
Modular JavaScript at

@semmypurewal



netflix.github.io

jobs.netflix.com

techblog.netflix.com

@netflixUIE

@netflixOSS



lets talk about devices



How can we create a consistent, 
updateable user-experience 

across all devices?



PLATFORM

USER INTERFACE



BROWSER

USER INTERFACE



UI (HTML5)

SYSTEMSY 
STUFF



SYSTEMSY 
STUFF



WebKit-based HTML5 UI (McCarthy & Trott, OSSCON 2011)



performance on 
devices made 

innovation difficult

WebKit-based HTML5 UI



Do we really need the entire DOM 
and all of its baggage?



UI

SYSTEMSY 
STUFF RENDERERJSCORE



UI

SYSTEMSY 
STUFF RENDERERJSCORE

( kinda like Node.js, but with a high-performance renderer )



UI

SYSTEMSY 
STUFF JSCORE RENDERER



Device UI, evolved (Nel, Netflix Techblog 11/2013)



Video Decoding & Playback (naturally)
Networking
Logging
Crypto & Security
Content-Control and Caching
Adaptive Streaming

lets talk about that systemsy stuff



Video Decoding & Playback (naturally)
Networking
Logging
Crypto & Security
Content-Control and Caching
Adaptive Streaming

lets talk about that systemsy stuff



Can we move non-performance 
critical stuff to JS so it's 
updateable and we can 

experiment with it?



UI

SYSTEMSY
STUFF MSL JS

NETWORK
CRYPTO RENDERERJSCORE



SYSTEMSY
STUFF MSL JS

RENDERERJSCORE

Netflix
Ready
Device Platform
Java-
Script Layer



Translating a bunch of C++ into 
JavaScript? What could possibly 

go wrong?



Quick, what's wrong with this?

(function main () {
    var videoMgr,
        subtitleMgr
        audioMgr;

    //... rest of program contained here
}());



phew, dodged a bullet!

(function main () {
    var videoMgr,    // forgot a comma
        subtitleMgr, // so audioMgr was
        audioMgr;    // a global variable

    //... rest of program contained here
}());



but...did we really fix anything?

(function main () {
    var videoMgr,    // forgot a comma
        subtitleMgr, // so audioMgr was
        audioMgr;    // a global variable

    //... rest of program contained here
}());



how long is this program?

(function main () {
    var videoMgr,    // forgot a comma
        subtitleMgr, // so audioMgr was
        audioMgr;    // a global variable

    //... rest of program contained here
}());



The problem isn't global variables.

The problem is wide-scope.



A B

C
action-at-a-distance makes reasoning hard



Our code suffered from lots of 
problems relating to wide-scope.



We used concatenation to build 
our final artifact...

(using CMake, as a bonus)



our artifact was 1 giant function

(function main () {
    var videoMgr,    // forgot a comma
        subtitleMgr, // so audioMgr was
        audioMgr;    // a global variable

    //... rest of program contained here
}());



we used lots of stateful singletons

// video_manager.js
window.videoManager = {
    play : function () { ... };
}

singletons are global objects that promote action-at-a-distance



we used namespaces

// in foo.js
window.videoManager.play();

not necessarily bad, unless your namespaced object stores state



we used privacy by convention
window.videoManager = {
    // public
    play : function () { /*...*/ },

    // private
    _calcOffset : function () { /*...*/ }
}

they are still available to more subsystems than are necessary



we didn't have unit-tests

function play () {

    window.logger.warn("doing random stuff");

    // start managers

    window.videoManager.play();

    window.audioManager.play();

    window.subtitleManager.play();

}

it's really hard to mock out global state



code sharing was impossible

"The problem with object-oriented 
languages is they've got all this implicit 
environment that they carry around with 
them. You wanted a banana but what 
you got was a gorilla holding the banana 
and the entire jungle."

-Joe Armstrong



these are all anti-patterns relating 
to wide-scope.

how does this happen?



Modern programming 
abstractions are designed around 

the idea that data and 
functionality should only be 

accessible by the constructs that 
absolutely require them.



In the past, JavaScript lacked 
"familiar" language primitives that 

support  hiding data and 
functionality.

(hint: no classes!)



JavaScript Developers have 
evolved to use the module as the 

preferred approach to limiting 
scope.



JavaScript Developers have 
evolved to use the module as the 

preferred approach to limiting 
scope.

what's a module?



modules, CommonJS style

var videoMgr = {}

videoMgr.play = function play () {/*...*/}

function _calcOffset() { /*...*/ };

module.exports = videoMgr;



modules, CommonJS style

var videoMgr = require("./videoMgr.js");



How does modular programming 
relate to more "familiar" 

abstractions?



Modular Programming is a 
superset of class-based Object-

Oriented Programming.

(less opinionated)



exporting, class-style

// constructor functions

var VideoManager = function () { /* ... */ }

// public functions

VideoManager.prototype = {

    play : function () { /* ... */ }

}

module.exports = VideoManager;



Modular Programming is a subset 
of procedural programming.

(more opinionated, but only slightly)



exporting, procedural-style

var _ = {};

// stateless procedures

_.each = function each (list, func) { /*...*/ };

_.reduce = function reduce (list, func) { /*...*/ };

// ...

module.exports = _;



Benefits

independent development, less team ownership

programming by contract

programming to an interface

tools (npm!)...



So what? How did this help us?



we started migrating...

1) Grunt -- moved from CMake, built exactly 
the same artifact

2) Browserify -- resolve "requires", shims 
some node

3) Jasmine -- unit tests

two-step process: concat, then 
Browserify



our first modules...

EventEmitter (roughly modeled after the 
Node.js API)

Mixin (a single function to do inheritance-
type stuff)



over the next year...

All new features were implemented as CJS 
modules...

All singleton subsystems were refactored into 
instance-based subsystems (moved namespaced 
singletons to DI)...

Single "main" entry point to our code and 
initialization...



Two weeks ago removed the 
concatenation step altogether!



game changer!

Our code became leaner, more organized, and more 
testable...

We started sharing more code with other teams 
(built an internal NPM)...

We've moved from three-week cycles to daily 
deployment...



take-aways

1) get your infrastructure in place 
(browserify or webpack)

2) start small with by exporting the API of 
one or two modules

3) implement new features as modules



Questions?

@semmypurewal
@NetflixUIE
@NetflixOSS


