ECMAScript Harmony:
Rise of the Compillers

Brendan Eich
Fluent 2015

Solar system of JS

Hats off to @shaunlebron — and to ClojureScript

http://shaunlebron.github.io/solar-system-of-js/

w

l' ’
‘ % 5
A y
J . -
Y ek
.‘*
-~

/
—
i/

’i"M’M /i

! "
’ [T L L D
/

. 51T
R 3
|

- "

"..

Paris

Where ES6 was approved by Ecma TC39
(but not in this building)

Inria Paris Roof Deck

Our view when we voted ES6 through TC39

What Can JS do?

Operating System

Hardware

http://www.apple.com
http://www.apple.com
https://youtu.be/UzyoT4DziQ4

What JS Can't Do

64-bit integers (COMING IN ES7)
Safe stack allocation (e.g. as in Rust)

« Compilers can use a typed array, but slowly
Mixing objects and primitives in typed arrays

* Proposed for ES7/2016 via typed objects

Shared memory threads (as in C++)

https://github.com/nikomatsakis/typed-objects-explainer/

Don’t Threads Suck”?

Blog Presentations

Yes — but not compiling C++ to

JS sucks worse

And C++ has threads

Emscripten all the C++ things

Other “Blub to JS” compilers
require threads too

No shared DOM or main thread
memory

|
|
f

e

THREADS SUCK

<« OINK-BASED PATCH GENERATION THe OpeN WEeB AND ITs ADVER!

This is not an original thought, but I write with some authority here.

on magtape in our hot little hands, on account of others’ bugs in adapting some single-thr
(ignoring interrupts) AT&T “Streams” code to SGI's SMP kernel, and made fixes in the field (tha
the SGI sales guys in Brisbane, we even got two nights on the Gold Coast in compensation — nc
enough!).

You must be this tall to hack on threaded systems, and that means most programmers shou
away crying. But they don’t. Instead, as with most other sharp tools, the temptation is to show h¢
one is by picking up the nearest ST code and jamming it into a MT embedding, or tempting
condition fate otherwise. Occasionally the results are infamous, but too often, with only virtual f

and limbs lost, no one learns.

Threads violate abstractions six ways to Sunday. Mainly by creating race conditions, deadlock ha
and pessimistic locking overhead. And still they don't scale up to handle the megacore teraflop fut

We can hope for better static analyses to find all races. In the real world, the code is C or C+
there’s no hope for static salvation. Sure, some languages try to put deadlocks in a syntactic cag
that walks right into the overhead problem, in spite of heroic VM-based optimizations. Unexj
costs, even if constant or linear, can sink any abstraction. For example (still piquant to Mozilla hi
busy deCOMtaminating), virtual method calls cost; they should be avoided where you're v
hardware. The same goes for locks: not all abstractions must be MT-safe; some must be ST and f

So my default answer to questions such as the one I got at last May’s Ajax Experience, “When w
add threads to JavaScript?” is: “over your dead body!”

There are better ways. Clueful hackers keep rediscovering Erlang. Then there is STM. One retro si
know points to an old language-based solution, Hermes.

https://brendaneich.com/2007/02/threads-suck/
https://brendaneich.com/2007/02/threads-suck/
https://github.com/kripken/emscripten

Array Buffer

Uint32Array: U4 0 1 2 3 4
Uintl6Array: U2 0 1 2 3 4 5 6 7 8 =

Uint8Array: U1 |0 |1 |2 (3|4 |5|6|7 8|9 |10({11|12|13|14|15|16|17 (18|19

3 32 MB

Typed Arrays (ES6

Originated in WebGL

Copy, or
Hand Off

You can copy a typed array,

and you can hand off its
buffer memory across a
Web Worker boundary.

But in HTML5, you cannot

share memory among
workers — UNTIL NOW!

1 GOT MY HAND CUT OFF.

CHAINSAWS ARE/ON.BISIBSIX

SharedWorker

var worker = new SharedWorker (filename) ;

const sentMessage = "ping";
var receivedMessage;
var receivedError;

worker.port.onmessage = function (event) {
receivedMessage = event.data;

I

worker.onerror = function (event) {
receivedError = event.message;

s

worker .port.postMessage(sentMessage) ;

SharedArrayBuffer

var buffer = new SharedArrayBuffer (1<<20);

var bytes = new SharedUint8Array(buffer);
var words = new SharedUint32Array(buffer);

// etc. as with ES6 typed arrays, but Shared

sharedWorkers.forEach(worker =>
worker .port.postMessage(“start”, [buffer])

)

(draft spec gdoc)

https://docs.google.com/document/d/1NDGA_gZJ7M7w1Bh8S0AoDyEqwDdRh4uSoTPSNn77PFk/edit#heading=h.a6o4dubw5qla

Atomics

comparekExchange(sta, 1index,
newvalue)

index)

index,

Atomics. oldvalue,

Atomics
Atomics

.load(sta,

.store(sta, value)

Atomics.
Atomics.
Atomics.

Atomics
Atomics

add(1a,
sub(ia,
and(1a,

1N0
1NC

N0

index,

ex,
ex,

val
val

ex, va

.or(1a, index, value)
.Xxor(1a,

ue)
ue)
ue)

value)

Atomics.exchange(ia, 1i1ndex, value)
Atomics.isLockFree(size)
Atomics.futexWait(i32a,
Atomics.futexWake(132a,

Atomics.

index, value, timeout)
index, count)
futexWakeOrRequeue(i32a, indexl,

value, 1ndex2)

count,

In Firefox, + now Chrome

| JF Bastien Q Following
jfbastien

Intent to implement: SharedArrayBuffer.
groups.google.com/a/chromium.org...

Cool work from @binjimint!
X/

RETWEETS FAVORITES
25 34 ﬁ ﬁ

5:32 PM - 18 Apr 2015

e g . o QUi
=20 T - N
-, bz "
- v | |€. N
=4 N\

Reply to @jfbastien @binjimint

w g Aras PranckevicCius @aras p - Apr 19

. | P L L N D T - P P B T 1 P . S .

https://www.google.com/url?q=https://twitter.com/jfbastien/status/589587278051192832&sa=D&sntz=1&usg=AFQjCNFDtPG-GSF_n5qcZCvJDdXlNlQO4Q

Demos

(PWD, DT2)

http://playdefenders.com/
http://beta.unity3d.com/jonas/DT2/

Always bet on |S

First they said |S couldn’t be useful
for building “rich Internet apps”

Then they said it couldn’t be fast
Then they said it couldn’t be fixed
Then it couldn’t do multicore/GPU

Wrong every time!

My advice: always bet on |S

http://alwaysbetonjs.com

