Modular JavaScript at

@semmypurewal

techblog.netflix.com
jobs.netflix.com

@netflixOSS
@netflixUIE

netflix.github.io

lets talk about devices

How can we create a consistent,
updateable user-experience
across all devices?

USER INTERFACE

PLATFORM

USER INTERFACE

BROWSER

Ul (HTMLS)

SYSTEMSY
STUFF

NEIF“X 1175 O SeeAll A Search

V& v -
l miﬁ .. :f ' Al ety m Starship Troopers

. 1997 R 2h9m
Sci-Fi & Fanta; e

In this sci-i adventure based on a
novel by Robert A. Heinlein and
directed by Paul Verhoeven, fire-
spitting, brain-sucking bugs attack
Earth, and the city of Buenos Aires
is wiped off the map

Cast: Casper Van Dien,
Dina Meyer.

Thrillers Categories: Sci-Fi & Fantasy,

s SSENGER! il Action Sci-Fi
3 K Director: Paul Verhoeven
§

SYSTEMSY
STUFF

NET”.Ix 1/75 O seeAll A Search

. 'ﬂg“ ..ﬁ ' "Al ‘-_[A\J “-"”‘. m Starship Troopers

Sci-Fi & Fantas 1997 R 2h9m

ok

In this sci-fi adventure based on a
novel by Robert A. Heinlein and

y directed by Paul Verhoeven, fire-

spitting, brain-sucking bugs attack

Earth, and the city of Buenos Aires

is wiped off the map.

Cast: Casper Van Dien,
Dina Meyer...
Thrillers Categories: Sci-Fi & Fantasy,
= W S— Action Sci-Fi...
Director: Paul Verhoeven

WebKit-based HTMLS5 Ul (McCarthy & Trott, OSSCON 2011)

WebKit-based HTML5 Ul

NETF“X 1175 O seeAll A Search

| '.:...“ EE ' Wal ol ﬂ ?::sr:p;r:opers
performance on

innovation difficult ™

directed by Paul Verhoeven, fire-
spitting, brain-sucking bugs attack
Earth, and the city of Buenos Aires
is wiped off the map.

Cast: Casper Van Dien,
Dina Meyer...

Categories: Sci-Fi & Fantasy,
Action Sci-Fi..

P\ Director: Paul Verhoeven

Do we really need the entire DOM
and all of its baggage?

SYSTEMSY
STUFE || ISCORE || RENDERER

SYSTEMSY
STUFE || ISCORE || RENDERER

(kinda like Node.js, but with a high-performance renderer)

House of Cards

+ * & 2013 [TVEMA) 1 Season EEIER)
Sharks gliding ominously beneath the surfaces
of the water? They're a lot less menacing tha
this Congressman.

SYSTEMSY
STUFF

JSCORE || RENDERER

=y . 7
e

|Breakmg
Bdd

' NEWAN
SIRANDON
AT

House of Cards

frik 2013 [TV-MA 1 Season [E=EE)

Sharks gliding ominously beneath the surface
of the water? They're a lot less menacing than
this Congressman.

This winner of three Emmys, including

Outstanding Directing for David Fincher, stars
Kevin Spacey and Robin Wright.

Because you watched Orange Is the New Blaclﬁ

-

A NETFL GiNAL BERIES

HOUSES

i g n VA%

Because you watched Red Lights

- .
—

|

Al AN

Device Ul, evolved (Nel, Netflix Techblog 11/2013)

lets talk about that systemsy stuff

Video Decoding & Playback (naturally)
Networking

Wele[ellgle

Crypto & Security

Content-Control and Caching

Adaptive Streaming

lets talk about that systemsy stuff

Video Decoding & Playback (naturally)
Networking

Wele[ellgle

Crypto & Security

Content-Control and Caching

Adaptive Streaming

Can we move non-performance
critical stuff to JS so it's
updateable and we can

experiment with it?

SYSTEMSY
STUFF
NETWORK
CRYPTO || ISCORE || RENDERER

Netflix

SYSTEMSY Reagly latf
STUFF MSL JS Device Platform
Java-

Script Layer

Translating a bunch of C++ into
JavaScript? What could possibly
go wrong?

Quick, what's wrong with this?

(function main () {
var videoMgr,

subtitleMgr
audioMgr;

//... rest of program contained here

}(O))

phew, dodged a bullet!

(function main () {
var videoMgr, // forgot a comma
subtitleMgr, // so audioMgr was
audioMgr; // a global variable

//... rest of program contained here

}(O))

but...did we really fix anything?

(function main () {
var videoMgr, // forgot a comma
subtitleMgr, // so audioMgr was
audioMgr; // a global variable

//... rest of program contained here

}(O))

how long is this program?

(function main () {
var videoMgr, // forgot a comma
subtitleMgr, // so audioMgr was
audioMgr; // a global variable

//... rest of program contained here

}(O))

The problem isn't global variables.

The problem is wide-scope.

action-at-a-distance makes reasoning hard

Our code suffered from lots of
problems relating to wide-scope.

We used concatenation to build
our final artifact...

(using CMake, as a bonus)

our artifact was 1 giant function

(function main () {
var videoMgr, // forgot a comma
subtitleMgr, // so audioMgr was
audioMgr; // a global variable

//... rest of program contained here

}(O))

we used lots of stateful singletons

// video manager.]js
window.videoManager = {

play : function () { ... };

singletons are global objects that promote action-at-a-distance

we used Namespaces

// in foo.]js
window.videoManager.play() ;

not necessarily bad, unless your namespaced object stores state

we used privacy by convention

window.videoManager = ({
// public
play : function () { /*...*/ },

// private
_calcOffset : function () { /*...*/ }

they are still available to more subsystems than are necessary

we didn't have unit-tests

function play () {
window.logger.warn ("doing random stuff");

// start managers
window.videoManager.play() ;
window.audioManager.play() ;
window. subtitleManager.play() ;

it's really hard to mock out global state

code sharing was impossible

"The problem with object-oriented
languages is they've got all this implicit
environment that they carry around with
them. You wanted a banana but what
you got was a gorilla holding the banana
and the entire jungle.”

-Joe Armstrong

these are all anti-patterns relating
to wide-scope.

how does this happen?

Modern programming
abstractions are desighed around
the idea that data and
functionality should only be
accessible by the constructs that
absolutely require them.

In the past, JavaScript lacked
"“familiar" language primitives that
support hiding data and
functionality.

(hint: no classes!)

JavaScript Developers have
evolved to use the module as the
preferred approach to limiting
scope.

JavaScript Developers have
evolved to use the module as the
preferred approach to limiting
scope.

what's a module?

modules, CommonlJS style

var videoMgr = {}
videoMgr.play = function play () {/*...*/}
function calcOffset() { /*...*/ };

module.exports = videoMgr;

modules, CommonlJS style

var videoMgr = require("./videoMgr.js") ;

How does modular programming
relate to more "familiar"
abstractions?

Modular Programming is a
superset of class-based Object-
Oriented Programming.

(less opinionated)

exporting, class-style

// constructor functions

var VideoManager = function () { /* ... */ }

// public functions

VideoManager.prototype = {
play : function () { /* ... */ }

module.exports = VideoManager;

Modular Programming is a subset
of procedural programming.

(more opinionated, but only slightly)

exporting, procedural-style

var _ = {};

// stateless procedures
.each = function each (list, func) { /*...*/ };

.reduce = function reduce (list, func) { /*...*/ };

/] ...

module.exports = ;

Benefits

independent development, less team ownership
programming by contract
programming to an interface

tools (npm!)...

So what? How did this help us?

)

2)

3)

we started migrating...

Grunt -- moved from CMake, built exactly
the same artifact

Browserify -- resolve "requires"”, shims
some hode

Jasmine -- unit tests

our first modules...

EventEmitter (roughly modeled after the
Node.js API)

Mixin (a single function to do inheritance-
type stuff)

over the next year...

All new features were implemented as CJS
modules...

All singleton subsystems were refactored into

instance-based subsystems (moved namespaced
singletons to DI)...

Single "main" entry point to our code and
initialization...

Two weeks ago removed the
concatenation step altogether!

game changer!

Our code became leaner, more organized, and more
testable...

We started sharing more code with other teams
(built an internal NPM)...

We've moved from three-week cycles to daily
deployment...

take-aways

1) get your infrastructure in place
(browserify or webpack)

2) start small with by exporting the API of
one or two modules

3) implement new features as modules

Questions?

@semmypurewal
@NetflixUIE
@NetflixOSS

