use. That is, from this action you can
use xava_view and xava_tab. The default is false.

10. before-each-request (optional): (New in v2.2.5) If you set this
property to true, then the action will be executed automatically before
each request of the user, that is, on first module execution and
before each user action execution, but before the OpenXava session
objects are setup and ready to use. That is, from this action you
cannot use xava_view or xava_tab. The default is false.

11. by-default (optional): Indicates the weight of this action on choosing
the action to execute as the default one. The default action is
executed when the user presses ENTER. The default is never.

12. takes-long (optional): If you set it to true, then you are indicating
that this action takes long time in executing (minutes or hours). In the
current implementation OpenXava shows a progress bar. The default
is false.

13. confirm (optional): If you set it to true, then before executing the
action a dialog is shown to the user to ask if he is sure to execute it.
The default is false.

14. keystroke (optional): (New in v2.0.1) Defines a keystroke that the
user can press for executing this action. The possible values are the
same as for javax.swing.KeyStroke. Examples: "control A", "alt x", "F7".

Chapter 7: Controllers

OpenXava 3.0 117

http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/IAction.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/KeyStroke.html

15. set (several, optional): Sets a value of action properties. Thus the
same action class can be configured in different ways and it can be
used in several controllers.

16. use-object (several, optional): Assigns a session object to an action
property just before executing the action. After the execution the
property value is put back into the context again (update the session
object, thus you can update even immutable objects).

Actions are short life objects, when a user clicks a button, then the action
object is created, configured (with set and use-object) and executed. After
that the session objects are updated, and finally the action object is
discarded.
A plain controller might look like this:

<controller name="Remarks">
<action name="hideRemarks"

class="org.openxava.test.actions.HideShowPropertyAction">
<set property="property" value="remarks" />
<set property="hide" value="true" />
<use-object name="xava_view"/>

</action>
<action name="showRemarks" mode="detail"

class="org.openxava.test.actions.HideShowPropertyAction">
<set property="property" value="remarks" />
<set property="hide" value="false" />
<use-object name="xava_view"/>

</action>
<action name="setRemarks" mode="detail"

class="org.openxava.test.actions.SetPropertyValueAction">
<set property="property" value="remarks" />
<set property="value" value="Hell in your eyes" />
<use-object name="xava_view"/>

</action>
</controller>

Now you can include this controller into the module that you want; this is
made by editing in xava/application.xml the module in which you can use
these actions:

<module name="Deliveries">
<model name="Delivery"/>
<controller name="Typical"/>
<controller name="Remarks"/>

</module>

Thus you have in your module the actions of Typical (CRUD and printing) plus
these defined by you in the controller named Remarks. The top button bar of
the module will have this aspect:

Chapter 7: Controllers

OpenXava 3.0 118

Ant the bottom button bar:

You can note as actions with image are located on top and actions without
image are located at bottom.
You can write code for hideRemarks like this:

package org.openxava.test.actions;

import org.openxava.actions.*;

/**
* @author Javier Paniza
*/

public class HideShowPropertyAction extends ViewBaseAction { // 1

private boolean hide;
private String property;

public void execute() throws Exception { // 2
getView().setHidden(property, hide); // 3

}

public boolean isHide() {
return hide;

}

public void setHide(boolean b) {
hide = b;

}

public String getProperty() {
return property;

}

public void setProperty(String string) {
property = string;

}

Chapter 7: Controllers

OpenXava 3.0 119

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html

}

An action must implement IAction, but usually it extends from a base class
that implements this interface. The base action more basic is BaseAction that
implements most of the method of IAction except execute(). In this case you
use ViewBaseAction as base class. ViewBaseAction has the property view of
type View. This joined to the next declaration in action...

<use-object name="xava_view"/>

...allows to manage the view (the user interface) from an action using view.
The <use-object /> gets the session object xava_view and assigns it to the
property view (removing the prefix xava_, in general removes the prefix
myapplication_ before assigning object to property) of your action just before
calling execute().
Now inside the execute() method you can use getView() as you want (3), in
this case for hiding a property. You can see all View possibilities in the
JavaDoc of org.openxava.view.View.
With...

<set property="property" value="remarks" />
<set property="hide" value="true" />

you can set constant values to the properties of your action.

Controllers inheritance
You can create a controller that inherits all actions from one or more
controllers. An example of this is the generic controller called Typical, this
controller is in OpenXava/xava/default-controllers.xml:

<controller name="Typical">
<extends controller="Print"/>
<extends controller="CRUD"/>

</controller>

When you assign the controller Typical to a module this module will have
available all actions of Print controller (to generate PDF reports and export to
Excel) and CRUD controller (to Create, Read, Update and Delete)
You can use inheritance to refine the way a standard controller works, e. g.
like this:

Chapter 7: Controllers

OpenXava 3.0 120

http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/BaseAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/IAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/ViewBaseAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/view/View.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/view/View.html

<controller name="Family">
<extends controller="Typical"/>
<action name="new" image="images/new.gif"

class="org.openxava.test.actions.CreateNewFamilyAction">
<use-object name="xava_view"/>
</action>

</controller>

As you see the name of your action new matches with an action in Typical
controller (in reality in CRUD controller from which extends Typical). In this
case the original action is ignored and your action is used. Thus you can put
your own logic to execute when a final user clicks the 'new' link.

List mode actions
You can write actions that apply to several objects. These actions are usually
are shown in list mode only and normally have effects on the objects chosen
by user only.
An example can be:

<action name="deleteSelected" mode="list" <!-- 1 -->
confirm="true" <!-- 2 -->
class="org.openxava.actions.DeleteSelectedAction">

</action>

You set mode=”list” in order to show it only in list mode (1). Since this
action deletes records you require that the user must confirm explicitly
before the action is executed (2). It's not needed to include a <use-object/>
for xava_tab (new in v2.1.4).
The action source code:

package org.openxava.actions;

import java.util.*;

import org.openxava.model.*;
import org.openxava.validators.*;

/**
* @author Javier Paniza
*/

public class DeleteSelectedAction extends TabBaseAction implements IModelAction { // 1
private String model;

public void execute() throws Exception {
int [] selectedOnes = getTab().getSelected(); // 2

Chapter 7: Controllers

OpenXava 3.0 121

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html

if (selectedOnes != null) {
for (int i = 0; i < selectedOnes.length; i++) {

Map key = (Map)
getTab().getTableModel().getObjectAt(selectedOnes[i]);

try {
MapFacade.remove(model, key); // (3)

}
catch (ValidationException ex) {

addError("no_delete_row", new Integer(i), key);// (4)
addErrors(ex.getErrors());

}
catch (Exception ex) {

addError("no_delete_row", new Integer(i), key);
}

}
getTab().deselectAll(); // 5
resetDescriptionsCache(); // 6

}
}

public void setModel(String modelName) { // 7
this.model = modelName;

}
}

This action is a standard action of OpenXava, but it allows you to see the
things that you can do within an action in list mode. You can observe (1)
how the action extends from TabBaseAction and implements IModelAction.
Since it extends from TabBaseAction (new in v2.1.4) it has a group of utilities
and you don't need to implement all methods of IAction; and as it
implements IModelAction this action has a method called setModel() (7) that
receives the model name (the name of OpenXava component) before
executing it.
You can access to the Tab using the getTab() method (2); this method is
implemented in TabBaseAction and it allows you to access to the xava_tab
session object. By means of getTab() you are allowed to manage the list of
displayed objects. For example, with getTab().getSelected() (2) you obtain the
indexes of selected rows, with getTab().getTableModel() a table model to
access to data, and with getTab().deselectAll() you deselect the rows. You can
take a look of org.openxava.tab.Tab JavaDoc for more details on its
possibilities.
Something very interesting you can see in this example is the use of
MapFacade (3). MapFacade allows you to access the data model using Java
maps (java.util.Map). This is useful, if you get data from Tab or View in Map
format and you want to update the model (and therefore the database) with
it, or vice versa. All generic classes of OpenXava use MapFacade to manage

Chapter 7: Controllers

OpenXava 3.0 122

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Map.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Map.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Integer.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Integer.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/TabBaseAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/IModelAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/IAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/tab/Tab.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Map.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/tab/Tab.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/view/View.html

the model and you also can use MapFacade. As general design tip: working
with maps is useful in the case of generic logic, but if you need to program
specific things it is better to use directly the object of model layer. For more
details have a look at the JavaDoc of org.openxava.model.MapFacade.
You see here how to display messages to the user with addError(). The
addError() method receives the id of an entry in your i18n files and the
argument to send to the message. The added messages are displayed to the
user as errors. If you want to add warning or informative messages you can
use addMessage() whose behavior is like addError(). The i18n files that hold
errors and messages must be called MyProject-messages.properties and the
language sufix (_en, _ca, _es, _it, etc). You can see the examples in
OpenXavaTest/xava/i18n. All not caught exceptions produces a generic error
messages, except if the not caught exception is of the type
ValidationException. In this case the message exception is displayed.
The resetDescriptionsCache() (6) method deletes all cache entries used by
OpenXava to display descriptions list (combos). It's a good idea to call it
whenever data is updated.
You can see more possibilities in org.openxava.actions.BaseAction and
org.openxava.actions.TabBaseAction JavaDoc.
Since v2.1.4 this type of actions can also be used as @ListAction
(<list-action/> of a <collection-view/>).

Overwriting default search
When a module is shown in list mode and the user clicks to display a detail,
then OpenXava searches the corresponding object and displays it in detail.
Now, if in detail mode the user fills the key fields and clicks on search (the
binoculars), it also does the same. And when the user navigates by the
records clicking the next or previous buttons then it does the same search.
How can you customize this search? Let's see that:
You only need to define the module in xava/application.xml this way:

<module name="Deliveries">
<env-var name="XAVA_SEARCH_ACTION" value="Deliveries.search"/>
<model name="Delivery"/>
<controller name="Typical"/>
<controller name="Remarks"/>
<controller name="Deliveries"/>

</module>

Chapter 7: Controllers

OpenXava 3.0 123

http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/model/MapFacade.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/validators/ValidationException.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/BaseAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/TabBaseAction.html

You see how it is necessary to define an environment variable named
XAVA_SEARCH_ACTION that contains the action that you want to use for
searching. This action is defined in xava/controllers.xml:

<controller name="Deliveries">
<action name="search" mode="detail"

by-default="if-possible" hidden="true"
class="org.openxava.test.actions.SearchDeliveryAction"
keystroke="F8">
<use-object name="xava_view"/>

</action>
...

</controller>

And its code:

package org.openxava.test.actions;

import java.util.*;

import org.openxava.actions.*;
import org.openxava.util.*;

/**
* @author Javier Paniza
*/

public class SearchDeliveryAction extends SearchByViewKeyAction { // 1

public void execute() throws Exception {
super.execute(); // 2
if (!Is.emptyString(getView().getValueString("employee"))) {

getView().setValue("deliveredBy", new Integer(1));
getView().setHidden("carrier", true);
getView().setHidden("employee", false);

}
else {

Map carrier = (Map) getView().getValue("carrier");
if (!(carrier == null || carrier.isEmpty())) {

getView().setValue("deliveredBy", new Integer(2));
getView().setHidden("carrier", false);
getView().setHidden("employee", true);

}
else {

getView().setHidden("carrier", true);
getView().setHidden("employee", true);

}
}

}

}

In this action you have to search the database (or through EJB2, EJB3 JPA or
Hibernate) and fill the view. Most times it is better that it extends

Chapter 7: Controllers

OpenXava 3.0 124

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Integer.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Map.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Map.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Integer.html

SearchByViewKeyAction (1) and within execute() write a super.execute() (2).
OpenXava comes with 3 predefined search actions:

• CRUD.searchByViewKey: This is the default one. It does a search
using the key values in the view, it executes no event.

• CRUD.searchExecutingOnChange: Works as searchByViewKey but it
executes the @OnChange/on-change actions after search data.

• CRUD.searchReadOnly: Works as searchByViewKey but it set the
detail view to not editable state on searching. Useful for creating read
only modules.

If you want that the @OnChange/on-change actions will be executed on
search then you must define your module this way:

<module name="Products3ChangeActionsOnSearch">
<env-var name="XAVA_SEARCH_ACTION" value="CRUD.searchExecutingOnChange"/>
<model name="Product3"/>
<view name="WithDescriptionsList"/>
<controller name="Typical"/>
<controller name="Products3"/>
<mode-controller name="Void"/>

</module>

As you see, simply by setting the value of the XAVA_SEARCH_ACTION
environment variable.

Initialize a module with an action
By setting on-create=”true” when you define an action, you configure that
this action will be executed automatically when the module is executed for
the first time. This is a chance to initialize the module. Let's see an example.
In your controllers.xml you write:

<controller name="Invoices2002">
<action name="init" on-init="true" hidden="true"

class="org.openxava.test.actions.InitDefaultYearTo2002Action">
<use-object name="xavatest_defaultYear"/>
<use-object name="xava_tab"/>

</action>
...

</controller>

And in your action:

package org.openxava.test.actions;

import org.openxava.actions.*;
import org.openxava.tab.*;

Chapter 7: Controllers

OpenXava 3.0 125

http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/SearchByViewKeyAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/OnChange.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/annotations/OnChange.html

/**
* @author Javier Paniza
*/

public class InitDefaultYearTo2002Action extends BaseAction {

private int defaultYear;
private Tab tab;

public void execute() throws Exception {
setDefaultYear(2002); // 1
tab.setTitleVisible(true); // 2
tab.setTitleArgument(new Integer(2002)); // 3

}

public int getDefaultYear() {
return defaultYear;

}

public void setDefaultYear(int i) {
defaultYear = i;

}

public Tab getTab() {
return tab;

}

public void setTab(Tab tab) {
this.tab = tab;

}

}

In this action you set the default year to 2002 (1), you make the title list
visible (2) and you assign a value as an argument to that title (3). The list
title is defined in the i18n files, usually it's used for reports, but you can
show it in list mode too.

Calling another module
Sometimes it's convenient to call programmatically one module from another
one. For example, imagine that you want to show a list of customers and
when the user clicks on one customer, then a list of its invoices is displayed
and the user can choose an invoice to edit. One way to obtain this effect is
to have a module with only list mode and when the user clicks on a detail,
the user is directed to an invoices module that shows only the invoices of

Chapter 7: Controllers

OpenXava 3.0 126

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Integer.html

the chosen customer. Let's see it. First you need to define the module in
application.xml this way:

<module name="InvoicesFromCustomers">
<env-var name="XAVA_LIST_ACTION" value="Invoices.listOfCustomer"/> <!-- 1 -->
<model name="Customer"/>
<controller name="Print"/>
<controller name="ListOnly"/> <!-- 2 -->
<mode-controller name="Void"/> <!-- 3 -->

</module>

In this module only the list is shown (without detail part), for this you set the
mode controller to Void (3) thus 'detail' and 'list' links are not displayed; and
also you add a controller called ListOnly (2) in order to show the list mode,
and only the list mode (if you only set the mode controller to Void the detail,
and only the detail is displayed). Moreover you declare the variable
XAVA_LIST_ACTION to define your custom action. When the user clicks the
link in each row, then your own action will be executed. You must declare
this action in controllers.xml:

<controller name="Invoices">
<action name="listOfCustomer" hidden="true"

class="org.openxava.test.actions.ListCustomerInvoicesAction">
<use-object name="xava_tab"/>

</action>
...

</controller>

And the action code:

package org.openxava.test.actions;

import java.util.*;

import org.openxava.actions.*;
import org.openxava.controller.*;
import org.openxava.tab.*;

/**
* @author Javier Paniza
*/
public class ListCustomerInvoicesAction extends BaseAction

implements IChangeModuleAction, // 1
IModuleContextAction { // 2

private int row; // 3
private Tab tab;
private ModuleContext context;

public void execute() throws Exception {
Map customerKey = (Map) tab.getTableModel().getObjectAt(row); // 4

Chapter 7: Controllers

OpenXava 3.0 127

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Map.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Map.html

int customerNumber = ((Integer) customerKey.get("number")).intValue();
Tab invoiceTab = (Tab)

context.get("OpenXavaTest", getNextModule(), "xava_tab"); // 5
invoiceTab.setBaseCondition("${customer.number} = "+customerNumber); // 6

}

public int getRow() { // 3
return row;

}
public void setRow(int row) { // 3

this.row = row;
}

public Tab getTab() {
return tab;

}
public void setTab(Tab tab) {

this.tab = tab;
}

public String getNextModule() { // 7
return "CustomerInvoices";

}

public void setContext(ModuleContext context) { // 8
this.context = context;

}

public boolean hasReinitNextModule() { // 9
return true;

}

}

In order to change to another module the action implements
IChangeModuleAction (1) thus forces the action to have a method called
getNextModule() (7). This will indicate to which module OpenXava will switch
after executing this action. The method hasReinitNextModule() (9) indicates,
whether you want that the target module has re-initiated on changing to it.
On the other hand this action implements IModuleContextAction (2) too and
therefore it receives an object of type ModuleContext with the method
setContext() (8). ModuleContext allows you to access the session objects of
others modules. This is useful to configure the target module before changing
to it.
Another detail is that the action specified in XAVA_LIST_ACTION must have a
property named row (3); before executing the action this property is filled
with the row number that user has clicked.
If you keep in mind the above details it is easy to understand the action:

Chapter 7: Controllers

OpenXava 3.0 128

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Integer.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/IChangeModuleAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/IModuleContextAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/controller/ModuleContext.html

• Gets the key of the object associated to the clicked row (4), to do
this it uses the tab of the current module.

• Accesses to the tab of the target module using context (5).
• Sets the base condition of the tab of target module using the key

obtained from current tab.

Changing the module of current view
As an alternative to change the module you can choose changing the model
of the current view. This is easy, you only need to use the APIs available in
View. An example:

public void execute() throws Exception {
try {

setInvoiceValues(getView().getValues()); // 1
Object number = getCollectionElementView().getValue("product.number");
Map key = new HashMap();
key.put("number", number);
getView().setModelName("Product"); // 2
getView().setValues(key); // 3
getView().findObject(); // 4
getView().setKeyEditable(false);
getView().setEditable(false);

}
catch (ObjectNotFoundException ex) {

getView().clear();
addError("object_not_found");

}
catch (Exception ex) {

ex.printStackTrace();
addError("system_error");

}
}

This is an extract of an action that allows to visualize an object of another
type. First you need to memorize the current displayed data (1), to restore it
on returning. After this, you change the model of view (2), this is the
important part. Finally you fill the key values (3) and use findObject() (4) to
load all data in the view.
When you use this technique you have to keep in mind that each module
has only one xava_view object active at a time, thus if you wish to go back
you have the responsibility of restoring the original model in the view and
restoring the original data.

Chapter 7: Controllers

OpenXava 3.0 129

http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/view/View.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Map.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/HashMap.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html

Go to a JSP page
The automatic view generator of OpenXava is good for most cases, but it can
be required to display a JSP page hand-written by you. You can do this with
an action like this:

package org.openxava.test.actions;

import org.openxava.actions.*;

/**
* @author Javier Paniza
*/

public class MySearchAction extends BaseAction implements INavigationAction { // 1

public void execute() throws Exception {
}

public String[] getNextControllers() { // 2
return new String [] { "MyReference" } ;

}

public String getCustomView() { // 3
return "doYouWishSearch.jsp";

}

public void setKeyProperty(String s) {
}

}

In order to go to a custom view (in this case a JSP page) your action has to
implement INavigationAction (ICustomViewAction is enough). This way you can
indicate with getNextControllers() (2) the next controllers to use and with
getCustomView() (3) the JSP page to display (3).

Generating a custom report with JasperReports
OpenXava allows the final user to generate their own reports from the list
model. The user can perform filtering, ordering, adding/removing fields,
changing the positions of the fields and then generate a PDF report of the
list.
But in all non-trivial business application you need to create programatically
your own reports. You can do that easily by using JasperReports and then by
integrating the reports into your OpenXava application with the action
JasperReportBaseAction.

Chapter 7: Controllers

OpenXava 3.0 130

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/INavigationAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/ICustomViewAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/JasperReportBaseAction.html

In the first place you need to design your report with JasperReports, you can
use iReport an excellent designer for JasperReports.
Then you can write your action to print the report in this way:

package org.openxava.test.actions;

import java.util.*;

import net.sf.jasperreports.engine.*;
import net.sf.jasperreports.engine.data.*;

import org.openxava.actions.*;
import org.openxava.model.*;
import org.openxava.test.model.*;
import org.openxava.util.*;
import org.openxava.validators.*;

/**
* Report of products of the selected subfamily. <p>
*
* Uses JasperReports.

*
* @author Javier Paniza
*/
public class FamilyProductsReportAction extends JasperReportBaseAction { // 1

private ISubfamily2 subfamily;

public Map getParameters() throws Exception { // 2
Messages errors =

MapFacade.validate("FilterBySubfamily", getView().getValues());
if (errors.contains()) throw new ValidationException(errors); // 3
Map parameters = new HashMap();
parameters.put("family", getSubfamily().getFamily().getDescription());
parameters.put("subfamily", getSubfamily().getDescription());
return parameters;

}

protected JRDataSource getDataSource() throws Exception { // 4
return new JRBeanCollectionDataSource(getSubfamily().getProductsValues());

}

protected String getJRXML() { // 5
return "Products.jrxml"; // To read from classpath
// return "/home/javi/Products.jrxml"; // To read from file system

}

private ISubfamily2 getSubfamily() throws Exception {
if (subfamily == null) {

int subfamilyNumber = getView().getValueInt("subfamily.number");
// Using JPA, the usual with OX3
subfamily = XPersistence.getManager().find(

Subfamily2.class, new Integer(subfamilyNumber));
// Using Hibernate, the usual with OX2, but still supported

Chapter 7: Controllers

OpenXava 3.0 131

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Map.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Map.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/HashMap.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Integer.html

// subfamily = (ISubfamily2)
// XHibernate.getSession().get(
// Subfamily2.class, new Integer(subfamilyNumber));
// Using EJB2, the usual with OX1, but still supported
//subfamily = Subfamily2Util.getHome().
// findByPrimaryKey(new Subfamily2Key(subfamilyNumber));

}
return subfamily;

}

}

Your action has to extend JasperReportBaseAction (1) and it has to overwrite
the next three method:

• getParameters() (2): A Map with the parameters to send to the
report, in this case we validate the input data (using
MapFacade.validate()) before (3).

• getDataSource() (4): A JRDataSource with data to print. In this case
it is a collection of JavaBeans obtained calling a method of the model
object. If you use EJB CMP2 Entities be careful and do not loop over
an EJB2 Entity collection inside this method, as in this case is better
only one EJB call to obtain all data.

• getJRXML() (5): The XML with the JasperReports design, this file can
be in the classpath. You may have a source code folder called reports
in your project to hold these files. Other option is put this file in the
file system (new in v2.0.3), this is achieved by specifying the full path
of file, for example: /home/javi/Products.jrxml.

By default the report is displayed in a popup window, but if you wish the
report in the current window, then you can overwrite the method
inNewWindow().
You can find more examples of JasperReport actions in the OpenXavaTest
project, as InvoiceReportAction for printing an Invoice.

Uploading and processing a file from client (multipart
form)

This feature allows you to process in your OpenXava application a binary file
(or several) provided by the client. This is implemented in a HTTP/HTML
context using HTML multipart forms, although the OpenXava code is
technologically neutral, hence your action will be portable to another
environment with no recoding.

Chapter 7: Controllers

OpenXava 3.0 132

http://jasperreports.sourceforge.net/api/net/sf/jasperreports/engine/JRDataSource.html

In order to upload a file the first step is creating an action to direct to a
form where the user can choose his file. This action must implements
ILoadFileAction in this way:

public class ChangeImageAction extends BaseAction implements ILoadFileAction { // 1
...
public void execute() throws Exception { // 2
}

public String[] getNextControllers() { // 3
return new String [] { "LoadImage" };

}

public String getCustomView() { // 4
return "xava/editors/changeImage";

}

public boolean isLoadFile() { // 5
return true;

}

...
}

An ILoadFileAction (1) action is also an INavigationAction action that allows
you to navigate to another controller (3) and to a custom view (4). The new
controller (3) usually will have an action of type IProcessLoadedFileAction. The
method isLoadFile() (5) returns true in case that you want to navigate to the
form to upload the file, you can use the logic in execute() (2) to determine
this value. The custom view is (4) a JSP with your own form to upload the
file.
An example of a JSP for a custom view is:

<%@ include file="../imports.jsp"%>

<jsp:useBean id="style" class="org.openxava.web.style.Style" scope="request"/>

<table>
<th align='left' class=<%=style.getLabel()%>>
<fmt:message key="enter_new_image"/>
</th>
<td>
<input name = "newImage" class=<%=style.getEditor()%> type="file" size='60'/>
</td>
</table>

As you see, the HTML form is not specified, because the OpenXava module
already has the form.
The last piece is the action for processing the uploaded files:

Chapter 7: Controllers

OpenXava 3.0 133

http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/ILoadFileAction.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/INavigationAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/IProcessLoadedFileAction.html

public class LoadImageAction extends BaseAction
implements INavigationAction, IProcessLoadedFileAction { // 1

private List fileItems;
private View view;
private String newImageProperty;

public void execute() throws Exception {
Iterator i = getFileItems().iterator(); // 2
while (i.hasNext()) {

FileItem fi = (FileItem)i.next(); // 3
String fileName = fi.getName();
if (!Is.emptyString(fileName)) {

getView().setValue(getNewImageProperty(), fi.get()); // 4
}

}
}

public String[] getNextControllers() {
return DEFAULT_CONTROLLERS;

}

public String getCustomView() {
return DEFAULT_VIEW;

}

public List getFileItems() {
return fileItems;

}

public void setFileItems(List fileItems) { // 5
this.fileItems = fileItems;

}
...

}

The action implements IProcessLoadedFileAction (1), thus the action must
have a method setFileItem() (5) to receive the list of uploaded files. This list
can be processed in execute() (2). The elements of the collection are of type
org.apache.commons.fileupload.FileItem (4) (from fileupload project of apache
commons). Only calling to get() (4) in the file item you will access to the
content of the uploaded file.

Override the default controllers (new in v2.0.3)
The controllers in OpenXava/xava/default-controllers.xml (before v2.0.3 it was
OpenXava/xava/controllers.xml) are used by OpenXava to give to application a
default behavior. Many times the easier way to override the default behavior
of OpenXava is creating our own controllers and use them in our applications,

Chapter 7: Controllers

OpenXava 3.0 134

http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+List
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/text/View.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Exception.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Iterator.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+List
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+List
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/IProcessLoadedFileAction.html
http://commons.apache.org/fileupload/apidocs/org/apache/commons/fileupload/FileItem.html

that is you can create a controller called MyTypical, and using it in your
modules instead of Typical that comes with OpenXava.
Another option is override a default controller of OpenXava. In order to
override a default controller you only need to create in your application a
controller with the same name of default one. For example, if you want refine
the collections behavior for your application then you have to create a
Collection controller in your xava/controllers.xml, as following:

<controller name="Collection">
<action name="new"

class="org.openxava.actions.CreateNewElementInCollectionAction">
</action>
<action name="hideDetail" <!-- 1 -->

class="org.openxava.test.actions.MyHideDetailElementInCollection">
</action>
<action name="save"

class="org.openxava.actions.SaveElementInCollectionAction">
<use-object name="xava_view"/>

</action>
<action name="remove"

class="org.openxava.actions.RemoveElementFromCollectionAction">
<use-object name="xava_view"/>

</action>
<action name="edit"

class="org.openxava.actions.EditElementInCollectionAction">
<use-object name="xava_view"/>

</action>
<action name="view"

class="org.openxava.actions.EditElementInCollectionAction">
<use-object name="xava_view"/>

</action>
</controller>

In this case we only override the behavior of hideDetail (1) action. But we
must declare all actions of the original controller, because OpenXava rely on
all these actions for working; we cannot remove or rename actions.

All action types
You have seen until now that the behavior of your actions depends on which
interfaces they implement. Next the available interfaces for actions are
enumerated:

• IAction: Basic interface to be implemented by all actions.
• IChainAction: Allows you to chain actions, that is when the execution

of the action finishes, then the next action is executed immediately.

Chapter 7: Controllers

OpenXava 3.0 135

http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/IAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/IChainAction.html

• IChainActionWithArgv: (New in v2.2) It's a refinement of
IChainAction. It allows to send as arguments values for filling
properties of the chained action before execute it.

• IChangeControllersAction: To change the controller (the actions)
available to user.

• IChangeModeAction: To change the mode, from list to detail or vice
versa.

• IChangeModuleAction: To change the module.
• ICustomViewAction: To use as view your custom JSP.
• IForwardAction: Redirects to a Servlet or JSP page. It is not like

ICustomViewAction; ICustomViewAction puts your JSP inside the user
interface generated by OpenXava (that can be inside a portal), while
IForwardAction redirects completely to the specified URI.

• IHideActionAction, IHideActionsAction: Allows to hide an action or
a group of actions in the User Interface (new in v2.0).

• IJDBCAction: Allows to use JDBC in an action directly. It receives an
IConnectionProvider. Works like an IJDBCCalculator (see chapter 3).

• ILoadFileAction: Navigates to a view that allows the final user to
load a file.

• IModelAction: An action that receives the model name.
• IModuleContextAction: Gets a ModuleContext in order to access the

session objects of other modules.
• INavigationAction: Extends from IChangeControllersAction and

ICustomViewAction.
• IOnChangePropertyAction: This interface must be implemented by

the actions that react to the value change event in the user interface.
• IProcessLoadedFileAction: Processes a list of files uploaded from

client to server.
• IRemoteAction: Useful when you use EJB2. Well used it can be a

good substitute for a SessionBean.
• IRequestAction: Receives a servlet request. This type of actions links

your application to the Servlet/JSP technology, hence it is better
avoiding it. But sometimes a little bit of flexibility is needed.

• IShowActionAction, IShowActionsAction: Allows to show an action
or a group of actions previously hidden in an IHideAction(s)Action
(new in v2.0).

If you wish to learn more about actions the best thing you can do is to have
a look at the JavaDoc API of the package org.openxava.actions and to try out
the examples of OpenXavaTest project.

Chapter 7: Controllers

OpenXava 3.0 136

http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/IChainActionWithArgv.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/IChangeControllersAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/IChangeModeAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/IChangeModuleAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/ICustomViewAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/IForwardAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/IHideActionAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/IHideActionsAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/IJDBCAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/util/IConnectionProvider.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/calculators/IJDBCCalculator.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/ILoadFileAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/IModelAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/IModuleContextAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/controller/ModuleContext.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/INavigationAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/IOnChangePropertyAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/IProcessLoadedFileAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/IRemoteAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/IRequestAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/IShowActionAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/IShowActionsAction.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/actions/package-summary.html

° ° ° ° °

Chapter 7: Controllers

OpenXava 3.0 137

° ° ° ° °

Chapter 8: Application

An application is the software that the final user can use. For now you have
seen how to define the pieces that make up an application (mainly the
components and the actions), now you will learn how to assemble these
pieces in order to create applications.
The definition of an OpenXava application is given in the file application.xml
that can be found in the xava directory of your project.
The file syntax is:

<application
name="name" <!-- 1 -->
label="label" <!-- 2 -->

>
<default-module ... /> ... <!-- 3 New in v2.2.2 -->
<module ... /> ... <!-- 4 -->

</application>

1. name (required): Name of the application.
2. label (optional): It's much better to use i18n files.
3. default-module (one, optional): New in v2.2.2. For defining the

controllers for the default (automatically generated for each
component) modules.

4. module (several, optional): Each module executable by final user.
In short, an application is a set of modules. Let's see how define a module:

<module
name="name" <!-- 1 -->
folder="folder" <!-- 2 -->
label="label" <!-- 3 -->
description="description" <!-- 4 -->

>
<env-var ... /> ... <!-- 5 -->
<model ... /> <!-- 6 -->
<view ... /> <!-- 7 -->
<web-view ... /> <!-- 8 -->
<tab ... /> <!-- 9 -->
<controller ... /> ... <!-- 10 -->
<mode-controller ... /> <!-- 11 -->
<doc ... /> <!-- 12 -->

</module>

1. name (required): Unique identifier of the module within this
application.

OpenXava 3.0 138

2. folder (optional): Folder in which the module will reside. It's a tip to
classify the modules. For the moment it's used to generate a folder
structure for JetSpeed2 but its use can be amplified in future. You can
use / or . to indicate subfolders (for example, "invoicing/reports" or
"invoicing.reports").

3. label (optional): Short name to be shown to the user. It's much better
to use i18n files.

4. description (optional): Long description to be shown to the user. It's
much better to use i18n files.

5. env-var (several, optional): Allows you to define variables with a value
that can be accessed by actions. Thus you can have actions
configurable by module.

6. model (one, optional): Name of the component used in this module. If
you leave it blank, then it is required to set the value to web-view.

7. view (one, optional): The view used to display the detail. If you leave
it blank, then the default view will be used.

8. web-view (one, optional): Allows you to define a JSP page to be used
as a view.

9. tab (one, optional): The tab used in list mode. If you do not specify it,
then the default tab will be used.

10. controller (several, optional): Controllers with the available actions
used initially.

11. mode-controller (one, optional): Allows to define the behavior to
switch from detail to list mode and vice versa, as well as to define a
module without detail and view (with no modes).

12. doc (one, optional): It's mutually exclusive with all other elements. It
allows you to define a module that contains documentation only and
no logic. Useful for generating informational portlets for your
application.

Typical module example
Defining a simple module can be like this:

<application name="Management">
<module name="Warehouse" folder="warehousing">

<model name="Warehouse"/>
<controller name="Typical"/>
<controller name="Warehouse"/>

</module>

Chapter 8: Application

OpenXava 3.0 139

...
</application>

In this case you have a module that allows the user to create, to delete, to
update, to search, to generate PDF reports and to export to Excel the
warehouses data (thanks to Typical controller) and also to execute actions
only for warehouses (thank to Warehouse controller). In the case the system
generates a module structure (as in JetSpeed2 case) this module will be in
folder "warehousing".
In order to execute this module you need to open your browser and go to:
http://localhost:8080/Management/xava/
module.jsp?application=Management&module=Warehouse
Also a portlet is generated to allow you to deploy the module as a JSR-168
portlet in a Java portal.

Default modules (new in v2.2.2)
OpenXava assumes a default module for each component in the application,
although the module is not explicitly defined in applicaction.xml.
That is, if you define a component Invoice.xml, you can open your browser
and go to:
http://localhost:8080/Management/xava/
module.jsp?application=Management&module=Invoice
Also a portlet is generated to allow you to deploy the module as a JSR-168
portlet in a Java portal.
And all this without defining it in application.xml.
The controller for these default modules will be Typical, but you can change
this default value using the default-module element in application.xml, in this
way:

<application name="Management">

<default-module>
<controller name="ManagementCRUD"/>

</default-module>

</application>

In this case all the default modules of the Management application will have
the controller ManagementCRUD assigned to them.
If you want that certain module does not use these default controllers, you
have two options:

Chapter 8: Application

OpenXava 3.0 140

http://localhost:8080/Management/xava/module.jsp?application=Management&module=Warehouse
http://localhost:8080/Management/xava/module.jsp?application=Management&module=Warehouse
http://localhost:8080/Management/xava/module.jsp?application=Management&module=Invoice
http://localhost:8080/Management/xava/module.jsp?application=Management&module=Invoice

1. To define a controller in your controllers.xml with the same name of
the component.

2. To define explicitly the module in application.xml, as it's explained
above.

To sum up, if you define a component, named Customer, for example, then
you have a module named Customer, and also a portlet. This module will be
defined in one of this ways:

1. If you define a module named Customer in application.xml then this
module will be the valid one, else...

2. If you define a controller named Customer in controllers.xml a module
will generated using the controller Customer as controller and the
component Customer as model, else..

3. 3.If you define a default-module element in your application.xml then
a module will generated using the controllers in default-module and
the component Customer as model, else ...

4. as fallback a module with Typical as controller and Customer as
model will be assumed.

Only detail module
A module with only detail mode, without list, is defined this way:

<module name="InvoiceNoList">
<model name="Invoice"/>
<controller name="Typical"/>
<mode-controller name="Void"/> <!-- 1 -->

</module>

Void (1) mode controller is for removing the "detail – list" links; in this case
by default the module uses detail mode only.

Only list module
A module with only list mode, without detail, is defined this way:

<module name="FamilyListOnly">
<env-var name="XAVA_LIST_ACTION" value=""/> <!-- 1 New in v2.0.4 -->
<model name="Family"/>
<controller name="Typical"/>
<controller name="ListOnly"/> <!-- 2 -->
<mode-controller name="Void"/> <!-- 3 -->

</module>

Chapter 8: Application

OpenXava 3.0 141

Void (3) mode controller is for removing the "detail – list" links. Furthermore
on defining ListOnly (2) as controller the module changes to list mode on init,
so this is an only list module. Finally, setting XAVA_LIST_ACTION to empty
string (1) the detail link in each row is missing (new in v2.0.4).

Documentation module
A documentation module can only display a HTML document. It's easy to
define:

<module name="Description">
<doc url="doc/description" languages="en,es"/>

</module>

This module shows the document web/doc/description_en.html or web/doc/
description_es.html depending on the browser language. If the browser
language is not English nor Spanish then it assumes English (the first
specified language). If you do not specify the language, then the document
web/doc/description.html is shown.
This is useful for informational portlets. This type of module has no effect
outside a portal environment.

Read only module
A read only module, that is only for consulting data, not for modifying, can
be defined as following:

<module name="CustomerReadOnly">
<env-var name="XAVA_SEARCH_ACTION" value="CRUD.searchReadOnly"/> <!-- 1 -->
<model name="Customer"/>
<controller name="Print"/> <!-- 2 -->

</module>

Using CRUD.searchReadOnly (1) the user cannot edit the data, and using only
Print controller (2) (without CRUD or Typical) the actions for saving, deleting,
etc are not available. This is a simply consulting module.

The syntax for application.xml is not difficult. You can see more examples in
OpenXavaTest/xava/application.xml.

Chapter 8: Application

OpenXava 3.0 142

° ° ° ° °

Chapter 8: Application

OpenXava 3.0 143

° ° ° ° °

Chapter 9: Customizing

User Interface generated by OpenXava is good for most cases, but sometimes
you may need customizing some part of the user interface (creating your
own editors) or create your own handmade user interface (using custom JSP
views) completly.

Editors

Editors configuration
You see that the level of abstraction used to define views is high, you specify
the properties to be shown and how to layout them, but not how to render
them. To render properties OpenXava uses editors.
An editor indicates how to render a property. It consists of an XML definition
put together with a JSP fragment.
To refine the behavior of the OpenXava editors or to add your custom editors
you must create in the folder xava of you project a file called editors.xml.
This file looks like this:

<?xml version = "1.0" encoding = "ISO-8859-1"?>

<!DOCTYPE editors SYSTEM "dtds/editors.dtd">

<editors>
<editor .../> ...

</editors>

Simply it contains the definition of a group of editors, and an editor is
defined like this:

<editor
url="url" <!-- 1 -->
format="true|false" <!-- 2 -->
depends-stereotypes="stereotypes" <!-- 3 -->
depends-properties="properties" <!-- 4 -->
frame="true|false" <!-- 5 -->

>
<property ... /> ... <!-- 6 -->
<formatter ... /> <!-- 7 -->

OpenXava 3.0 144

<for-stereotype ... /> ... <!-- 8 -->
<for-type ... /> ... <!-- 8 -->
<for-model-property ... /> ... <!-- 8 -->

</editor>

1. url (required): URL of JSP fragment that implements editor.
2. format (optional): If true, then OpenXava has the responsibility of

formatting the data from HTML to Java and vice versa; if false, then
the responsibility of this is for the editor itself (generally getting the
data from request and assigning it to org.openxava.view.View and
vice versa). The default is true.

3. depends-stereotypes (optional): List of stereotypes (comma
separated) which this editor depends on. If in the same view there
are some editors for these stereotypes they throw a change value
event if its values change.

4. depends-properties (optional): List of properties (comma separated)
on which this editor depends. If in the same view there are some
editors for these properties they throw a change value event if its
values change.

5. frame (optional): If true, then the editor will be displayed inside a
frame. The default is false. Useful for big editors (more than one line)
that can be prettier this way.

6. property (several, optional): Set values in the editor; this way you
can configure your editor and use it several times in different cases.

7. formatter (one, optional): Java class to define the conversion from
Java to HTML and from HTML to Java.

8. for-stereotype or for-type or for-model-property (required one of
these, but only one): Associates this editor with a stereotype, type or
a concrete property of a model. The preference order is: first model
property, then stereotype and finally type.

Let's see an example of an editor definition. This example is an editor that
comes with OpenXava, but it is a good example to learn how to make your
custom editors:

<editor url="textEditor.jsp">
<for-type type="java.lang.String"/>
<for-type type="java.math.BigDecimal"/>
<for-type type="int"/>
<for-type type="java.lang.Integer"/>
<for-type type="long"/>
<for-type type="java.lang.Long"/>

</editor>

Chapter 9: Customizing

OpenXava 3.0 145

http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/view/View.html

Here a group of basic types is assigned to the editor textEditor.jsp. The JSP
code of this editor is:

<%@ page import="org.openxava.model.meta.MetaProperty" %>

<%
String propertyKey = request.getParameter("propertyKey"); // 1
MetaProperty p = (MetaProperty) request.getAttribute(propertyKey); // 2
String fvalue = (String) request.getAttribute(propertyKey + ".fvalue"); // 3
String align = p.isNumber()?"right":"left"; // 4
boolean editable="true".equals(request.getParameter("editable")); // 5
String disabled=editable?"":"disabled"; // 5
String script = request.getParameter("script"); // 6
boolean label = org.openxava.util.XavaPreferences.getInstance().isReadOnlyAsLabel();
if (editable || !label) { // 5
%>
<input name="<%=propertyKey%>" class=editor <!-- 1 -->

type="text"
title="<%=p.getDescription(request)%>"
align='<%=align%>' <!-- 4 -->
maxlength="<%=p.getSize()%>"
size="<%=p.getSize()%>"
value="<%=fvalue%>" <!-- 3 -->
<%=disabled%> <!-- 5 -->
<%=script%> <!-- 6 -->
/>

<%
} else {
%>
<%=fvalue%>
<%
}
%>
<% if (!editable) { %>

<input type="hidden" name="<%=propertyKey%>" value="<%=fvalue%>">
<% } %>

A JSP editor receives a set of parameters and has access to attributes that
allows to configure it in order to work suitably with OpenXava. First you can
see how it gets propertyKey (1) that is used as HTML id. From this id you
can access to MetaProperty (2) (that contains meta information of the
property to edit). The fvalue (3) attribute contains the value already formated
and ready to be displayed. Align (4) and editable (5) are obtained too. Also
you need to obtain a JavaScript (6) fragment to put in the HTML editor.
Although creating an editor directly with JSP is easy it is not usual to do it.
It's more common to configure existing JSPs. For example, in your xava/
editors.xml you can write:

<editor url="textEditor.jsp">
<formatter class="org.openxava.formatters.UpperCaseFormatter"/>

Chapter 9: Customizing

OpenXava 3.0 146

http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/model/meta/MetaProperty.html

<for-type type="java.lang.String"/>
</editor>

In this way you are overwriting the OpenXava behavior for properties of
String type, now all Strings are displayed and accepted in upper-cases. Let's
see the code of the formatter:

package org.openxava.formatters;

import javax.servlet.http.*;

/**
* @author Javier Paniza
*/

public class UpperCaseFormatter implements IFormatter { // 1

public String format(HttpServletRequest request, Object string) { // 2
return string==null?"":string.toString().toUpperCase();

}

public Object parse(HttpServletRequest request, String string) { // 3
return string==null?"":string.toString().toUpperCase();

}

}

A formatter must implement IFormatter (1), this forces you to write a format()
(2) method to convert the property value (that can be a Java object) to a
string to be rendered in HTML; and a parse() (3) method to convert the string
received from the submitted HTML form into an object suitable to be
assigned to the property.

Multiple values editors
Defining an editor for editing multiple values is alike to define a single value
editor. Let's see it.
For example if you want to define a stereotype REGIONS that allows the user
to select more than one region for a single property. You may use the
stereotype in this way:

@Stereotype("REGIONS")
private String [] regions;

Then you need to add the next entry to your stereotype-type-default.xml file:

<for stereotype="REGIONS" type="String []"/>

Chapter 9: Customizing

OpenXava 3.0 147

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://www.google.com/search?sitesearch=java.sun.com&q=allinurl%3Aj2se%2F1+5+0%2Fdocs%2Fapi+Object
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/formatters/IFormatter.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html

And to define in your editor in your editors.xml file:

<editor url="regionsEditor.jsp"> <!-- 1 -->
<property name="regionsCount" value="3"/> <!-- 2 -->
<formatter class="org.openxava.formatters.MultipleValuesByPassFormatter"/> <!-- 3 -->
<for-stereotype stereotype="REGIONS"/>

</editor>

regionsEditor.jsp (1) is the JSP file to render the editor. You can define
properties that will be sent to the JSP as request parameters (2). And the
formatter must implement IMultipleValuesFormatter, that is similar to
IFormatter but it uses String [] instead of String. In this case we are using a
generic formatter that simply do a bypass.
The last is to write your JSP editor:

<%@ page import="java.util.Collection" %>
<%@ page import="java.util.Collections" %>
<%@ page import="java.util.Arrays" %>
<%@ page import="org.openxava.util.Labels" %>

<jsp:useBean id="style" class="org.openxava.web.style.Style" scope="request"/>

<%
String propertyKey = request.getParameter("propertyKey");
String [] fvalues = (String []) request.getAttribute(propertyKey + ".fvalue"); // 1
boolean editable="true".equals(request.getParameter("editable"));
String disabled=editable?"":"disabled";
String script = request.getParameter("script");
boolean label = org.openxava.util.XavaPreferences.getInstance().isReadOnlyAsLabel();
if (editable || !label) {

String sregionsCount = request.getParameter("regionsCount");
int regionsCount = sregionsCount == null?5:Integer.parseInt(sregionsCount);
Collection regions = fvalues==null?Collections.EMPTY_LIST:Arrays.asList(fvalues);

%>
<select name="<%=propertyKey%>" multiple="multiple"

class=<%=style.getEditor()%>
<%=disabled%>
<%=script%>>
<%
for (int i=1; i<regionsCount+1; i++) {

String selected = regions.contains(Integer.toString(i))?"selected":"";
%>
<option

value="<%=i%>" <%=selected%>>
<%=Labels.get("regions." + i, request.getLocale())%>

</option>
<%
}
%>

</select>
<%
}

Chapter 9: Customizing

OpenXava 3.0 148

http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/formatters/IMultipleValuesFormatter.html
http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/formatters/IFormatter.html

else {
for (int i=0; i<fvalues.length; i++) {

%>
<%=Labels.get("regions." + fvalues[i], request.getLocale())%>
<%

}
}
%>

<%
if (!editable) {

for (int i=0; i<fvalues.length; i++) {
%>

<input type="hidden" name="<%=propertyKey%>" value="<%=fvalues[i]%>">
<%

}
}
%>

As you see it is like defining a single value editor, the main difference is that
the formatted value (1) is an array of strings (String []) instead of a simple
string (String).

Custom editors and stereotypes for displaying combos
You can have simple properties displayed as combos and fill the combos with
data from the database.
Let's see this.
You define the properties like this in your entity:

@Stereotype("FAMILY")
private int familyNumber;

@Stereotype("SUBFAMILY")
private int subfamilyNumber;

And in your editors.xml put:

<editor url="descriptionsEditor.jsp"> <!-- 10 -->
<property name="model" value="Family"/> <!-- 1 -->
<property name="keyProperty" value="number"/> <!-- 2 -->
<property name="descriptionProperty" value="description"/> <!-- 3 -->
<property name="orderByKey" value="true"/> <!-- 4 -->
<property name="readOnlyAsLabel" value="true"/> <!-- 5 -->
<for-stereotype stereotype="FAMILY"/> <!-- 11 -->

</editor>

<!-- It is possible to specify dependencies from stereotypes or properties -->
<editor url="descriptionsEditor.jsp" <!-- 10 -->

Chapter 9: Customizing

OpenXava 3.0 149

depends-stereotypes="FAMILY"> <!-- 12 -->
<!--
<editor url="descriptionsEditor.jsp" depends-properties="familyNumber"> <!-- 13 -->
-->

<property name="model" value="Subfamily"/> <!-- 1 -->
<property name="keyProperty" value="number"/> <!-- 2 -->
<property name="descriptionProperties" value="number, description"/> <!-- 3 -->
<property name="condition" value="${familyNumber} = ?"/> <!-- 6 -->
<property name="parameterValuesStereotypes" value="FAMILY"/> <!-- 7 -->
<!--
<property name="parameterValuesProperties" value="familyNumber"/> <!-- 8 -->
-->
<property name="descriptionsFormatter" <!-- 9 -->

value="org.openxava.test.formatters.FamilyDescriptionsFormatter"/>
<for-stereotype stereotype="SUBFAMILY"/> <!-- 11 -->

</editor>

When you show a view with this two properties (familyNumber and
subfamilyNumber) OpenXava displays a combo for each property, the family
combo is filled with all families and the subfamily combo is empty; and when
the user chooses a family, then the subfamily combo is filled with all the
subfamilies of the chosen family.
In order to do that you need to assign to stereotypes (FAMILY and SUBFAMILY
in this case(11)) the descriptionsEditor.jsp (10) editor and you configure it by
assigning values to its properties. Some properties that you can set in this
editor are:

1. model: Model to obtain data from. It can be the name of an entity
(e.g. Invoice) or the name of the model used in an embedded
collection (Invoice.InvoiceDetail).

2. keyProperty or keyProperties: Key property or list of key
properties; this is used to obtain the value to assign to the current
property. It is not required that they are the key properties of the
model, although this is the typical case.

3. descriptionProperty or descriptionProperties: Property or list of
properties to show in combo.

4. orderByKey: If it has to be ordered by the key, by default it is
ordered by description. You can also use order with an order clause in
SQL style if you need it.

5. readOnlyAsLabel: When it is read only, then it is rendered as label.
The default is false.

6. condition: Condition to limit the data to be displayed. Has SQL
format, but you can use the property names with ${}, even qualified
properties are supported. You can put arguments with ?. This last

Chapter 9: Customizing

OpenXava 3.0 150

case is when this property depends on other ones and only obtain
data when these other properties change.

7. parameterValuesStereotypes: List of stereotypes from which
properties depend. It's used to fill the condition arguments and has to
match with depends-stereotypes attribute (12).

8. parameterValuesProperties: List of properties from which properties
depends. It's used to fill the condition arguments and has to match
with depends-properties attribute (13).

9. descriptionsFormatter: Formatter for the descriptions displayed in a
combo. It must implement IFormatter.

Following this example you can learn how to create your own stereotypes
that display a simple property in combo format and with dynamic data.
Nevertheless, in most cases it is more convenient to use references displayed
as @DescriptionsList; but you always can choose.

Custom JSP view and OpenXava taglibs
Obviously the better way to create user interfaces is using the view
annotations explained in chapter 4. But, in extreme cases perhaps you have
to define your view using JSP. OpenXava allows you to do it. And in order to
help you to do it, you can use some JSP taglibs provided by OpenXava. Let's
see an example.

Example
First you have to define in your module that you want to use your own JSP,
in application.xml:

<module name="SellersJSP" folder="invoicing.variations">
<model name="Seller"/>
<view name="ForCustomJSP"/> <!-- 1 -->
<web-view url="custom-jsp/seller.jsp"/> <!-- 2 -->
<controller name="Typical"/>

</module>

If you use web-view (2) on defining your module, OpenXava uses your JSP to
render the detail, instead of generating the view automatically. Optionally you
can define an OpenXava view using view (1), this view is used to know the
events to throw and the properties to populate, if not it is specified the
default view of the entity is used; although it's advisable to create an explicit
OpenXava view for your JSP custom view, in this way you can control the

Chapter 9: Customizing

OpenXava 3.0 151

http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/formatters/IFormatter.html

events, the properties to populate, the focus order, etc explicitly. You can put
your JSP inside web/custom-jsp (or other of your choice) folder of your project,
and it can be as this one:

<%@ include file="../xava/imports.jsp"%>

<table>
<tr>

<td>Number: </td>
<td>

<xava:editor property="number"/>
</td>

</tr>
<tr>

<td>Name: </td>
<td>

<xava:editor property="name"/>
</td>

</tr>

<tr>
<td>Level: </td>
<td>

<xava:editor property="level.id"/>
<xava:editor property="level.description"/>

</td>
</tr>
</table>

You are free to create your JSP file as you like, but it can be useful to use
OpenXava taglibs, in this case, for example the <xava:editor/> taglib is used,
this renders an editor suitable for the indicated property, furthermore add the
needed javascript to throw the events. If you use <xava:editor/>, you can
manage the displayed data using xava_view (of org.openxava.view.View type)
object, therefore all standard OpenXava controllers (including CRUD) work.
You can notice that qualified properties are allowed (as level.id or
level.description) (new in v2.0.1), furthermore when you fill level.id,
level.description is populated with the corresponding value. Yes, all the
behaviour of an OpenXava view is available inside your JSP if you use the
OpenXava taglibs.
Let's see the OpenXava taglibs.

xava:editor
The <xava:editor/> tag allows you to render an editor (a HTML control) for
your property, in the same way that OpenXava does it when it generates the
user interface automatically.

Chapter 9: Customizing

OpenXava 3.0 152

http://www.gestion400.com/OpenXavaDoc/apidocs/org/openxava/view/View.html

<xava:editor
property="propertyName" <!-- 1 -->
editable="true|false" <!-- 2 New in v2.0.1 -->
throwPropertyChanged="true|false" <!-- 3 New in v2.0.1 -->

/>

1. property (required): It's the property of the model associated with
the current module

2. editable (optional): New in v2.0.1. Forces to this editor to be editable,
otherwise the appropriate default value is assumed.

3. throwPropertyChanged (optional): New in v2.0.1. Forces to this
editor to throws property changed event, otherwise the appropriate
default value is assumed.

This tag generates the needed JavaScript in order to allow your view to work
in the same way as an automatic one. The qualified properties (properties of
references) are supported (new in v2.0.1).

xava:action, xava:link, xava:image, xava:button
The <xava:action/> tag allows you to render an action (a button or a image
that the user can click).

<xava:action action="controller.action" argv="argv"/>

The action attribute indicates the action to execute, and the argv attribute
(optional) allows you to put values to some properties of the action before
execute it. One example:

<xava:action action="CRUD.save" argv="resetAfter=true"/>

When the user clicks on it, then it executes the action CRUD.save, before it
puts true to the resetAfter property of the action.
The action is rendered as an image, if it has an image associated. Otherwise
it is rendered as a button. If you want to determine the render style, then
you can use directly the next taglibs: <xava:button/>, <xava:image/> or
<xava:link/> similars to <xava:action/>.
You can specify an empty string as action (new in v2.2.1), as following:

<xava:action action=""/>

In this case the tag has no effect and no error is produced. This feature may
be useful if you fill the name of the action dynamically (that is
action=”<%=mycode()%>”), and the value can be empty in some cases.

Chapter 9: Customizing

OpenXava 3.0 153

xava:message (new in v2.0.3)
The <xava:message/> tag allows to show in HTML a message from the i18n
resource files of OpenXava.

<xava:message key="message_key" param="messageParam" intParam="messageParam"/>

The message is searched first in the message resource files of your project
(YourProject/i18n/YourProject-messages.properties) and if it is not found there
then it's searched in the default OpenXava messages (OpenXava/i18n/
Messages.properties).
The attributes param and intParam are optional. The attribute intParam is
used when the value to send as parameter is of int type. If you use Java 5
you can use always param because int is automatically converted by
autoboxing.
This tag only generates the message text, without any formatting HTML tags.
An example:

<xava:message key="list_count" intParam="<%=totalSize%>"/>

xava:descriptionsList (new in v2.0.3)
The <xava:descriptionsList/> tag allows you to render a description list (a
HTML combo) for your reference, in the same way that OpenXava does it
when it generates the user interface automatically.

<xava:descriptionsList
reference="referenceName" <!-- 1 -->

/>

1. reference (required): It's a reference of the model associated with
the current module

This tag generates the needed JavaScript in order to allow your view to work
in the same way as an automatic one.
An example:

<tr>
<td>Level: </td>
<td>

<xava:descriptionsList reference="level"/>
</td>

</tr>

In this case level is a reference of the current model (for example Seller). A
combo is shown with all available levels.

Chapter 9: Customizing

OpenXava 3.0 154

	Table of Contents
	
	Chapter 1: Overview
	Presentation
	Business component
	Controllers
	Application
	Project structure

	
	Chapter 2: My first OX project
	Create a new project
	Configure database
	Your first business component
	The table
	Executing your application
	Automating the tests
	The labels

	
	Chapter 3: Model
	Business Component
	Entity
	Properties
	Stereotype
	IMAGES_GALLERY stereotype
	Concurrency and version property
	Enums
	Calculated properties
	Default value calculator
	Default values on create
	Property validator
	Default validator (new in v2.0.3)

	References
	Default value calculator in references
	Using references as key

	Collections
	Methods
	Finders
	Entity validator
	Remove validator
	JPA callback methods
	Embeddable classes
	Embedded reference
	Embedded collections

	Inheritance
	Composite key
	Id class
	Embedded id

	
	Chapter 4: View
	Layout
	Groups
	Sections
	Layout philosophy

	Rules for view annotations
	Property customization
	Label format
	Property value change event
	Actions of property
	Choosing an editor

	Reference customization
	Choose view
	Customizing frame
	Custom search action
	Custom creation action
	Custom modification action
	Descriptions list (combos)
	Reference value change event
	Reference search on change event

	Collection customization
	Custom edit/view action
	Custom list actions
	Default list actions
	Custom detail actions
	Refining collection view default behavior

	Transient properties for UI controls
	View actions
	Transient class: Only for creating views

	
	Chapter 5: Tabular data
	Initial properties and emphasize rows
	Filters and base condition
	Pure SQL select
	Default order

	
	Chapter 6: Object/relational mapping
	Entity mapping
	Property mapping
	Reference mapping
	Collection mapping
	Embedded reference mapping
	Type conversion
	Property conversion
	Multiple column conversion
	Reference conversion

	
	Chapter 7: Controllers
	Environment variables
	Session objects
	The controller and its actions
	Controllers inheritance
	List mode actions
	Overwriting default search
	Initialize a module with an action
	Calling another module
	Changing the module of current view
	Go to a JSP page
	Generating a custom report with JasperReports
	Uploading and processing a file from client (multipart form)
	Override the default controllers (new in v2.0.3)
	All action types

	
	Chapter 8: Application
	Typical module example
	Default modules (new in v2.2.2)
	Only detail module
	Only list module
	Documentation module
	Read only module

	
	Chapter 9: Customizing
	Editors
	Editors configuration
	Multiple values editors
	Custom editors and stereotypes for displaying combos

	Custom JSP view and OpenXava taglibs
	Example
	xava:editor
	xava:action, xava:link, xava:image, xava:button
	xava:message (new in v2.0.3)
	xava:descriptionsList (new in v2.0.3)

