
Evolution of the "Web App"
@HenrikJoreteg

@Hoarse_JS

THIS USED TO BE SIMPLE!

1. WRITE SOME HTML
2. LAY IT OUT WITH FRAMES OR TABLES
3. FTP IT TO A SERVER!
4. BAM!

CONGRATULATIONS,
YOU’RE A WEB DEVELOPER!

THEN IT GOT HARDER

WHO’S WRITTEN THEIR
OWN BLOG SOFTWARE?

OVER ENGINEERING A
BLOG WAS A RITE OF PASSAGE

1. WRITE SOME PHP/PYTHON/ASP/COLDFUSION
2. SET UP RELATIONAL DATABASE
3. WRITE SOME BAD SQL
4. SHOVE DYNAMIC DATA INTO OUR HTML
5. LAY IT OUT WITH CSS (NO TABLES THIS TIME)
6. RUN IT ON SHARED HOSTING SOMEWHERE

CONGRATULATIONS,
YOU’RE A WEB DEVELOPER!

PHEW!!

THEN WE GOT "SMART"

USE A FRAMEWORK!!

1. RAILS
2. ALL THEM PHP FRAMEWORKS
3. DJANGO
4. ETC.

OUR EXCESSIVLELY DYNAMIC BLOG…
IS NOW BETTER ORGANIZED

AND HAS MORE DEPENDENCIES

CONGRATULATIONS,
YOU’RE A WEB DEVELOPER!

WHAT ABOUT TODAY?

BACK-END FRONT-END ISOMORPHIC RESPONSIVE
ES6(2015) BABEL TRACEUR AMD COMMONJS MVC
MVVM FLUX RELAY GULP GRUNT API-GATEWAY
CORS JSON-WEB-TOKENS NODE.JS HTTP 2.0
OFFLINE-FIRST MOBILE-FIRST WEBGL WEBRTC
WEBSOCKET GRAPHQL AMPERSAND EMBER
REALTIME REDIS RIAK LEVELDB RABBITMQ
PUSH-NOTIFICATION ENABLED BACKBONE APP
WITH POLYFILLED POLYMER WEB COMPONENTS

CONGRATULATIONS
YOU MIGHT BE A

"WEB DEVELOPER"

WHAT DOES
"WEB DEVELOPER"

EVEN MEAN?

WHAT DOES
"WEB APP"
EVEN MEAN?

THE BROWSER ISN’T
OUR RENDERER

THE BROWSER IS
OUR RUNTIME

THE WEBVIEW IS
OUR RUNTIME

MORE LOGIC MOVING
TO FRONT-END JS

DEVS WITH DIFFERENT
BACKGROUNDS

CONVERGING ON JS

BRINGING THEIR PATTERNS
AND PREFERENCES

BACK-END FRONT-END ISOMORPHIC RESPONSIVE
ES6(2015) BABEL TRACEUR AMD COMMONJS MVC
MVVM FLUX RELAY GULP GRUNT API-GATEWAY
CORS JSON-WEB-TOKENS NODE.JS HTTP 2.0
OFFLINE-FIRST MOBILE-FIRST WEBGL WEBRTC
WEBSOCKET GRAPHQL AMPERSAND EMBER
REALTIME REDIS RIAK LEVELDB RABBITMQ
PUSH-NOTIFICATION ENABLED BACKBONE APP
WITH POLYFILLED POLYMER WEB COMPONENTS

SINGLE PAGE APPS

HUH?

SINGLE PAGE APPS

"NATIVE"

I’M A WEB DEVELOPER

NATIVE WEB APP

1. JAVASCRIPT
2. HTML
3. CSS
4. BROWSER APIS

FUNDAMENTAL DISTINCTION…

THE BROWSER IS
YOUR RUNTIME

SEND THE APP ITSELF
TO THE BROWSER
INSTEAD OF THE
RESULT OF RUNNING IT

<!doctype>
<script src="app.1.3.7.js"></script>

SHOULD WE EVEN BE DOING THIS?

SHOULD WE BUILD
APPS THAT REQUIRE
JAVASCRIPT?

SHOULD WE BUILD
APPS THAT REQUIRE
JAVASCRIPT?

{{ RAISE YOUR HAND }}

YES!

WHAT SERVICE ARE WE PROVIDING?

CONTENT?

CONTENT SHOULD JUST WORK™

NO REASON TO COMPLICATE
THINGS THAT CAN BE SIMPLE

BUT THE WEB IS
NO LONGER
JUST ABOUT
LINKED CONTENT!

THERE ARE CASES
WHERE CLIENTSIDE
FUNCTIONALITY
IS THE CORE VALUE
PROVIDED BY SERVICE

1. RENDERING
2. NETWORKING
3. FILE READ/WRITE
4. STORAGE
5. WEB AUDIO APIS
6. WEBGL
7. VOICE/VIDEO

HIGH PERFORMANCE

BROWSERS ARE NOT
DUMB DOCUMENT VIEWERS

MOST CAPABLE
UBIQUITOUS
RUNTIMES
ON THE PLANET

I’M JUST GOING TO SAY IT:

THERE ARE TWO
TYPES OF APPLICATIONS

ON THE WEB

1. NATIVE WEB APPS

2. SERVER-SIDE WEB APPS

THEY ARE
FUNDAMENTALLY

DIFFERENT

AND THAT’S O.K.

ANYTHING
WE CAN BUILD

WITH WEB TECH
I THINK WE SHOULD

EVEN IF WE CAN’T
SUPPORT OLDER

BROWSERS

THE WEB IS INFINITELY MORE
OPEN

THAN NATIVE PLATFORMS

USER EXPECTATIONS HAVE EVOLVED

THE WEB IS DOING PRETTY WELL
ON DESKTOPS

THE WEB IS LOSING
ON MOBILE

THE WEB IS LOSING
ON EXPERIENCE

WE OFTEN PREFER NATIVE
APPS TO THE WEB

QUALITY AND POLISH
OF USER EXPERIENCE
IS OFTEN MUCH BETTER

LET’S FIX THIS!

WE’RE TOO FOCUSED
ON THE PAST INSTEAD OF

COMPETING ON EXPERIENCE

SAYING THERE’S A DISTINCTION
MAKES SOME PEOPLE MAD

"Everything should be an enhancement!"

WE’RE ON THE
SAME TEAM!

WE WANT THE
OPEN WEB

TO WIN!

HOW COULD WE EVEN
BUILD A PROGRESSIVELY

ENHANCED VERSION
OF TALKY?

SHOULD WE NOT HAVE
BUILT IT?

WHERE’S THE DOWNSIDE?

LET’S LOOK A BIT CLOSER AT TWITTER

WHAT IS TWITTER?

IS IT A WEB APP?

NO.

IT’S A SERVICE

APP != SERVICE

TWITTER

android app iOS app

tweetbot
twitter.com

tweet deck

ad dashboard

I DIDN’T REALLY
CARE HOW THEY

BUILT THEIR WEBAPP

BECAUSE I DIDN’T
USE IT ANYWAY!

I WAS USING AN iOS APP!

THEIR WEB APP HAD
ALREADY FAILED ME!

LET’S THINK ABOUT THIS

WHEN I FOLLOW
A LINK TO A

RANDOM TWEET
ON MY PHONE…

JUST LET ME READ IT!

plain text
I DON’T MIND IF IT’S

DON’T MAKE ME
DOWNLOAD
 2MB OF JS
TO READ

140 CHARACTERS
OF TEXT!

THIS IS THE PROBLEM
THEY FIXED WITH

NEW NEW TWITTER

BUT…

CATCHING UP WITH
ALL THINGS TWITTER
IS A FUNDAMENTALLY
DIFFERENT USE CASE

FAILING TO RECOGNIZE
DISTINCTION MAKES US

FLOUNDER

A SERVICE CAN
PROVIDE BOTH!

TWITTER.COM
&

TWEETDECK.COM

THERE’S STILL SOME GAPS
BETWEEN WEB AND NATIVE

REAL OFFLINE SUPPORT

PLATFORMS THAT TREAT
NATIVE WEB APPS AS

FIRST CLASS
CITIZENS

THOSE THINGS
ARE CHANGING

1. SERVICE WORKER

PROGRAMMABLE
CACHE LAYER

CAN INTERCEPTS ALL
NETWORK REQUESTS

1. SERVICE WORKER

THIS IS

HUGE!

2. INSTALLABLE WEB APPS

CHROME M39+
FIREFOX

https://developer.chrome.com/multidevice/android/installtohomescreen

https://w3c.github.io/manifest/

JSON-BASED WEB MANIFEST

1. SIGNAL INTENT
2. UNINSTALL
3. DEEPER DEVICE APIS

"What about performance?"

WHITE PAGE
OF DEATH

TIME TO FIRST PAINT

A PRIMED CACHE
LARGELY INVALIDATES

THIS ARGUMENT

<!doctype>
<script src="app-1.2.7.js"></script>

1. GIVE IT A UNIQUE NAME

HTTP/1.1 200 OK
Cache-Control: max-age=REALLY BIG NUMBER!
Content-Encoding: gzip

2. CACHE IT FOREVER

MOST OF THESE
TYPES OF APPS
REQUIRE YOU

TO BE LOGGED IN

PRE-FETCH APP
ON PUBLIC PAGES
OR LOGIN PAGE

NATIVE WEB APPS CAN
STILL HAVE SMALL

JS PAYLOADS!

ALL JS IN THE
AMPERSAND.JS APP
ON TODOMVC.COM

COMBINED
28kb min + gzip

SMALLER THAN JQUERY 2.0

THE OTHER ASPECT
OF PERFORMANCE…

ONCE LOADED,
PERFORMANCE
IS WAY BETTER!

IF I’M GOING TO
LEAVE APP OPEN
ON MY DESKTOP
I CARE WAY LESS
ABOUT LOAD TIME

"What about dual rendered
a.k.a. isomorphic apps?"

JUST A CLIENTSIDE APP
WITH AN OPTIMIZED

INITIAL RENDER

GOING FULL-ISOMORPHIC
RENDERING, WITH USER DATA

AND ALL…

OFTEN REQUIRES
DRAMATICALLY

MORE COMPLEX CODE

THERE ARE SOME CASES
WHERE IT MAKES SENSE

WITH STATE OF
TOOLING TODAY

OFTEN NOT WORTH
THE COMPLEXITY

HOWEVER…

DOESN’T HAVE TO BE
ALL OR NOTHING

WE CAN PRE-RENDER EVERYTHING
THAT’S NOT USER-SPECIFIC DATA

WE CAN DO THIS AS
A FULLY STATIC SITE

site.com/pic.png -> pic.png
site.com -> index.html
site.com/page -> page.html
site.com/asdf -> 404.html
 or
 200.html

Route: Asset:

WOAH!

APPS USUALLY HAVE:
1. public/marketing pages
2. all the stuff behind the login

WRITE "PUBLIC" PAGES
AND APP LAYOUT HTML

AS ISOMORPHIC
COMPONENTS

PRE-RENDER THEM
TO STATIC PAGES
AT BUILD TIME!

SLIP IN THE BUILT JS BEFORE:
</body>

index.html: public home page
200.html: application layout

COULD POTENTIALLY EVEN DO THIS
FOR DYNAMIC/PUBLIC DATA

THINK ABOUT WHAT WE GET

pixels on the screen immediately

TOTALLY CRAWLABLE (SEO)

JS TAKES OVER ROUTING
WHEN LOADED

DEPLOYMENT AND OPS
BECOME AS SIMPLE AS FTP

WRITE 1 VERSION OF YOUR APP
GET 90% OF BENEFIT FROM
ISOMORPHIC RENDERING

USERS WILL END UP WITH A PRIMED
CACHE JUST BY VISITING YOUR

MARKETING PAGES

READY FOR:
PHONEGAP/CORDOVA

DESKTOP APP

NOW WE HAVE AN APP
WITH A SINGULAR CONCERN:

PRESENTATION

I’VE STARTING BUILDING
ALL MY APPS AS STATIC

NATIVE WEB APPS

TOTALLY <3 IT!

FOR SO LONG THE TREND
HAS BEEN TOWARD COMPLEXITY

WHAT’S THE NEXT STEP
IN THE EVOLUTION

OF THE "WEB APP"?

GOING BACK TO
SIMPLE

GOING BACK TO
THE STATIC WEB

STATIC NATIVE WEB APPS

POWERED BY SERVICES
SOME WHICH WE BUILD

MANY OF WHICH WE RENT

surge.sh
hood.ie

firebase.com
auth0.com

divshot.com

SIMPLE OPEN SOURCE EXAMPLE:
HubTags.com

http://HubTags.com

•React
•Ampersand.js
•Webpack (hjs-webpack)
•GitHub API
•Surge.sh

andyet.com

http://andyet.com

HOW CAN WE BE SURE
WE’RE BUILDING WITH

THE RIGHT TOOLS?!

WE CAN’T!

WHAT DO WE KNOW?

THINGS WILL
CHANGE

BUILD MODULAR SYSTEMS
THAT STRIVE TO BE AS

SIMPLE AS THEY CAN BE

OFFLOADING PRESENTATION
STATIC NATIVE WEB APPS

BUILDING MICROSERVICES
TO ENABLE THAT TYPE OF APP

OPTIMIZE FOR CHANGE.
IT IS THE ONLY CONSTANT.

LET’S KEEP PUSHING FOR SIMPLICITY

LET’S BUILD FOR THE FUTURE
OF THE WEB, NOT ITS PAST

THANKS!
@HenrikJoreteg, andyet.com

http://twitter.com/henrikjoreteg
http://andyet.com

