OREILLY®

MARCH 16-17, 2015: TRAINING

S Oftware A IChlteCture MARCH 171, 2015: CONFERENCE

Can You Process
10 _Trillion Logs Per.Day?

+ SUMO

Christian Beedgen, CTO & Co-Founder, @raychaser

Who Is Christian?

 Co-Founder & CTO, Sumo Logic since 2010
« Server guy, Chief Architect at ArcSight, 2001 - 2009

sumologic

Agenda

Purpose, Practice, Philosophy

« Why We Are What We Are
 How We Set Things Up
 What We Have Learned

sumologic

AT

-

-
' J
{ —
£

INVISIBLE | OL L

|

a
|

2; 3 . i

Why We Are What We Are

Machine Data Analytics

sumologic

\PSHOT requires scala version: 2.9.1

IARNING] com.sumologic.collector-interchange:co
ector-interchange: 18.8-SNAPSHOT requires scala
rsion: 2.9.1

IARNING] com. sumologic. interchange: interchange:
.8-SNAPSHOT requires scala version: 2.9.1
ARNING] com.sumologic.meta-client:meta-client:
.0-SNAPSHOT requires scala version: 2.9.1
ARNING] org.neodj :neodj-cypher:1.4.1 requires
ala version: 2.9.8-1

IARNING] Multiple versions of scala libraries de
cted!

NFO] includes = [#k/%.scala,*x/*.java,]

NFO] excludes = []

NFO] Nothing to compile - all classes are up to
late

NFO] [compiler:compile {execution: default}]
NFQ] Nothing to compile - all classes are up to
late

NFQ] Preparing exec:java

NFQ] No goals needed for project - skipping
NFO] [exec:java {execution: default-cli}]

NFO]

NFO] BUILD SUCCESSFUL
NFO]

NF0] Total time: 4 seconds
NFQ] Finished at: Tue May 22 88:03:06 PDT 2012
NFO] Final Memory: 46M/95M
NFO]

'T_HOME=/Users/christian/Development/sumo/systen
./ops/assemblies/latest/api~18.8-SNAPSHOT
LL_HOME=/Users/christian/Development/sumo/syste
'../ops/assemblies/latest/bill-18.
LLECTOR_HOME=/Users/christian/Development/sumo/
stem/. . /ops/assemblies/latest/collector-18.8-SN
SHOT
NFIG_HOME=/Users/christian/Development/sumo/sys
m/ . . /ops/assemblies/latest/config-18.0-SNAPSHOT
\TTA_SUMO_HOME=/Users/christian/Development/sumo
ystem/../ops/assemblies/latest/katta-sumo-18.0-
IAPSHOT
TA_HOME=/Users/christian/Development/sumo/syste
. ./ops/assemblies/latest/meta-18.0-SNAPSHOT
IVA_HOME=/Users/christian/Development/sumo/syste
. ./ops/assemblies/latest/nova~18.8-SNAPSHOT
S_HOME=/Users/christian/Development/sumo/systen
./ops/assemblies/latest/ops-18.8-SNAPSHOT

(GC 71949K->40884K(38816K), ©.0848185 secs)
[GC 71484K->48844K(96192K), 0.0036761 secs]
0.0841013 secs]

[GC 71244K->48548K(388806K) ,
0.0842011 secs]

0.8854358 secs]
9.8059188 secs]
9.8841172 secs]
9.8839677 secs)
0.0148833 secs]
0.0186239 secs]
0.0076121 secs]
9.8873889 secs]

[GC 70641K->48607K(98880K) ,
[GC 70640K->48738K(99008K) ,
[GC 70882K->48541K(98044K) ,
[GC 78685K->48652K(99872K) ,
[GC 71116K->48581K(38944K) ,

2012-85-22 88:44:35,713 (Thread-4 (group:HornetQ-client-global-threads-692
8303)] INF0 com.sumologic.scala.collector.CommonsHTTPSender - Publishing
essage piles: '18', messages: '1827', bytes: '335958', encoded: '335944°,
hreshold: 'false', compressed: '245@5'

2012-95-22 88:44:36,816 [Thread-2 (group:HornetQ-client-global-~threads-692
8303)] INF0 com.sumologic.scala.collector.CommonsHTTPSender -~ Publishing
essage piles: '22', messages: '2223', bytes: '428435', encoded: '428421°,
hreshold: 'false', compressed: '38468'

2012-95-22 88:44:37,776 [Thread-4 (group:HornetQ-client-global-~threads-692
8303)] INFO com.sumologic.scala.collector.CommonsHTTPSender - Publishing
essage piles: '20', messages: '2025', bytes: '355193', encoded: '355179',
hreshold: 'false', compressed: '31755'

2012-95-22 88:44:37,967 -8708 INFO [module=RECEIVER] [logger=util.scala.
health.GlobalTrackerList$] [thread=MTP-MessagePilePipeline-8] [auth=Colle
ctor:locall: 1322 : 00POPPRARRRRRSC: false] [remote_ip=127.08.08.1
] [web_: sessw-uTHkaz...] Recovery: unhealthy: Receiver-blockProduction
Check: 1m since ping -> healthy

2012-95-22 ©8:44:37,970 -87080 INFO [module=RECEIVER] [logger=scala.recei
ver.MessageBlocker] [thread=MTP-MessagePilePipeline-6] [auth=Collector:lo
call:0000000000000322 : 0PAOPOOPORARRRSC: false] [remote_ip=127.0.8. 1] [web_
session=uTMLIxkz...] Pile for customer: '©20200200000005C', ID:
block: '8000000DORARRRRA", msg count: '53*', size: '~7',

322"

“coll

saging.DefaultHornetQConsumerTracker] [thread=Thread-19 (group:HornetQ-cli
nt-global-threads-1787883798)] Dropping message 183421

2012-95-22 @8:44:35,380 0700 WARN [module=CONFIG] [logger=avrox.scala.me
saging.DefaultHornetQConsunerTracker] [thread=Thread-19 (group:Ho {&
nt-global-threads-1787883790)] After depletion 1 messages left in quaue no
ification-input-queve, customerId=00000000ARRRRR5C, sessionId=68784677183F51
5.

2012-95-22 ©8:44:35,385 -8708 INFO [module=CONFIG] [logger=scala.intercha
ge.session.server.ServerQueveSession] [thread=Thread-19 (group:HornetQ-cli
nt-global-threads-1787883798)] Stopped queue session with session ID: '687
4677183F51C5', organization: '0©000000000OORR5C', ancestors: '' in ms: '188

ds-1421773886)] [auth=User:daddy@demo. com: 20220000000008DS : 00BPAABRAR008
5C:false] [remote_ip=0:0:0:0:0:08:0:140] [web_session=3budquom...] [sessio
n=396FOCC84D5CBB9] [customer=0000000000000085C] [call=InboundRawProtocol.
getMessages] [session_path=P67722E6ESF2B66C] getMessages(sessionId=396FOC
, requestId=BFEO40C183786C74, blockId=5000000000000002

2012-85-22 88:44:38,001 -0708 INFO [module=RAW] [logger=scala.raw.Messag
eProtocolHandler] [thread=Thread-31 (group:HornetQ-client-global-threads-
1421773886)] [auth=Customer:2020000000000A5C : 0ABPAABROB18E6A8 : 8

©9005C: 22PP0PARPRRRRRSC : false] (ms‘tﬂ!l‘mxl [Calhﬂessage?r
otocol.publishMessageBlock] Block for customer: '©90900090000005C*, ID: *
5000000000000009", msg count: '100820°, size: '1253828°

2012-95-22 ©8:37:28,483 -0700 INFO [module=0PS] [logger=ops.scala.util.Th
rdPartyRegistrar$] [thread=main] New services:

search_jmx (192.168.242.139)

stream_jmx (192.168.242.139)
2012-85-22 88:37:43,499 -8700 INFO [module=0PS] [logger=ops.scala.util.Th
rdPartyRegistrar$] [thread=main] New services:

service_http (192.168.242.139)

service_jmx (192.168.242.139)
2012-95-22 @8:38:43,554 -8700 INFO [module=0PS] [logger=ops.scala.util.Th
rdPartyRegistrar$] [thread=main] New services:

collector_jmx (192.168.242.139)

emwmllback] [thread=MTP-SearchQueryHandler-5] [auth=User:daddy@demo.c
8:00000000P0P0RRS5C: false] [remote_ip=0:0:0:0:0:0:0:1%0] [web_sessi
an&:udquu...l [session=5E6158056676873D] [customer=0800800A0ARRR5C] [call=Inbound
SearchProtocol.startSearch] [session_path=867722E6ESF2B66C] Getting 318 hits from 2
indices [92-1337701305258-6775443514204284376, 92-1337701384086-3688725643144198513]

for session 5E6158956676873D.

2012-95-22 ©88:44:38,316 -8700 INFO [module=SEARCH] [logger=scala.meta_client.protoc
ol.message. IndexLookupResultStream] [thread=Thread-26 (group:HornetQ-client-global-t
) 8 : 000D0DPRORRRRRSC: fals
e] [remote_ip=0:0:0:0:0:0:8:1%0] [web_session=3budquom...] [session=FGABE77EBCFE1EF6
] [customer=000000000000085C]) [call=OutboundMetaQueryProtocol.indicesPage] [session_

hreads-1571914293)] [auth=User:daddy@demo. com:

et T T Y AL ECIRLLS JECEI1COOCLEETLaT) Dorciund = hatrbh A€ Sndiroc

ch.scala. katta.KattaIndexStore] [thread=MTP-IndexDeployer-1] De
loying index 92-1337701472826-627678167736745201

2012-95-22 ©8:44:38,033 -0700 INFO [module=SEARCH] [logger=sea
ch.katta.DefaultIndexDeployer] [thread=MTP-IndexDeployer-1] Fin
shed deploying index, name=02-1337701472826-627678167736745201
2012-95-22 ©8:44:38,333 -0700 INFO [module=SEARCH] [logger=sea
ch.scala.katta.KattaIndexStore] [thread=MTP-IndexDeployer-1] De
loying index 92-1337701472830-8554356854656354614

2012-95-22 08:44:38,338 -8700 INFO [module=SEARCH] [logger=sea
ch.katta.DefaultIndexDeployer] [thread=MTP-IndexDeployer-1] Fin
shed deploying index, name=02-1337701472830-8554356854656354614

Sumo Logic Cloud-based Deployment

Customer A
Data Center

Customer B
Data Center

Customer C
Data Center

> @ sumologic

¢ =
." - - - .' K T *
’ [‘.& .t’a]
. D - Collector Collector
a et
“ Collector Customer A Customer B
Cloud Cloud

Sumo Logic Confidential

@ sumologic

Why Is Sumo Logic A Service

A Conscious, Fundamental Decision

Simply the best Full control -
way to deliver product
Machine Data development
Analytics efficiency

sumologic

Why Is Sumo Logic A Service

A Conscious, Fundamental Decision

Simply the best
way to deliver
Machine Data
Analytics

ooooooooooooooooooooooo

@ sumologic

Why Machine Data Analytics As A Service

The Big Data Imperative

 Machine data is actually Big Data
« Big Data enterprise software is expensive and painful

 As a service, we deliver more value at a lower cost

sumologic

What Is Machine Data

Actually, It's Machine Generated Data

Curt Monash: Daniel Abadi:

"Machine-generated data is
data that is generated as a

“Data that was produced

entirely by machines OR data

result of a decision of an
Independent computational
agent or a measurement of an
event that is not caused by a
human action.”

that is more about observing
humans than recording their

choices.”

Sumo Logic Confidential SUmOIOg|C

Example

2012-05-22 18:47:26,807 -0700 I tId=long-frontend-1] [module=RECEIVER]
[logger=scala.receiver.MessageBloSker] [thread=MTP-MessagePilePipeline-3]
[auth=Collector:prod-cass-raw-8:000000000000483D:0000000000000005:false]
[remote_ip=184.73.74.54] [web_session=MepMG8CS...] Pile for customer:
'0000000000000005', ID: 'BO0O0O00006407637B', block: '80000000004CSA11', msg
count: '1', size: '264', collector: '000000000000483D"'

« Timestamp with time zone!

Sumo Logic Confidential

@ sumologic
R | | | ||| & T T I —_-___—_—_—_—_——— e —————ms

Example

2012-05-22 18:47:26,807 -0700 INFO
[logger=scala.receiver.MessageB
[auth=Collector:prod-cass-raw-
[remote_ip=184.73.74.54] [web_
'0000000000000005', ID: 'B0000O
count: '1', size: '264', colle

[hostId=long-frontend-1] [module=RECEIVER]
cker] [thread=MTP-MessagePilePipeline-3]
000000000483D:0000000000000005: false]
ion=MepMGB8CS...] Pile for customer:
407637B', block: 'B80000000004CSA11', msg
'000000000000483D"

« Timestamp with time zone!
 Loglevel

Sumo Logic Confidential SUmOIOgiC
T —————————_—_————————————————pm—S—.

Example

2012-05-22 18:47:26,807 -0700 INFO [hostId=long-frontend-1] [module=RECEIVER]
[logger=scala.receiver.MessageBlocker] [thread=MTP-MessagegilePipeline-3]
[auth=Collector:prod-cass-raw-8:000000000000483D:000000 0005:false]
[remote_ip=184.73.74.54] [web_session=MepMG8CS...] Pile customer:
'0000000000000005"', ID: '800000006407637B', block: '8000 004CS9A11"', msg
count: '1', size: '264', collector: '000000000000483D"'

« Timestamp with time zone!
 Loglevel

* Host ID & module name (process/service)

Sumo Logic Confidential

@ sumologic

Example

2012-05-22 18:47:26,807 -0700 INFO [hos
[logger=scala.receiver.MessageBlocker] TP-MessagePilePipeline-3]
[auth=Collector:prod-cass-raw-8:00000000 483D:0000000000000005:false)
[remote_ip=184.73.74.54] [web_session=MepMG8CS...] Pile for customer:
'0000000000000005', ID: '800000006407637B', block: '80000000004CSA11', msg
count: '1', size: '264', collector: '000000000000483D"'

-frontend-1] [module=RECEIVER]

« Timestamp with time zone!
 Loglevel

* Host ID & module name (process/service)
» Code location or class

Sumo Logic Confidential

@ sumologic

Example

2012-05-22 18:47:26,807 -0700 INFO [hostId=long-frontend-1] [module=RECEIVER]
[logger=scala.receiver.MessageBlocker] [thread=MTP-MessagePilePipeline-3]
[auth=Collector:prod-cass-raw-8:000000000000483D:0000000000000005: false]
[remote_ip=184.73.74.54] [web_session=MepMG8CS...] Pile for customer:
'0000000000000005', ID: 'B800000006407 ', block: '80000000004CSA11', msg
count: '1', size: '264', collector: ' 00000000483D"'

« Timestamp with time zone!

 Loglevel

* Host ID & module name (process/service)
» Code location or class

« Authentication context

Sumo Logic Confidential SUmOIOgiC

Example

2012-05-22 18:47:26,807 -0700 INFO [hostId=long-frontend-1] [module=RECEIVER]
[logger=scala.receiver.MessageBlocker] [thread=MTP-MessagePilePipeline-3]
[auth=Collector:prod-cass-raw-8:000000000000483D:0000000000000005:false]
[remote_ip=184.73.74.54] [web_session=MepMG8CS...] Pile for customer:
'0000000000000005', ID: 'B00000006407637B', block: '80000

A11', msg
count: '1', size: '264', collector: '000000000000483D"

« Timestamp with time zone!

 Loglevel

* Host ID & module name (process/service)
» Code location or class

« Authentication context

* Key-value pairs

Sumo Logic Confidential SUmOIOgiC

Machine Data Is Big Data

V For Big Data

* Volume
— Machine Data is voluminous and will continue to grow
— Our own application creates 1TB/logs per day easily

* Velocity
— Machine Data occurs in real-time, and it is time-stamped
— Needs to be processed in real-time as well

e Variety
— Machine Data is unstructured, or poly-structured at best
— Some standard schemas, but sure enough not for the apps you built

sumologic

Enterprise Software
Is An EXxercise In
Undifferentiated Heavy-Lifting

(For Your Customer)

Big Data Makes Things Worse

A Eulogy For Enterprise Software

* Cluster-able, modern, N+1 scalable Enterprise Software?

— OlId architectures from back when the products were conceived

— How many Enterprise Software applications deploy on Hadoop?

 It's not just the cost of the software license...

— Lead time and cost of servers, storage, networking, plus the cost of HA, DR

— Cost of the people that are maintaining the infrastructure

« Have you ever upgraded Enterprise Software?

— Latest and greatest is always appealing but not always well tested
— Upgrade the Oracle database, migrate the configuration, migrate the data, ...

sumologic

More Value At A Lower Cost

A Different Business Model

NO HEAVY-LIFTING REQUIRED LOWER TCO
» Using vs. running the product « No server, storage, admin cost
« Easy on, easy off « Vendor economies of scale

el »,
.
¥ \ W o 4
.

sumologic

Who Watches The Watchmen?

This Stuff Actually Matters In Real Life

* How much monitoring does your monitoring solution require?
 How much does your monitoring solution add to your monitored footprint?

* Do you know what infinite recursion is all about?

sumologic

Why Is Sumo Logic A Service

A Conscious, Fundamental Decision

Simply the best
way to deliver
Machine Data
Analytics

Sumo Logic Confidential

Full control 2>
product
development
efficiency

@ sumologic

Velocity Increases

Visibility Is Perfect

Cost Decreases

Velocity Increases

Visibility Is Perfect

Cost Decreases

Sumo Logic Confidential SUm0|Og|C

Deployment Environment |Is Controlled
Control Affords Predictability

 No more surprises due to out of control circumstances

— Misread technical documentation, sheer ignorance, lack of time

— Obscure runtime issues creating hard to track down issues

sumologic
R | | | ||| & T T I —_-___—_—_—_—_——— e —————ms

Deployment Environment |Is Controlled
Control Affords Predictability

 No more surprises due to out of control circumstances

— Misread technical documentation, sheer ignorance, lack of time

— Obscure runtime issues creating hard to track down issues

« Code and test against the actual runtime environment

— Control over the full stack removes a lot of variables

— Actually testing in production is still hard, but at least there’s progress

sumologic

Only One Production Branch

Fear The Cartesian Product

* Less dimensions in the testing matrix

— One and only one product and version to test

— Bugs on arcane platform not even the developers know

» Every release of enterprise software decreases velocity

— Customers try to avoid the upgrade hassle and cost

— Laggard customer fall further behind, forcing support for older and older versions

sumologic

Velocity Increases

Visibility Is Perfect

Cost Decreases

Sumo Logic Confidential sum0|og|C

Velocity Increases

Visibility Is Perfect

Cost Decreases

Sumo Logic Confidential SUm0|Og|C

Cost Decreases Along Many Dimensions

Obvious & Hidden Dimensions Play Here

* Lower support costs

— Much better visibility leads to faster MTTI of customer issues
— Can also reinvest savings into even better support and have happier customers

 What is the true cost of pissed off customers?

— Immediate financial impact due to churn
— Mid-term brand damage because word travels quickly

« Test and maintenance spend reduction

— Test matrix is greatly reduced
— No maintenance developer spend

sumologic

Why Is Sumo Logic A Service

A Conscious, Fundamental Decision

Simply the best Full control -
way to deliver product
Machine Data development
Analytics efficiency

sumologic

What Decisions Did We Make?

Don’t Forget, A Bunch Of Software Developers Started This Company

-~ Focus on what we know and what we have learned

Do everything in code that can be done in code

We Need To ===

Evolve from software architects to system architects

- Acknowledge our responsibility for the runtime behavior

sumologic

How We Set Things Up

Multitenancy

Adaptabllity

sumologic

Better Economics
Differentiated Pricing

* No fixed, per-customer costs
— No fixed provisioned infrastructure as compared to managed service offerings

— Customers are cattle, not pets — no per-customer administration cost

* Provision for what is actually used
— Customer usage is not uniform but varies by time of day/week/year

— The good old “Sum of peaks vs. peak of sums” argument

sumologic

2,250

2,000

1,750

1,500

1,250
o
b

1,000

7

i
) |
| |
w |y [. T 1.
I (T
. ‘ ‘ || “ Illl |||||||I|||I|||I|IIl|||nnml|l||l|||llmlnlllll|||l|n||In|||||||||II|I|III||I|| Il |

04/2014 05/2014 06/2014 07/2014 08/2014 09/2014 10/2014

o
o

Just one typical Sumo Logic customer - 8x Variance!

Sumo Logic Confidential SU[T\OlOgIC

size_gb

2,250

Money flushed down the tojlet
|

1,750

1,500

1,250

(Y

‘l“|||‘IlhI““||||‘N“I“‘h“ll“"‘hl‘hlnI||I|||I|||||I||ul.||I||||||II||I||| Nill||||||“|“||“““““||||“|“‘|||||‘ l“l“mll

04/2014 05/2014 06/2014 07/2014 08/2014 09/2014 10/2014

1,000

750

5

(=]
o

250 —
0

Just one typical Sumo Logic customer - 8x Variance!

Sumo Logic Confidential SUI'T\OlOgIC

Here's another one — spike at 2.5 of steady.

3,000

2,750

2,500

2,250

2,000

1,750

1,500

size_gb

1,250

1,000

750

500

250

Mon Jul 07 Mon Jul 21 Mon Aug 04 Mon Aug 18 Mon Sep 01 Mon Sep 15 Mon Sep 29 Mon Oct 13
2014 2014 2014 2014 2014 2014 2014 2014

——— e

size_gb

1,100

1,000

900

800

600

500

400

300

200

100

Mon Aug 04
2014

Mon Aug 11 Mon Aug 18 Mon Aug 2! Mon Sep 0 Mon Sep 1 Mon Sep 2! Mon Oct O
2014 2014 2014 2014 2014 2014 2014 2014 2014

Or... Sweet, incremental, unfettered growth

Mon Oct 1
2014

Mon Oct 2!
2014

Sumo Logic Confidential

@ sumologic

Even More Product Development Efficiency
There Simply Is Just One System

* No version drift
— Only one version of the code, only one version of the configuration

— No time wasted debugging custom, one-off stuff

* Much better update cycle times

— No per-customer configuration stands in the way

— No manual steps anywhere

sumologic

Architect
For An
Extreme Rate

Of Change

sumologic

Success

Change Is Our Success

Sumo Logic Confidential SUmOIOglC

Success Leads To Scale
Pretty Clever, Huh?

« Charging for ingested data is our business model
 We make more money if we sell more daily ingested data

 We need to be able to scale to ever more daily data

sumologic

Scaling Implies Change
There’s The Catch!

« Scaling challenges assumptions about system behavior
« To adopt to the new reality, changes are required

e So in order to scale we need to be able to make changes

sumologic

We Don’t Know Nothing

...But That We Do Know

« Cannot afford a test system the size of Prod
* Anything short of Prod doesn’t accurately reflect reality

« Reality will surprise you and now the unknown is known

sumologic

Software-Defined
Software

Because We Are Software Developers

sumologic

Change Needs To Be Fully Automated

And By Automation, We Mean Software

« Change needs to be applied at minimum latency
* There is absolutely no room for error

* Not exactly the ideal tasks for humans

sumologic

How?

Reuse Ruthlessly
Decompose Vertically
Decouple Dramatically

Layer Horizontally

Everything Continuously

Reuse Ruthlessly

Decompose Vertically

Decouple Dramatically
Layer Horizontally

Everything Continuously

Sumo Logic Confidential

@ sumologic

Stand On The Shoulders Of Giants

The View Is So Much Better Up There

* Developers have always known how to do this
— Operating system, programming languages, libraries

— Focus on the value that your code can add

« Today, we also reuse on the level of services

— AWS has turned the datacenter into an API

— | have not seen a datacenter in 8+ years

sumologic

Don’t Reinvent The Wheel

Invent New Wheels

Do create distributed indexing V
Do write your own query engine

Don’t re-write Lucene

Don’t re-write messaging

sumologic

Reduce The Area Of Responsibility For Change

Reuse Ruthlessly

Decompose Vertically

Decouple Dramatically
Layer Horizontally

Everything Continuously

Sumo Logic Confidential

@ sumologic

ldentify The Main Functions Of The System

Then, Break Those Down Into Major Parts

- Ingest data and index it so it can be queried

We need to === Provide ad-hoc query capabilities for analytics

- Be able to update certain query results continuously

Also, shared stuff: Configuration, Encryption, API

sumologic

Ingestion Path

LRecelver T

@ sumologic

Analytics Path

Experts Will Emerge To Deal With Change In Any Area

Reuse Ruthlessly
Decompose Vertically
Decouple Dramatically

Layer Horizontally

Everything Continuously

Sumo Logic Confidential

@ sumologic

Facade pattern

From Wikipedia, the free encyclopedia

The facade pattern (or fagade pattern) is a software design pattern commonly used with object-oriented programming. The name is by analogy to an
architectural facade.

A facade is an object that provides a simplified interface to a larger body of code, such as a class library. A facade can:

o make a software library easier to use, understand and test, since the facade has convenient methods for common tasks;

« make the library more readable, for the same reason;

« reduce dependencies of outside code on the inner workings of a library, since most code uses the facade, thus allowing more flexibility in developing the
system;

e wrap a poorly designed collection of APIs with a single well-designed API (as per task needs).

The Facade design pattern is often used when a system is very complex or difficult to understand because the system has a large number of interdependent
classes or its source code is unavailable. This pattern hides the complexities of the larger system and provides a simpler interface to the client. It typically
involves a single wrapper class which contains a set of members required by client. These members access the system on behalf of the facade client and
hide the implementation details.

sumologic
R | | | ||| & T T I —_-___—_—_—_—_——— e —————ms

Definitions [edit

The OASIS group!*! and the Open Group!®! have both created formal definitions. OASIS defines SOA as:

A paradigm for organizing and utilizing distributed capabilities that may be under the control of ¢ Tee-" ee-" ee
means to offer, discover, interact with and use capabilities to produce desired effects consisten
expectations. '

The Open Group's definition is:

Service-Oriented Architecture (SOA) is an architectural style that supports service-orientation.
Service-orientation is a way of thinking in terms of services and service-based development anc
A service:

Is a logical representation of a repeatable business activity that has a specified outcome (e.
consolidate drilling reports)

Is self-contained

May be composed of other services

Is a “black box” to consumers of the service

Sumo Logic Confidential SUm0|Og|C
T —————————_—_————————————————pm—S—.

Internal SOA

We Always Thought About It That Way Intuitively

...they can be decoupled!

Avro over messaging bus, or RPC

Documented protocols

No poking at private parts

Now that you have things decomposed...

sumologic

{ » E . -
v »
v v) »
‘ .-._.f .-,

THAT NAMERINGSIABELL

| thought of objects
being like biological cells
and/or individual computers on a network,
only able to communicate with messages
(so messaging came at the very beginning)
— Alan Kay

You Will Have To Change Engines Mid-Flight

Reuse Ruthlessly

Decompose Vertically

Decouple Dramatically
Layer Horizontally

Everything Continuously

Sumo Logic Confidential

@ sumologic

No Magic Here

This Is Just Obvious Best Practice

 Services can reuse code

— Communication, configuration and utility libraries

— Global functionality, service discovery, feature flags

* Service-level layering

— Lower level utility services reused by higher level services

— Can also work great if you want to support multiple implementation languages

sumologic

Always Try To Limit The Size Of Any Change

Reuse Ruthlessly

Decompose Vertically

Decouple Dramatically
Layer Horizontally

Everything Continuously

Sumo Logic Confidential

@ sumologic

Continuous Integration

sumologic

Continuous Delivery

sumologic

Continuous Automation

sumologic

Build A Change Delivery Highway That You Can Trust

Reuse Ruthlessly
Decompose Vertically
Decouple Dramatically

Layer Horizontally

Everything Continuously

Architect
For An
Extreme Rate

Of Change

sumologic

What We Have Learned

Decomposition
Supports
Scaling

sumologic

Success

Sumo Logic Confidential SUm0|Og|C

In 2010, we knew that
success will look
something like this...

sumologic

In 2010, we knew that
success will look
something like this...

YUk

1,250 ft 1,450 ft 1,483 ft

Empire Stat Sears Tower Petronic
Building Buldng Chicago Towers 1&2
New York Shanghai Kula Lumpur

sumologic

of GB/TB Ingested a Day

Our Service Momentum

Massive Data and Usage Growth

Daily Ingest Searches
>35 S>1.3::/I
TB/Da earches
/Day 1,400,000 T Day
35,000 B Sydney - Dublin
W us2 »
e 1,200,000 a
30,000 s e
& 1,000,000
25,00 a
[0
20,000 = 800000
5
15000 5 600,000
n
10,000 ;‘E 400,000
5,000 200,000
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
2012 2013 2014 (2012 Q2013 | 2014

Sumo Logic Confidential SU[T\OlOgIC

Decomposition Supports Scaling

We Have Absolutely Experienced Scale Induced By Success

* Full physical separation between services

— [Each node runs exactly one service

— Each service is run on a cluster of nodes (N+2)

« Each service can scale independently
— We require wildly different numbers of nodes based on the service

— Some services can run on 3 nodes, some require 1000s

sumologic

Software-Defined
Software

sumologic

Build, Run — It Is All The Same

No Functionality, No Feature That Doesn’t Need To Be Operated

You don't just write code, you run a system

You write more code to run the system

We have all become system architects

Deployment, operations — build by the Chief Architect

There is more going on here than just config management

sumologic

dsh

A Custom Command Line Program To Operate Sumo Logic

Model-driven, describe desired state, run to make it so
High performance due to parallelization
Covers all layers of the stack — AWS, OS, Sumo Logic
Easy to use and extend, scriptable CLI

Developer-friendly, Scala-based, high-level APls

sumologic

e, T
/ 1/ _\N_\N | / _< |
I

— I
/ /SN S>> C <> D)— | -\ Y N __/I 1_I |
\ AN > /| VAN // I
AVARRNE V4 I \V4 \/ \V4 \V4

Tip: Find instance by tag using: instance search TagA=a&TagB=b

Enter your commands below. Type 'help' for help.
[dsh-19.61-SNAPSHOT] $ dep sel prod

Selecting deployment 'prod'...
Password for account 'production-master' (/Volumes/IronKeyBackup/sumo-accounts/f

Account production-master loaded from /Volumes/IronKeyBackup/sumo-accounts/produc
Configuring http logging to 'https://long-events.sumologic.net/receiver/vl1/http/i

331 running instances.

[dsh-19.61-SNAPSHOT] /production-master/prod$ inst terminate index-5
Terminate the following instances

prod:index-5 (1-0d331c69)

Proceed [Y/N]: I

Deployments Are Model-Driven
Sie Ist Ein Model & Sie Sieht Gut Aus

 Model contains concepts

— Deployment
— Cluster

— AWS Resources (Amazon S3, Amazon Elastic Load Balancing, Amazon DynamoDB,
Amazon RDS, etc.)

— Software assemblies

— AWS configuration (IAM users, security groups, etc.)

« Human-readable names: prod-index-5

sumologic

<role description="ZooKeeper node" name="zookeeper'>
<instanceType>ml.medium</instanceType>
<amild>ubuntu-ebs—-amd64</amild>
<sshUser>ubuntu</sshUser>
<properties>
<property name="zookeeper_binary_url" value="s3_url:zookeeper-${zookeeper_binary_version}.tar.gz"/>
<property name="depman_binary_url" value="ass-url:depman"/>
<property name="depman_jvm_min_memory" value="256"/>
<property name="depman_jvm_max_memory" value="512"/>
<property name="zookeeper_jvm_min_memory" value="1024"/>
<property name="zookeeper_jvm_max_memory" value="1920"/>
</properties>
<assemblies>
<assembly name="collector"/>
<assembly name="health"/>
<assembly name="gyoji"/>
<assembly name="ganglia-monitor"/>
<assembly name="depman"/>
<assembly name="service_registry"/>
</assemblies>
</role>

Differential Deployment
As Good As An Episode Of House, M.D.

« Start by finding existing resources

— Use tagging where it is available
— Name prefixes (“prod_xxx") where it isn’t (security groups, 1AM, ...)

 Fix differences to model

— Start “missing” instances
— Change security group rules, missing IAM users

 Proceed with caution

— Never delete anything that holds data
— Amazon EBS, Amazon DynamoDB, Amazon S3, Amazon RDS

sumologic

Programmable Infrastructure |Is Real

Embrace, Evolve & Include It In The Architecture

Microservices

sumologic

Monolithic vs Microservices

/ Monolithic

&

FooYr ot
Foo¥ool

S

Microservices

f]) @alvaro_sanchez

How | Actually Visualize Microservices

Factoring Is Still Important

* Highly cohesive loosely coupled is an ideal
 The same ideal OQ is striving for

« Here’s a snapshot of the current Sumo factoring

sumologic

cqsplitter =" cqmerger

Deployment wide services

Internal tools

2 to the power of 5
services ("327), 170+
modules

Don’t even ask about the
of dependencies

At least 3 of each —
everything is a separately
scalable cluster

Refactor-able Infrastructure

* The same old thing all over again

* Now that infrastructure is code, keep refactoring

« Split things that don’t belong, join others

« Service abstractions can help keeping impact low

* Moving around the code, vs. the protocols

sumologic

Service Groups Scale

* This is really a level of granularity optimization

* One system: too heavy — 32 systems: too fleeting

« Build a service group, deploy against baseline, test
« During deployment, deploy by service group

» Balances crosscutting integration tests with turnaround

sumologic

What Is Left To Do?

« Still a notion of a common version across all services

— Weekly “major” releases, end of quarter release freezes
— Even releasing one week of changes can perturb the force majorly

* True continuous delivery

— Red/black deployments
— How to do this in a system with a very high write rate?

* Tooling to support partial updates

— Our own system is a great way to monitor and make decisions
— Work in progress...

sumologic

Everything Now Has One More Layer Of Abstraction

There Is
No Place
Like
Production

sumologic

You Cannot Simulate The Big Datas

* There’s simply no substitute for Production

« This doesn’'t mean you shouldn’t have nightly, staging, ...
* This doesn’t mean you shouldn’t have integration tests

* This doesn’'t mean you shouldn’t test manually

« But there’s just a class of issues you will not find

* You can’t move Production data into testing
* You can’t afford a second Production size system

sumologic

So Now What?

* |nstrument, instrument, instrument
 Monitor, monitor, monitor
* Alert on symptoms

https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/

mobilebasic?pli=1&viewopt=127#h.dmn6k1rdb6jf

 Basically, don’t worry about 100% CPU, etc.
« Alert on customer impact
 Message ingestion delayed, search takes too long, ...

Sumo Logic Confidential sum0|og|C

Don’t Alert If

You Don’t
Have A
Playbook
Stefan Zier
Chief Architect

Sumo Logic

sumologic

Glass (prod)

Overview ~

Services ~

Sumo Configuration ~

Sumo Health ~

Preloaded Searches: All Unhealthy - Recently Unhealthy

Customer Information ~

Dev Util ~

Other ~

System Release: 19.112-68 User: christian

£ ¢ Showing 1 to 25 of 200 entries (filtered from 145,326 total entries - Clear Filters) (Export Data as CSV) First | [Previous| (1) (2] (3[4 (5) (Next) [Last Show 25 % entries
Star... Storage Time Node rack NOT(Scheduled maintenance) NOT(corrupted accounts) NOT(katta-sumo_marker) Last Statu hge Docur
Starred Storage Time Status Node Service Tracker Message Last Changed Time Last Status Change D ybook

15-03-19 04:04
(16m26s ago)

15-03-19 04:04
(16m59s ago)

15-03-19 04:04
(16m59s ago)

unhealthy

prod-vault-1 vault

vault_index_c
orrupted

katta_nodes_u Some katta nodes aren't assigned to

nassigned

katta_nodes_u Some katta nodes aren't assigned to

nassigned

S3 read after write got different result

(name:

00000000001EDD12/0000013E78A3C9

80, exists: false})

any tier: katta- :20000

any tier: katta- :20000

15-02-27 10:52
(19d16h28m52s ago)

15-03-11 17:44
(7d10h37m12s ago)

15-03-11 17:43
(7d10h38m8s ago)

15-03-19 04:04 (16m26s
ago)

15-03-19 04:04 (16m59s
ago)

15-03-19 04:04 (16m59s
ago)

Tums unhealthy when
After writing index we
get different as a
result. Likely double
write occured.

Tums unhealthy when
some katta nodes

aren't assigned to any
tier

Tumns unhealthy when
some katta nodes
aren't assigned to any
tier

vault_index_corr al
upted

katta_nodes_un al
assigned

katta_nodes_un al
assigned

Last Status Change

15-03-19 04:04 (16m26s
ago)

15-03-19 04:04 (16m59s
ago)

Turns unhealthy
when After writing
index we get different
as a result. Likely
double write occured.

vault_index_cor always
rupted

katt
assi

Turns unhealthy
when some katta
nodes aren't assigned
to any tier

_un always

Sanyaku / playbooks rrvate

vault_index_corrupted

jakozaur edited this page on Dec 12, 2014 - 2 revisions

Ignore this alert on long 19.106. It's not a real issue.

When does this fire?

When after saving vault key we can't read back the same byte. It can be signal of some
serious troubles.

It's a doomsday alert preventing data corruption, it should not fire at all.

What do | do?

It if is long 19.106 then ignore that.
Otherwise contact SME.
Start collecting what has happened:

1. Check in AWS S3 console that key. Does it have multiple versions? If so are they
have the same key.
2. Check vault logs with that key name from health check. Watch out for double create.

[DT Y T P D T T TP T T .. D LT T D

@ Unwatch~ 63 #Star 1 Y Fork

Edit New Page
) Pages
Glass Ganglia Long 4

Clone this wiki locally

https://github.com/Sanyaku/pl @.

[« Clone in Desktop

O

!WW ,Nvuz,.wnvnﬂ. P

It's Not Just Another Layer Of Abstraction
The Damn Thing Actually Is Always On

The Perils Of
Horizontal Scaling

sumologic

T2 518 STASTA T3 STA KA SR STA AT
bad(N+2)

sumologic

Horizontal Scaling Gone Bad

* The ideal scenario: work stealing
* One queue of tasks, bunch of workers

« Grab from queue, work work work, happy

Task, Message Block, “Stuff” l/

Queue

—

—

ooooooooooooooooooooo

Node 1

Node 2

Node 3

Node 4

@ sumologic

Horizontal Scaling Gone Bad

« Scaling out a multi-tenant processing system

* 1000s of customers, 1000s of machines

» Parallelism is good, but locality has to be considered

* 1 customer distributed over 1000 machines is bad

* No single machine getting enough load for that customer
« Batches & shards will become too small

* Metadata and in-memory structures grow too much

sumologic

Horizontal Scaling Gone Bad

Index Index Index Index Index
Index Index Index Index Index
Index Index Index Index Index
Index Index Index Index Index
Index Index Index Index Index

Sumo Logic Confidential

@ sumologic

Horizontal Scaling Gone Bad

Index Index Index Index Index
Index Index Index Index Index
Index Index Index Index Index
Index Index Index Index Index

Index Index Index Index Index

@ sumologic

Horizontal Scaling Gone Bad

ORiex | [ORuex | |QRuex | 9 Ruex | |9 Ruex
o ﬁdex ° ﬁdex Lo ﬁdex ° ﬂdex La ﬁdex
ORuex | [ORuex | [ORuex | [Ruex | @ Ruex
o ﬁdex o ﬁdex o ﬁdex o ﬂdex o ﬁdex
ORuex | |ORuex | ORuex | 9Ruex | |9 Ruex

Sumo Logic Confidential

@ sumologic

Horizontal Scaling Gone Bad

0@34

o@ﬁ&

°®w&

o@ﬁ&

ro N
&%o
4

0@30

o@ﬁo

o@ﬁe

o&ﬁe

o&%e

o&ﬁe

a&ﬁe

o@ﬁo

o@ﬁo

%o o

0@%0

f@%e

f@%e

rog
dﬁ@

o@%o

°g
| %m

°g
| %m

? 3"8‘0

og ‘
Go

?&Wc

Sumo Logic Confidential

@ sumologic

Horizontal Scaling With Partitioning

Horizontal Scaling With Partitioning

Horizontal Scaling With Partitioning

\ J
raw
\ J
rEW
\ J

Y é E Y [E Y
S \ v \ v
Y é E Y @ E Y
v \ y \ y
Y é E Y @ E Y
v \ y \ y

Sumo Logic Confidential SUm0|Og|C

Partitioning By Customer

Each cluster elects a leader node via Zookeeper
* Leader runs the partitioning logic

Set[Customer], Set[Instance] - Mapl[Instance, Set[Customer]]

» Partitioning written to Zookeeper

« Example: indexer node knows which customer’s
message blocks to pull from message bus

Sumo Logic Confidential SUI‘T'IOlOQIC

When Not To Scale (Without Bounds)

Less Is More, Locality Matters

Copy & Paste Scaling

sumologic

So You Keep Adding Customers...

* Your current system is getting achy
* Next order of magnitude on the horizon

* You start to understand what you need to rebuild

* Your quarter ends in 21 days...

sumologic

Sometimes, You Need To Break The Rules

Copy & Paste ScalingTM

Copy your deployment descriptor files & metadata

Point them at a different region and pull the trigger

Instant 2x scaling!

sumologic

Sometimes, Pragmatism Will Win Over Fundamentalism

FIn

@raychaser _

Nostalgia For The Future

The Limits Of Physical Separation

« Every service runs on its own set of instances

— We have consciously reinforced service decoupling by full physical separation
— This was very important but we now have the discipline to keep things lose!

 Instances are right-sized for each service

— Is this really the best approach for cost efficiency
— Are we not using CPU on one cluster but heavy I/0O and vice-versa on another?

* Denser packing and more dynamic placement

— Just one type of instance plus Mesos, Kubernetes, etc. to schedule the processes?
— Docker makes sense in this context, but we are JVM-based...

sumologic

Data Is A Movement

« Heavily based around the idea of a physical pipeline

— This causes an enormous amount of data movement
— Should we be moving the data to the computation?

« Data movement logical hard as well in light of partitioning

— Some of our systems attempt to partition based on load
— Others use more static assignment of tenants to nodes in a cluster

 Locality for caches in light of partitioning

— In-memory and ephemeral disk caches bound to instances
— Dynamically adjusting resources much harder in this scenario

sumologic

State-Based Auctioning

« Work-stealing based on a closed loop system

» Every instance is a data instance for memory and “disk”

« Every piece of data is tagged with tenant, etc.

» Clients don’t address RPCs to instances, just submit request
* Instances compete based on their local knowledge

» Caller will get a promise from the auction winning instance

« Ultimately caller will get the result

« Periodically, state across instances is centralized

* Quotas and limits are computed and distributed to instances
* Prevent over-distribution to maintain locality or cost-envelope

sumologic

Assembly Detalls

Recelver

« HTTPS endpoint behind Elastic Load Balancing
 Decompress messages from Collector

« Extract timestamps from messages

* Aggregate messages per-customer into blocks
* Flush blocks to message bus

 Ack to Collector

sumologic

Raw

* Receive message blocks from message bus

* Encrypt message blocks

 Different key for every day for every customer

* Flush encrypted message blocks to Amazon S3

« Copy blocks as CSV to customer’'s Amazon S3 bucket

* Ack to message bus

sumologic

Index

* Receive message blocks from message bus

« Cache message block on disk and ack to message bus
« Add message blocks to Lucene indexes

» Deal with wildly varying timestamps

* Flush index shards to Amazon S3

« Update meta data database with index shard info

sumologic

Continuous Query

* Receive message blocks from message bus

« Evaluate each message against all search expressions
* Push matching messages into respective pipelines

* Ack to message bus

* Flush results periodically for pickup by client

» Persist checkpoints periodically to Amazon S3

sumologic

Query

* Fully distributed streaming query engine

* Materialize messages matching search expression

« Push messages through a pipeline of operators

* First stage — non-aggregation operators

« Second stage — aggregation operators

* Present both raw message results as well as aggregates
* Results update periodically for interactive Ul experience

sumologic

Software-Defined Software

Making It Fast

« Parallelize all the things

— Upload to Amazon S3 while booting instances while creating IAM users while setting
up security groups while...

— Hyper-concurrent rolling restarts

« Fast enough for development

— Write new code or fix a bug, compile locally
— Push code to development deployment and make it live

* Optimize data transfers

— Use Amazon S3 hashes to only transfer new files
— Only upload changed JARs

sumologic

Making It Reliable

« Check prerequisites before you even try

— Does Prod account have room for this many instances?
— Do | have the required permissions for the AWS APIs?
Any model discrepancies | can’t automatically resolve? Too many Amazon EBS

volumes?

« Handle common failures automatically
— No m1.large in us-east-1b? Move Amazon EBS volumes to us-west-1c and try there

— Hitting the AWS API rate limit? Throttle and try again
— SSH didn’t come up on the instance? Kill it and launch another
— Eventual consistency in AWS— query until it has the expected state (tags)

sumologic

Making It Secure

« Different AWS accounts |AM

— Per developer — One user per Sumo component
— Production — Minimal IAM policy
e account.xml — Inject AWS credentials
— All credentials for one AWS * Security Groups
account (AWS keys, SSH — Part of the model
keys) — Minimal privileges

— Password-protected

sumologic

Making It Safe

« Let mistakes happen at most once

« Add safeguards to prevent operator mistakes

« Type in the deployment name before deleting anything
* Disallow risky operations in production (shutdown Prod)

* Don't allow —-sNAPSHOT code to be deployed in production

sumologic

Making It Easy

« Automate best practices

— Distribute instances over availability zones evenly
— Register instances in Elastic Load Balancing and match AZs to instances

— Tag all resources consistently

« Consistent naming

— Generate SSH with logical names

sumologic

Making It Affordable

* Developers forget to shut stuff down

— Deployment reaper automatically shuts down deployments
— Daily cost emails

* Per-team budgets The Grim Reaper via amazonses.cor
— Manager responsible to Your deployment dev will be shut down at Nov 6, 2013 8:00:00 PM.
keep within bUdget To prevent it from being shut down, please:
1. Start dsh
2. dep sel dev

3. dep keepalive [time-period]
time-period is specified as a terse period, i.e. 1h30m.
Also try:

dep keepalive show
dep keepalive clear

sumologic

Pitfalls

« Base AMI plus scripted installation prevents auto scaling
« Security group updates cause TCP disconnects
* This is fixed in the VPC stack, however

« Parallelism can cause stampedes (for example, Amazon
DynamoDB)

« Tagging API rate limits are easy to hit

sumologic

