‘v}Deliver Faster and Spend Less
< with Cloud Native Microservices

BV

Battery Ventures

‘ Agenda

Workshop vs. Presentation
Introductions
Faster Development
Microservice Architectures
Cloud Native Cost Optimization

‘ Workshop vs. Presentation

Questions at any time
Interactive discussions
Share your experiences

Everyone’s voice should be heard

>—>- D>h—p- >

This is me, who are you?
g:::‘?izgcf:::ec-::;ptf:isa;fa Service o

Retweeted by Andrew Clay Shafer
Expand

@ Why am | here?

Adoption

Rest of World

Enterprise IT

: ; ; ' /1 said ! :
Ignore i Ignore | Ignore | "No" i "No" / "No" i"Oh No"i"Oh %*&!”
: : : : { dammit | :

By Simon Wardley http://enterpriseitadoption.com/ Tlme

@ Why am | here?

Adoption

Rest of World

' : : : | said
Ignore i Ignore : Igfore | "No" } "No" }
: : : : i dammit |

Enterprise IT

"NO" §"Oh NO" é "Oh 0/0*&!”

By Simon Wardley http://enterpriseitadoption.com/

Time

@ Why am | here?

Adoption

Rest of World

Enterprise IT

| said 5
nNou E"Oh NO" E "Oh 0/0*&!”

Ignore i Ignore : Igfore | "No" } "No" }
: ; ' ' i dammit

By Simon Wardley http://enterpriseitadoption.com/ Tlme

@ Why am | here?

Adoption

By Simon Wardley http://enterpriseitadoption.com/

Time

gy\kntures @adrianco ,SjOb at the
intersection of cloud
= = and Enterprise IT,
Rest of World . . .
: : 2014 looking for disruption
and opportunities.
Enterprise IT
. : : H | said :
Ignore i Ignore | Igflore | "No" i "No" / "No" i"Oh No"i"Oh %*&!”
: : : : i dammit | :

@ Why am | here?
: : ' : : BV

e @adrianco’s job at the
intersection of cloud
and Enterprise IT,
2014 looking for disruption
and opportunities.

Adoption

Rest of World

Enterprise IT

T § Example: Docker

| "No" {*Oh No"{"Oh %*&!” wasn’t on anyone’s

| dammic: : & roadmap for 2014. It’s
on everyone’s roadmap

for 2015.

Ignore i Ignore | Igflore | "No" i "No"

By Simon Wardley http://enterpriseitadoption.com/ Tlme

@ What does @adrianco do?

Maintain
_ Relationship with
Presentations at Cloud Vendors Technology Due
Conferences Diligence on Deals

@adrianco

Technical Advice
for Portfolio
Companies

Presentations at
Companies

BV

Battery Ventures

Program _ _
Committee for Networking with

Conferences Tinkering with Interesting People
Technologies

‘ Typical reactions to my Netflix talks...

‘ Typical reactions to my Netflix talks...

“You guys are
crazy! Can’t

believe it”
— 2009

‘ Typical reactions to my Netflix talks...

“What Netflix is doing

won’t work”
- 2010

“You guys are
crazy! Can’t

believe it”
- 2009

‘ Typical reactions to my Netflix talks...

“What Netflix is doing

won’t work”
- 2010

“You guys are
crazy! Can’t

believe it”
- 2009

It only works for
‘Unicorns’ like
Netflix”

- 201

‘ Typical reactions to my Netflix talks...

“What Netflix is doing

won’t work”
- 2010

“You guys are
crazy! Can't

believe it”
- 2009

It only works for
‘Unicorns’ like
Netflix”

— 2011

“We'd like to do
that but can’t”

- 2012

‘ Typical reactions to my Netflix talks...

“What Netflix is doing

won’t work”
- 2010

“You guys are
crazy! Can't

believe it”
- 2009

It only works for
‘Unicorns’ like
Netflix”

— 2011

“We'd like to do
that but can’t”

- 2012

“We’re on our way using
Netflix OSS code”

- 2013

N\

‘ What | learned from my time at Netflix

-

N\

‘ What | learned from my time at Netflix

-Speed wins in the marketplace

N\

‘ What | learned from my time at Netflix

-Speed wins in the marketplace
-Remove friction from product development

N\

‘ What | learned from my time at Netflix

-Speed wins in the marketplace
-Remove friction from product development
-High trust, low process, no hand-offs between teams

.

N\

‘ What | learned from my time at Netflix

-Speed wins in the marketplace

-Remove friction from product development

-High trust, low process, no hand-offs between teams
-Freedom and responsibility culture

.

N\

‘ What | learned from my time at Netflix

-Speed wins in the marketplace

-Remove friction from product development

-High trust, low process, no hand-offs between teams
-Freedom and responsibility culture

-Don’t do your own undifferentiated heavy lifting

.

N\

‘ What | learned from my time at Netflix

-Speed wins in the marketplace

-Remove friction from product development

-High trust, low process, no hand-offs between teams
-Freedom and responsibility culture

-Don’t do your own undifferentiated heavy lifting

-Use simple patterns automated by tooling

N\

‘ What | learned from my time at Netflix

-Speed wins in the marketplace

-Remove friction from product development

-High trust, low process, no hand-offs between teams
-Freedom and responsibility culture

-Don’t do your own undifferentiated heavy lifting
-Use simple patterns automated by tooling

-Self service cloud makes impossible things instant

=

1 >—>- D>h—p- >

2014 was the year that Enterprises
finally embraced cloud and DevOps.

-

What a difference a year makes. My
#GartnerSYM 1:1s this year, everyone's
already comfortably using laaS

(overwhelmingly AWS, bit of Azure). -

;éto\\‘.‘b: S '»6,-'-',UH TES u . m |? n n .

2014 was the year that Enterprises
finally embraced cloud and DevOps.

-

k Lydia Leong Lx m
cloudpundit

What a difference a year makes. My
#GartnerSYM 1:1s this year, everyone's
already comfortably using laaS

(overwhelmingly AWS, bit of Azure). -

4 Reply ¢3 Retweeted % Favorite +++ Mo

;étoh‘.‘t: S '>6.-'-.'.’UHH':':- u ‘ m |? n n ‘

3:53 PM - 6 Oct 2014

2014 was the year that Enterprises
finally embraced cloud and DevOps.

adrian cockcroft @adrianco - Oct 22
RT @devopscouts: Nordstrom went from
optimizing for IT cost to optimizing for delivery
speed @ladyhock #DevOps #DOES14 < this
is key point

20

k Lydia L
. !lo:(gpu:(gtng Q m
What a difference a year makes. My

#GartnerSYM 1:1s this year, everyone's
already comfortably using laaS

(overwhelmingly AWS, bit of Azure). >

4 Reply €3 Retweeted % Favorite «++ More

RETWEETS FAVORITES -
20 6 MERAwDARER

3:53 PM - 6 Oct 2014

2014 was the year that Enterprises
finally embraced cloud and DevOps.

=4 adrian cockcroft retweete
‘»?‘ Steve Brodie @stbrodie - Oct 22
This may be the very best conference | have ever been to,
P adrian cockcroft @adrianco - Oct 22 @glennodonnell VP @Forrester on #DOES14

RT @devopscouts: Nordstrom went from
optimizing for IT cost to optimizing for delivery
speed @ladyhock #DevOps #DOES14 < this
is key point

20 12

ol ~
What separates

incumbents from
disruptors?

| Strategy Mapping

A
3 A
g o| Uncharted Industrialized
3 . M a.P 2| chaotic ustomer Ordered
Uncertain . Known
. 8.Organise | .o
Changing PRI NS ST—— 3 stable
Different 1 : Standard
Exciting H E Dull
c] §
g ¢| me=w- Pioneers Low Margin
s s Differential 1 1 Essential
[5) s i :
] [¥) i]
g 3 E @:
s El i]
> ‘S el
Town
LEGEND Planners
outsource to utility
. suppliers, six sigma
use off the shelf
products, lean Settlers
2 2 O build in-house with T — 4 3 ;
z] agile techniques | o T
Genesis Custom Product Commodity Evolut'ion Genesis Custom Product Commodity Eyolution
Built (+ rental) (+ utility) Built (+ rental) (+ utility)

Simon Wardley http://blog.gardeviance.org/2014/11/how-to-get-to-strategy-in-ten-steps.htm
Related tools and training http://www.wardleymaps.com/

l .
—> D>>p—> >

“It isn't what we don't know that
gives us trouble, it's what we
know that ain't so.”

Will Rogers

-

“ Y pTas

Assumptions

Optimizations

-

5

— Assumption:
Process prevents
problems

S ~

Organizations build up
slow complex “Scar
tissue” processes

"This is the IT swamp draining manual for anyone who is
neck deep in alligators.”

. yooforsg Xrudotd PH.L

o

Product
Development
Processes

‘ Waterfall Product Development

w @ 3 B= B

Business Approval Hardware Software Deployment and Customer
Need Process Purchase Development Testing Feedback

* Documents » Meetings * Negotiations * Specifications * Reports * It sucks!
* Weeks * Weeks * Weeks * Weeks * Weeks » Weeks

‘ Waterfall Product Development

e 2

Business Approval Hardware Software
Need Process Purchase Development

Deployment and Customer
Testing Feedback
* Reports * It sucks!

* Weeks * Weeks

* Documents » Meetings * Negotiations * Specifications
* Weeks * Weeks * Weeks * Weeks

B Hardware provisioning is undifferentiated heavy lifting — replace it with IaaS

.

‘ Waterfall Product Development

Business
Need

Software
Development

Approva. .rdware

Deployment and Customer

Testing Feedback
* Reports * It sucks!

* Weeks * Weeks

Process IaaS ~ Purchase
» Meetings Cloud » Negotiations

* Weeks ‘leeks

* Documents
* Weeks

* Specifications
» Weeks

B Hardware provisioning is undifferentiated heavy lifting — replace it with IaaS

.

‘ Waterfall Product Development

Business
Need

Software
Development

Deployment and Customer

Testing Feedback
* Reports * It sucks!

* Weeks * Weeks

* Documents
* Weeks

* Specifications
» Weeks

B Hardware provisioning is undifferentiated heavy lifting — replace it with IaaS

.

Process Hand-Off Steps for Agile
Development on laaS

Product Manager
9
Development Team
¥

Team
9

Team
¥

.

laaS Agile Product Development

Business Need Software Development Deployment and Testing Customer Feedback
* Documents » Specifications * Reports * It sucks!

* Weeks * Weeks * Days * Days

laaS Agile Product Development

amazon s £ Windows Azure SOFTLAG=R. n EucaLyPTUus €fC...
web services™ openstack

Business Need Software Development Deployment and Testing Customer Feedback
* Documents » Specifications * Reports * It sucks!

* Weeks * Weeks * Days * Days

laaS Agile Product Development

amazon <> B incows A SOFTLAY=R' n Eumus ete...

web services™ openstack

Business Need Software Development Deployment and Testing Customer Feedback
* Documents » Specifications * Reports * It sucks!

* Weeks * Weeks * Days * Days

laaS Agile Product Development

amazon <> B incows A SOFTLAY=R' n Eumus ete...

web services™ openstack

Business Need Software Development Deployment and Testing Customer Feedback
* Documents » Specifications * Reports * It sucks!

* Weeks * Weeks * Days * Days

B Software provisioning is undifferentiated heavy lifting — replace it with PaaS

laaS Agile Product Development

amazZon @ £ Windows Azure SDFTEF@EE;:!S; n Eumus etC . nm

web services™ openstack

Business Need Software Development : Customer Feedback
* Documents » Specifications . * It sucks!

* Weeks * Weeks * Day * Days

B Software provisioning is undifferentiated heavy lifting — replace it with PaaS

laaS Agile Product Development

amazon <> B incows A SOFTLAY=R' n Eumus ete...

web services™ openstack

Business Need Software Development
* Documents » Specifications

» Weeks * Weeks

Customer Feedback
* |t sucks!

* Days

B Software provisioning is undifferentiated heavy lifting — replace it with PaaS

Process for Continuous Delivery of
Features on PaaS

Product Manager

Developer

BI Analytics Team

.

PaaS CD Feature Development
_

. NETFLI
4 heroku i “ apcera d
Google ocker

CLOUD
FOUNDRY

h & &

Business Need Software Development Customer Feedback
» Discussions * Code * Fix this Bit!

» Days » Days * Hours

—
PaaS CD Feature Development

\-

CLOUD
FOUNDRY GOOS[Q

NETF
Pheroku €85 KB . 5:;?::3 & etc. .

docker

Business Need Software Development Customer Feedback
» Discussions * Code * Fix this Bit!

» Days » Days * Hours

PaaS CD Feature Development
_

— NETF ERICSSON
H!heroku oy . apcera ‘* C,EBSK etc...

Ll docker

Software Development Customer Feedback
» Code * Fix this Bit!

» Days * Hours

Business Need
» Discussions

* Days

PaaS CD Feature Development
_

— NETFLI ERICSSON
Hlheroku e apcera cnSK

doc ker

Software Development Customer Feedback
» Code * Fix this Bit!

» Days * Hours

Business Need
» Discussions

* Days

® Building your own business apps is undifferentiated heavy lifting — use SaaS

o

PaaS CD Feature Development
_

. NETFL Emcssou
1| heroku i apcera etc...

Ll doc ker

Business Need Customer Feedback
* Discussions S * Fix this Bit!

* Days

® Building your own business apps is undifferentiated heavy lifting — use SaaS

o

—
PaaS CD Feature Development

\-

H|heroku cEny “

Google

ER|CSS°N
opcera &> 8 etc...

docker

CLOUD

Business Need

» Discussions .
* Days

Customer Feedback
 Fix this Bit!
* Hours

® Building your own business apps is undifferentiated heavy lifting — use SaaS

o

SaaS Based Business Application
Development

8

Business Need
+GUI Builder

Customer Feedback
*Fix this bit!

*Seconds

*Hours

SaaS Based Business Application
Development

@ mendix I platfora and thousands more...

the app platform

8

Business Need
+GUI Builder

Customer Feedback
*Fix this bit!

*Seconds

*Hours

Act

4

Continuous
Delivery

» ®

INNOVATION

/-‘Q

4

Act Contl.nuous
Delivery

» ®

INNOVATION

/-‘(:)
]
S s

Act Contt.nuous
Delivery

O

INNOVATION

/-‘Q
<
L

Act Continuous
BIG DATA

Delivery

i

INNOVATION

INNOVATION

Continuous
Delivery

BIG DATA

CULTURE

INNOVATION

Continuous

Delivery BI G DA TA

v
corene

INNOVATION

Continuous
Delivery

BIG DATA

cuLrure BN

INNOVATION

Continuous
Delivery

BIG DATA

cuLrure BN

INNOVATION

/-‘Q

Q\
-'> BIG DATA
o s B

-—’

CULTURE

‘ Breaking Down the SILOs

| Breaking Down the SILOs

A

Prod
Mgr

Gl

UX

AT

Dev

A

QA

Gl

DBA

A

Sys
Adm

Net
Adm

SAN
Adm

‘ Breaking Down the SILOs @/\/\

Product Team Using Monolithic Delivery

])

Product Team Using Monolithic Delivery

~

‘ Breaking Down the SILOs &r/\/\

Product Team Using Monolithic Delivery

Product Team Using Microservices

Product Team Using Microservices

Product Team Using Microservices

‘ Breaking Down the SILOs

Product Team Using Monolithic Delivery
Product Team Using Monolithic Delivery

Product Team Using Microservices

Product Team Using Microservices Platform Team

Product Team Using Microservices

‘ Breaking Down the SILOs

Product Team Using Monolithic Delivery
Product Team Using Monolithic Delivery

Product Team Using Microservices

Product Team Using Microseruvices | Platform Team

Product Team Using Microservices

‘ Breaking Down the SILOs

Product Team Using Monolithic Delivery

Product Team Using Monolithic Delivery

Product Team Using Microservices

Product Team Using Microseruvices | Platform Team

Product Team Using Microservices

DevOps is a Re-Org! (’_D

Monolithic service updates

Developer

/ Developer \
Release Plan IQA Releqse
ntegration

Developer

Works well with a small number
Developer of developers and a single
language like php, java or ruby

Monolithic service updates

Developer

Pho>
/@

Release Plan Developer IQA Releqse
ntegration
\)/“—,L/—;,;r'a)

/D
!

L) —

Developer

®he) Works well with a small number
Developer of developers and a single
language like php, java or ruby

Monolithic service updates

Developer

Pho>
/@

Release Plan Developer IQA Releqse
ntegration
\)/“—,L/—;,;r'a)

/D
!

L) —

Developer

®he) Works well with a small number
Developer of developers and a single
language like php, java or ruby

Immutable microservice deployment
scales, is faster with large teams and
Developer diverse platform components

amd Developer

) Ly\'\
/1B,
Y o

}

Release Plan —

nedeo

Release Plan
-

@ python’

Release Plan
&

\}//ﬁﬂ

Release Plan

Immutable microservice deployment
scales, is faster with large teams and
Developer diverse platform components

@ Deploy
Feature to
Release Plan — ‘_' Production
neden
Release Plan Deploy
ﬂ Production
@ python’
Release Plan Developer Deploy
E\ Feature to
\ Production
Release Plan Developer Deploy

Feature to

Production

Immutable microservice deployment
scales, is faster with large teams and
Developer diverse platform components

@ Deploy
Feature to
Release Plan — ‘_' Production
neden
Release Plan Deploy
ﬂ Production
@ python’
Release Plan Developer Deploy
E\ Feature to
\ Production
Release Plan Developer Deploy

Feature to

Production Jallef

Immutable microservice deployment
scales, is faster with large teams and
Developer diverse platform components

@ Deploy
Feature to
Release Plan — 4’ Production
nedeon
Release Plan Deploy
) Production
@ python’
Release Plan Developer Deploy
E\ Feature to
A Production
Release Plan Developer Deploy Deploy

Feature to Feature to

Production Jallef Production

Standardized container deployment
NGiNX

saves time and effort
vy — D

é redis j e
Standardized

Services

https://hub.docker.com //hub docker co

nodc®

Release Plan
.

@ python’

Release Plan Developer

N\ —gp

\

Release Plan

Standardized container deployment

X :
saves time and effort
...

é redis Deploy Q

https://hub.docker.com docker co Standardized
Services
nodc®
Release Plan Deploy
~> Feature to
& iuthiort Production

Release Plan Developer Deploy
: Feature to

Production

Release Plan Developer Deploy Deploy
Feature to Feature to

Production Jallef Production

Run What You Wrote

S ~

Run What You Wrote

Developer Deuveloper Developer Developer

Micro Micro
service service

Micro Micro Micro Micro Micro
service service service service service

Run What You Wrote

Developer Deuveloper Developer Developer

Micro Micro
service service

Micro Micro Micro Micro Micro
service service service service service

Monitoring
Tools

Run What You Wrote

Developer Deuveloper Developer Developer

pagerduty

Micro Micro
service service

Micro Micro Micro
service service service

Micro Micro
service service

Monitoring
Tools

Run What You Wrote

99.95% customer
success rate

Availability

Metrics

Developer Deuveloper Developer Developer

pagerduty

Micro Micro
service service

Site Micro Micro Micro Micro Micro
Reliability service service service service service

Monitoring
Tools

Run What You Wrote

99.95% customer Manager Manager
success rate

Availability

Metrics
Developer Deuveloper Developer Developer

pagerduty

Site Micro Micro Micro Micro Micro Micro Micro
Reliability service service service service service service service

Monitoring
Tools

Run What You Wrote

VP
Engineering

99.95% customer Manager Manager
success rate

Availability

Metrics
Developer Deuveloper Developer Developer

pagerduty

Site Micro Micro Micro Micro Micro Micro Micro
Reliability service service service service service service service

Monitoring
Tools

Non-Destructive Production Updates

e “Immutable Code” Service Pattern
e Lxisting services are unchanged, old code remains in service
e New code deploys as a new service group
e No impact to production until traffic routing changes
e A|B Tests, Feature Flags and Version Routing control traffic
e First users in the test cell are the developer and test engineers

e A cohort of users is added looking for measurable improvement

=

Deliver four features every four weeks

-

Work In Progress = 4
Opportunity for bugs: 100% (baseline)
Time to debug each: 100% (baseline)

Deliver four features every four weeks

:/ Bugs! Which feature broke?
Need more time to test!

Extend release to six weeks?

Work In Progress = 4
Opportunity for bugs: 100% (baseline)
Time to debug each: 100% (baseline)

Deliver four features every four weeks

:/ Bugs! Which feature broke?
Need more time to test!

Extend release to six weeks?

Work In Progress = 4
Opportunity for bugs: 100% (baseline)
Time to debug each: 100% (baseline)

But: risk of bugs in delivery increases with interactions!

Deliver four features every four weeks

:/ Bugs! Which feature broke?
16 Need more time to test! N

Extend release to six weeks?

16

Work In Progress = 4
Opportunity for bugs: 100% (baseline) 1 6
Time to debug each: 100% (baseline)

But: risk of bugs in delivery increases with interactions!

Deliver six features every six weeks

Deliver six features every six weeks

Work In Progress = 6
Individual bugs: 150%
Interactions: 150%?

Deliver six features every six weeks

Work In Progress = 6
Individual bugs: 150%
Interactions: 150%?

Deliver six features every six weeks

Work In Progress = 6
Individual bugs: 150%
Interactions: 150%?

Deliver six features every six weeks

Work In Progress = 6
Individual bugs: 150%
Interactions: 150%?

Risk of bugs in delivery increased to 225% of original!

Deliver two features every two weeks

:J_ 4 Fewer interactions
4 Fewer bugs —

Better flow
4 Less Work In Progress

Work In Progress = 2
Opportunity for bugs: 50% 4
Time to debug each: 50%

4
Complexity of delivery decreased by 75% from original

‘ What Happened?

Rate of change
increased

g

Cost and size and
risk of change
reduced

.

Developing at the Speed of Docker

A

Developers Extend container PaaS deploy Container
» Compile/Build » Package dependencies » Docker startup

» Seconds » Seconds » Seconds

docker

Developing at the Speed of Docker

A

Developers
» Compile/Build

docker

Extend container PaaS deploy Container
» Package dependencies » Docker startup

» Seconds » Seconds » Seconds

B Speed is addictive, hard to go back to taking much longer to get things done

o

I >—> D>Pp—p >

Disruptor:
Continuous Delivery with
Containerized Microservices

-

‘ It’s what you know that isn’t so CSKN

-

41 It's what you know that isn’tso -

e Make your assumptions explicit

41 It's what you know that isn’tso -

e Make your assumptions explicit

e Extrapolate trends to the imit

41 It's what you know that isn’tso -

e Make your assumptions explicit

e Extrapolate trends to the imit

e [1sten to non-customers

‘ It’s what you know that isn’t so

e Make your assumptions explicit
e Extrapolate trends to the limit
e Listen to non-customers

e Follow developer adoption, not IT spend

‘ It’s what you know that isn’t so

e Make your assumptions explicit

e Extrapolate trends to the limit

e Listen to non-customers
e Follow developer adoption, not IT spend

e Map evolution of products to services to utilities

-

‘ It’s what you know that isn’t so

e Make your assumptions explicit

e Extrapolate trends to the limit

e Listen to non-customers
e Follow developer adoption, not IT spend
e Map evolution of products to services to utilities

e Re-organize your teams for speed of execution

L

|G—

Microservices

-

1 >—> D>Pp—p >

A Microservice Definition

Loosely coupled service oriented
architecture with bounded contexts

-

L

If every service has to be 1

updated at the same time

it’s not loosely coupled —>—D > >

\gﬁcroservice Definition
@ely coupled’service oriented

architecture with bounded contexts

-

L

If every service has to be 1

updated at the same time

it’s not loosely coupled —>—D > >

\gﬁcroservice Definition
@ely coupled’serv ted

architecture wit ounded contexts

If you have to know too much about surrounding
services you don’t have a bounded context. See the
Domain Driven Design book by Eric Evans.

‘ Coupling Concerns

e Conway’s Law - organizational coupling
e Centralized Database Schemas
e Enterprise Service Bus - centralized message queues

e Inflexible Protocol Versioning

——>
http://en.wikipedia.org/wiki/Conway's_law (

‘ Speeding Up The Platform

Datacenter Snowflakes
* Deploy in months

* Live for years

Speeding Up The Platform

Datacenter Snowflakes Virtualized and Cloud
* Deploy in months * Deploy in minutes
* Live for years * Live for weeks

Speeding Up The Platform

Datacenter Snowflakes Virtualized and Cloud Container Deployments
* Deploy in months * Deploy in minutes * Deploy in seconds

* Live for years * Live for weeks * Live for minutes/hours

Speeding Up The Platform

Datacenter Snowflakes Virtualized and Cloud Container Deployments Lambda Deployments
* Deploy in months * Deploy in minutes * Deploy in seconds * Deploy in milliseconds

* Live for years * Live for weeks * Live for minutes/hours * Live for seconds

Speeding Up The Platform

Datacenter Snowflakes Virtualized and Cloud Container Deployments Lambda Deployments
* Deploy in months * Deploy in minutes * Deploy in seconds * Deploy in milliseconds

* Live for years * Live for weeks * Live for minutes/hours * Live for seconds

B Speed enables and encourages microservice architectures

Separate Concerns with Microservices

e Invert Conway’s Law — teams own service groups and backend stores
e One “verb” per single function micro-service, size doesn’t matter

e One developer independently produces a micro-service

e Each micro-service is it’s own build, avoids trunk conflicts

e Deploy in a container: Tomcat, AMI or Docker, whatever...

e Stateless business logic. Cattle, not pets.

e Stateful cached data access layer using replicated ephemeral instances

——>
http://en.wikipedia.org/wiki/Conway's_law (

[R1C PES. SERES D003

Jez Humble, Joanne Molesky & Barry O'Reilly

‘LEAN

ENTERPRISE

How High Performance
Organizations
Innovate at Scale

OREILLY

In Search of
Certainty

The Science of Our
Information Infrastructure

"An instant classic'in uum_qu‘icr science”
Glenn O'Donnel

Mark Burgess:

Release It!

Design and Deploy
Production-Ready Software

2
F

Michaet T, Nygard

Inspiration

Drift into
Failure

Sidney Dekker

Thinking in Systems

Donella H. Meadows

CONTINUOUS
DELIVERY

Jez HUMBLE, x

T -

DaAviD FARLEY ?’i
S

The REST API Design
Handbook

The

Principles of
Product
Development

FLOW

Second Generation

Lean Product Development =

DONALD G. REINERTSEN

NUW TORN TIMES BESTSELLING ANTSER OF

THE BLACK SWAN

-

:,'trom .

k wik WEBSITE

CLOUDONOMICS

The Business Value of Cloud Computing

Joe Weinman

State of the Art in Web Scale
Microservice Architectures

NETFLIX | OSS

AWS Re:lnvent : Asgard to Zuul https://www.youtube.com/watch?v=p7ysHhs5hI0
Resiliency at Massive Scale https://www.youtube.com/watch?v=ZfYJHtVL1_w
Microservice Architecture https://www.youtube.com/watch?v=CriDUYfrjs

GROUPON

http://www.slideshare.net/mcculloughsean/itier-breaking-up-the-monolith-philly-ete

http://www.infog.com/presentations/scale-qilt

- HAIL

http://www.infog.com/presentations/Twitter-Timeline-Scalability o

http://www.infog.com/presentations/twitter-soa
http://www.infog.com/presentations/Zipkin

https://speakerdeck.com/mattheath/scaling-micro-services-in-go-highload-plus-plus-2014

| Microservice Concerns

4) 4) 4) 4) 4)
Tooling) \Configurationj \ Discovery) \ Routing) \Observability)
Datastores

Operational: Orchestration and Deployment Infrastructure

C
C
C

Development: Languages and Container

luuv

NETFLIX | OO Microservices

4) 4) 4) 4) 4)
Denominator Hystrix
Asgard Edda Eureka Zuul, Netty Pytheus
Aminator Archaius Prana Ribbon 2.0 SALP
\Tooling) Configuration | _ Discovery) { Routing) | Observability)

(Ephemeral datastores using Dynomite, Memcached, Astyanax, Staash, Priam, Cassandra)

(Manual Orchestration with Asgard and deployment on AWS or Eucalyptus)

(Java, Groovy, Scala, Clojure, Python with AMI and Docker Containers)

~

NETFLIX | OO Microservices

4) 4) 4) 4) 4)
Denominator Hystrix
Asgard Edda Eureka Zuul, Netty Pytheus
Aminator Archaius Prana Ribbon 2.0 SALP
\Tooling) Configuration | _ Discovery) { Routing) | Observability)

(Ephemeral datastores using Dynomite, Memcached, Astyanax, Staash, Priam, Cassandra)

(Manual Orchestration with Asgard and deployment on AWS or Eucalyptus)

(Java, Groovy, Scala, Clojure, Python with AMI and Docker Containers)

—>
Focus on global distribution, high scale and availability (

NETFLIX | OSS High Availability Patterns

e Business logic isolation in stateless micro-services
e Immutable code with instant rollback
e Auto-scaled capacity and deployment updates

e Distributed across availability zones and regions

e De-normalized single function NoSQL data stores

e See over 40 NetflixOSS projects at netflix.github.com

e Get “Technical Indigestion” trying to keep up with techblog.netflix.comp————

‘ Cloud Native Storage

Business

Logic

Database Database
Master Slave

o

Cloud Native Storage

Business
Logic

Business
Logic

Database Database
Master Slave

3

Cloud Object
- Arays M Arrays Store Backups
TIIIIBRIIIIIL

Cassandra Cassandra Cassandra
ZonVeArnodesr S Zone Brnodesr [y Zone Crnodesr

-

Cloud Native Storage

Business
Logic

Business

Logic

Database Database Cassandra Cassandra Cassandra
Master Slave Zone Anodes g Zone Bnodes g Zone C nodes
]
SSDs inside °
V v arrays disrupt

incumbent Cloud Object
e g Amaye B Siore Backup
TIIIIBRIIIIIL

-

Cloud Native Storage

Business
Logic

Business

Logic

Database Database Cassandra Cassandra Cassandra
Master Slave Zone Anodes g Zone Bnodes g Zone C nodes
a SSDs inside
SSDs inside e ephemeral
| | arrays disrupt instances

incumbent RO disr.'up? an
mw suppliers R entire industry
TITIIBRITIIIL

-

Cloud Native Storage

Business
Logic

Business
Logic

Database Database
Master Slave

Cassandra Cassandra Cassandra
Zone Anodes” [y ane BrrnopVIesw [y Z,,O”,,e C,,”Odes,,

° SSDs inside
SSDs inside e ephemeral
arrays disrupt instances
mcumﬁent RO dlsr.'up? an
| Arays Ay RN store Backups el

——
NetflixOSS Uses Priam to create Cassandra clusters in minutes (

NETFLIX | OSS Trust with Verification

e Edda - the “black box flight recorder” for configuration state
e Chaos Monkey - enforcing stateless business logic
e Chaos Gorilla - enforcing zone isolation/replication

e Chaos Kong - enforcing region isolation/replication

e Security Monkey - watching for insecure configuration settings

e See over 40 NetflixOSS projects at netflix.github.com

e Get “Technical Indigestion” trying to keep up with techblog.netflix.comp————

NETFLIX | OSS Netflix Open Source Software Center

Repositories Powered By NetfixOSS

These companies are using and contributing to Netflix 0SS Components

Email netflixoss@netflix.com to have your logo here.

RAPID}) BONOBOS ¥ KNEWTON 6 L waze ¢&éynirmata %

swriey A KIXCHE yammers EXruiconact

m o
@,ﬁ Fodi coursera Hogs.‘com

G AMES

YAHOO! EUCALYPTUS

SeambRUpon Maginatics

o3

b UserEvents OpenSCG’ SROUP

NETEL N

| Twitter Microservices y
.

N\ [N\ [N\ [N\ [)

Decider Finagle Finagle Zipkin
Zookeeper Netty

\Tooling) \Configurationj \ Discovery) \ Routing) kObservabiIity)

Custom Cassandra-like datastore: Manhattan

(Orchestration using Aurora deployment in datacenters using Mesos
(Scala with JVM Container

luuu

| Twitter Microservices y
.

) 4) 4) 4) 4)
Decider Finagle Finagle Zipkin
Zookeeper Netty
_ Tooling y \Configurationj _ Discovery Y, \ Routing Y, kObservabiIity)
(Custom Cassandra-like datastore: Manhattan)
(Orchestration using Aurora deployment in datacenters using Mesos)
(Scala with JVM Container)

—>
Focus on efficient datacenter deployment at scale (

t Microservices

T(Gil

lon Cannon
SBT
Rake

Tooling

~

J

-

Decider

~

\Conﬂguratlonj

4)

Finagle
Zookeeper

4)
Akka

Finagle
Netty

_ Discovery)

_ Routing)

\O

Zipkin

bservabilityj

Datastores per Microservice using MongoDB, Postgres, Voldemort

Deployment on AWS

C
C
C

Scala and Ruby with Docker Containers

iuuu

t Microservices

T(Gil

lon Cannon
SBT
Rake

Tooling

~

J

(" N\ [N\ [)
Akka
Decider Finagle Finagle
Zookeeper Netty
 Configuration | _ Discovery \ Routing)

4)
Zipkin
\Observabllltyj

Datastores per Microservice using MongoDB, Postgres, Voldemort

Deployment on AWS

C
C
C

Scala and Ruby with Docker Containers

Focus on fast development with Scala and Docker

iuuu

| Hailo Microservices

HAIL

-

4) 4) 4) 4) 4)
Hubot
Janky go-platform
Jenkins go-platform RabbitMQ
\ Tooling) | Configuration] | " Discovery) \ Routing) | Observability)
C Deployment on AWS
C Deployment on AWS

Go using AMI Container and Docker

iuuu

HAIL

| Hailo Microservices

4 N\ [N\ N\ [N\ [)
Hubot
Janky go-platform
Jenkins go-platform RabbitMQ

\ Tooling) | Configuration] | " Discovery) \ Routing) | Observability)

Deployment on AWS

C Deployment on AWS
C Go using AMI Container and Docker

iuuu

Also watching: https://github.com/peterbourgon/gokit (

F0ss

|

%32
Wl ety
-.\| 1 ?” é

GROUPON Microservices

4)

_looling)

4 N\ N\
Gconfig Grout Grout
\Configuration J | * Discovery) _ Routing)

\Observability /)

(

Deployment Infrastructure

)

(

Javascript with Node.js container

)

-

With AWS Lambda
m compute resources are charged
by the 100ms, not the hour N

AWS Account
‘-i_’,____}‘))))‘ First 1M node.js executions/month are free
gy PE “""""’a_/_/lv;étiis". AWS Account
AWS Account

S
')
L) '
‘h—'
o —
’ \
. ' ' 1
1 3 = 13 at
= P s
Amazon S3 Invocation Execution
= Role AWS Lambda " Role
o= PN -~ 2 /
s B N User 'fs & 4
\~-‘, ‘h—" /
0 - 4 == A 1 -~ 4 -
v ‘v:,'. B I !
Amazon L.2” L. HC N f consta

¢ wmsssat 0 jlesssasl
y st
ﬁ Invocation ~ AWS Lambda Execution
Role
vax T DO

)_rife
ik

5 ar P, oM
s rilzwe L ambda

Kinesis
D D [] D D Role f.-_.j.ki‘i‘}af-':i-' Function
Custom App \/7 oource
i d LY Bucket ~

sased oo
Stream Function |

| Next Generation Applications

-

Docker?
PaaS?

_ Tooling Y "

N\ [

C

~

?

onfigurationj

4)

Eureka?
Consul?

_ Discovery)

4)
Ribbon?
Finagle?

Socketplane?
Weave?

_ Routing)

e
Zipkin?
Metrics?
Hystrix?

\Observabllltyj

~

C

Datastores: Distributed Ephemeral, Orchestrated or DBaaS

)

C

Operational: Many orchestration choices across public and private clouds

C

Development: Components assembled from Docker Hub as a composable “app store”

)
)

(

| Next Generation Applications

-

Docker?
PaaS?

_ Tooling Y "

N\ [

C

~

?

onfigurationj

4)

Eureka?
Consul?

_ Discovery)

4)
Ribbon?
Finagle?

Socketplane?
Weave?

_ Routing)

e
Zipkin?
Metrics?
Hystrix?

\Observabllltyj

~

C

Datastores: Distributed Ephemeral, Orchestrated or DBaaS

)

C

Operational: Many orchestration choices across public and private clouds

C

Development: Components assembled from Docker Hub as a composable “app store”

Fill in the gaps, rapidly evolving ecosystem choices

)
)

(

I -

Cloud Native
Monitoring and
Microservices

-

Cloud Native Microservices

e High rate of change
Code pushes can cause floods of new instances and metrics

Short baseline for alert threshold analysis — everything looks unusual

e Ephemeral Configurations
Short lifetimes make it hard to aggregate historical views

Hand tweaked monitoring tools take too much work to keep running

e Microservices with complex calling patterns
End-to-end request flow measurements are very important

Request flow visualizations get overwhelmed

-

‘ Microservice Based Architectures

AS OF LAST WEEK WE HAVE MORE
THAN
450 SERVICES

See http://www.slideshare.net/LappleApple/gilt-from-monolith-ruby-app-to-micro-service-scala-service-architecture

‘ Continuous Delivery and DevOps

e Changes are smaller but more frequent

e Individual changes are more likely to be broken
e Changes are normally deployed by developers
e Feature flags are used to enable new code

e Instant detection and rollback matters much more

I >—> D> p—p- >

Whoops! I didn’t mean that!
Reverting...

Not cool if it takes 5 minutes to see it failed and 5 more to see a fix
No-one notices if it only takes 5 seconds to detect and 5 to see a fix

-

NetflixOSS Hystrix/Turbine Circuit Breaker

ABCaliServicelnternal

191,390 0.0 %
\". ‘ 0
/ 1
Y A / Host: 32.9/s
O Cluster: 19,139.6/s
Circuit
Hosts 581 Sh 17ms
Median 6ms 99

64ms
Maean 10ms 5951 114ms

CryptexDecipher
. 74,718 | 92 1 0.0 %
-0 53
“"""u".\/\/\”‘ ﬂ‘l\' .’/ Host: 12.9/s
v Clustor: 7,486.8/s
Crcuit (
Hosts 581 “th o 1ims

Madian 3ms 9h 6Tms
Mean 10ms 99.5t1h 40Sms

\ / 3\ | ~ 0 0
0 \ /| 0
e / " | / \ \ I'
_J/\ ~——/ Host: 10.4/s \

WM CinematchGetPredictions
190,804 0.0 % 80,105 | 5 0.0 %
! , 0 50 “\ N 00
\, / 0 /" 0
k\/\'\ J Host: 32.8/s N\ /\ f Host: 13.8/s
\ / \\I \/l\‘
tuster: 19,085.4/s - Cluster: 8,011.0/s
Circuit Closed Circuit Closed
Hosts 581 90th Tms 581 o0th - 22ms
Medan Oms 99th 34ms Ims 99th 122ms
Mean ims 20510 49ms 1ims 55510 312ms
CinematchGetMovieRatings VideoHistoryGetBookmarks
60,672 | 2 1 0.0 % A 48,281 | 60 1 0.1 %
00 |

\ [\ \ A Host: 8.3/s
J \/ Vv
Cluster: 6,067.4/s - ‘ cluster: 4,834.1/s
Circuit Closed Circuit Closed
Hosts 581 90t 4lms 581 90th 26ms
Medan 14ms 99th 143ms 8ms J9th - 104ms
Mean 2ims 995! 215ms

13ms 99510 158ms

NetflixOSS Hystrix/Turbine Circuit Breaker

ABCaliServiceinternal
191,390

0.0%
, 05
_‘\/\\

IdentityCookieAuth CinematchGetPredictions
. 190,804 0.0 % 80,105 0.0 %
\ , 0 50 “\ N 0 0
1 \ / 0 [0
/ N f \ /
-/ Host: 32.9/s “\/\\\I / Host: 32.8/s AV /\ - Host: 13.8/s
O Cluster: 19,139.6/s 0 cster: 19,085.4/s VA Cluster: 8,011.0/s
Crcuit (] Circuit Closed Circuit Closed
Hosts 581 “oth o 17ms Hosts 581 90th 1ms Hosts 581 90th - 22ms
Median 6ms 64ms Medan Oms 99ty 34ms Median Ims 99th 122ms
Mean 10ms 9951h 114ms Mean ims 29510 49ms Maean 1ims 9951h 312ms
CryptexDecipher CinematchGetMovieRatings VideoHistoryGetBookmarks
74,718 | 92 1 0.0 % 60,672 2 |1 0.0 % 4| 744 |99 9%
\ 0 0 N 00 20,837 g
\ - 58 0
0. o nost: 129/ S/ wost: 10.4/s Host: 6.0/
v Cluster: 7,486.8/s Cluster: 6,067.4/s cluster: 2,158.0/s
Crcuit Closed Circuit Closed Circuit Open
Hosts 581 S0th 11ms Hosts 581 90th 41ms Hosts 318 90th
Median 3ms n 67ms Medan Median 1ms
Mean 10ms 0051 405ms Mean Mean

9ms
99th 354ms
15ms 99.5th 1532ms

Low Latency SaaS Based Monitors

N %
v

VividCortex

== —,

db-shard2

Time:

Impact:

Component:

CPU Activity

Disk Concurrency

Disk Throughput

Free Memory

Network Throughput

Top Processes
db-shard2

mysqid

Mar 31, 2014 5:45:07 PM

Severity 6.4353 Duration: 1 seconds

disk

S:4dmm 5:45m

405833% M an/\Jlythait s

www.vividcortex.com and www.boundary.com

&7 RESOLUTION

1 second

From

To
now (

KOBAYASHI
8090:TCP
232768:TCP
32768:TCP
RIAK PB
8087:TCP
RIAK HANDOFF
8099:TCP
2181:TCP
NA
2888:TCP
NA
5956:TCP
NA

3 FEB 13 14:07

FILTERS

/:\/\ {‘A‘J!Iﬂvﬂ\' Mj\/ﬂ/"“w\ﬁ WM Ai'ﬂ‘ \' /‘\'

—

1-second data collection and
real-time streaming processing
on all components of the
application stack

4’_D

I D> >

Metric to display latency needs to be
less than human attention span (~10s)

-

N\

@ Adrian’s Tinkering Projects

-
Load Balancer g Three
Availability
AP Proxy zones Model and visualize microservices
%% s00 o Simulate interesting architectures
Business Generate large scale configurations
Logic s, Lo
o 190000000 eat Eventually stress test real tools
Data . . .
Access ¢ o ®» See github.com/adrianco/spigo
Layer N Simulate Protocol Interactions in Go

Cassandra e o
Datastore l

“ Y pTas

Cost Optimization

|G—

How 1s Cost
Measured?

= e %

I I\

Bottom Up Product Top Down

@ Bottom Up Costs

§ Add up the cost to
buy and operate
every component

JI-

@ Product Cost

Cost of delivering
!|!t I) and maintaining
each product

@ Top Down Costs

S Divide total budget
[=\1 by the number of

components

@ Top Down vs. Bottom Up

% Whll never match!
o Hidden Subsidies vs.
Hidden Costs

=
e
o

@ Agile Team Product Profit

Value minus costs
J[k Time to value

ROI, NPV, MMF

Profit center

S

Lower Spec Limit

When demand
probability is below
USL by 3.0 sigma
scale down resource
to save money

Capacity Optimization for a
Single System Bottleneck

Frequency

OC=aNWAENON®O

13 —LSL usl

Histogram Chart

32 33 34 35 41

23 24 28 26 27 24 31

CPU Demand Level

Documentation on Capability Plots

5

Upper Spec Limit

When demand
probability exceeds
USL by 4.0 sigma
scale up resource to
maintain low latency

To get accurate high dynamic range histograms see http://hdrhistogram.org/

Slideshare: 2003 Presentation on Capacity Planning Methods See US Patent: 7467291

But interesting systems

don’t have a single
bottleneck nowadays...

But interesting systems

don’t have a single
bottleneck nowadays...

1 >—>- D>h—p- >

What about cloud
COSts?

N\

‘ Cloud Native Cost Optimization

-

Optimize for speed first
Turn it off!
Capacity on demand

$ 5 Consolidate and Reserve
Plan for price cuts
FOSS tooling

|G—

The Capacity
Planning Problem

Cloud capacity
used is maybe
o half average
“ DC capacity

.

Mad scramble
to add more DC
capacity during
launch phase

outages
(_%

| Over the Top Losses

Capacity wasted
g - on failed launch
| magntifies the
& \?) losses

\/
Ca

~

@ Turning off Capacity

Off-peak production
Test environments
Dev out of hours
Dormant Data Science

@ad

tttttttttttttt

N\

‘ Containerize Test Environments
L

Snapshot or freeze
Fast restart needed
ob Savioas- :
Persistent storage
.& 40 of 168 hrs/wk
docker Bin-packed containers

shippable.com saved 70%

@adrianco

tttttttttttt
ry

‘ Seasonal Savings

50% Savings
7 N Weekly CPU Load

4N
AN

Web Servers

/
_~

1 5 9 13 17 21 25 29 33 37 41 45 49
Week

‘ Autoscale the Costs Away

§50

$40

$30

§20

ZO.Q_CIt 22.0ct 24.0ct 26.0ct 28.0ct 30.0ct 1.Nov 3.Nov 5.Nov 7.Nov 9.Nov

Move to Load-Based Scaling ——>

50%+ Cost Saving

Scale up/down
by 70%+

______ .

11.Nov 13.Nov 15.Nov 17.Nov 19.Nov 21.Nov 23.?1_9_\/

| Daily Duty Cycle

uto Scaling Plan

B«_ Throughput
Bty
b
@
1
I
=
\\
\\“\,
r/ff’j
(

Servers

Reactive Autoscaling Predictive Autoscaling saves around 70%
saves around 50% See Scryer on Netflix Tech Blog

~

‘ Underutilized and Unused

Trusted Advisor Expand All Download Excel | | (¥ Refresh Al Contact Support

The AWS Trusted Advisor program monitors AWS infrastructure services, identifies customer configurations, compares them to known

best practices, and then notifies customers when opportunities may exist to save money, improve system performance, or close security
gaps.

& Noissue detected Investigation Recommended 3 Action Recommended

Vv Cost Optimizing Checks

@ Unused Elastic IPs @ Updated: 2012-06-14 00:00 PDT O

> Summary: 0 of 6 Elastic IPs are not in use

Underutilized EC2 Instances @ Updated: 2012-06-13 22:27 ppT O

> Summary: 27 EC2 instances are potentially underutilized

| Clean Up the Crud

* Don’t forget to...
— Disassociate unused EIPs

— Delete unassociated Amazon
EBS volumes

— Delete older Amazon EBS
snapshots

— Leverage Amazon S3 Object

Expiration 3 x 5

= Janitor Monkey cleans up unused resources

NETFLIX

‘ Total Cost of Oranges

When Comparing TCO...

Make sure that
you are including
all the cost factors
into consideration

Place
Power
Pipes
People

Patterns ‘

Total Cost of Oranges

How much does
datacenter automation
Make sure that software and support

you are including cost per instance?
all the cost factors

into consideration

| When Do You Pay?

Run
Dat ter Up F. t Cost
atacenter Up Front Costs My Stuff
Lease Install Rack & Private amazon
Building ACetc Stack Cloud SW bill

Ago Now Month

@adrianco

tttttttttttttt

@ Cost Model Comparisons

AWS has most complex model

« Both highest and lowest cost options!
CPU/Memory Ratios Vary

« Can’t get same config everywhere
Features Vary

e Local SSD included on some vendors, not others

» Network and storage charges also vary

Digital Ocean Flat Pricing

Hourly Price ($0.06/hr)

$ No Upfront
$0.060/hr

$1555/36mo

Savings

Monthly Price ($40/mo)

$ No Upfront
$0.056/hr
$1440/36mo
7%

Prices on Dec 7th, for 2 Core, 4G RAM, SSD, purely to show typical savings

| Google Sustained Usage

Full Price Without Typical Sustained Full Sustained Usage
Sustained Usage Usage Each Month Each Month

$ No Upfront $ No Upfront $ No Upfront
$0.063/hr $0.049/hr $0.045/hr
$1633/36mo $1270/36mo $1166/36mo
Savings 22% 29%

Prices on Dec 7th, for ni.standard-1 (1 vCPU, 3.75G RAM, no disk) purely to show typical savings

| AWS Reservations

On Demand No Upfront Partial Upfront All Upfront
1year 3 year 3 year

$ No Upfront $No Upfront $337 Upfront $687 Upfront
$0.070/hr $0.050/hr $0.0278/hr $0.00/hr
$1840/36mo $1314/36mo $731/36mo $687/36mo
Savings 29% 60% 63%

Prices on Dec 7th, for m3.medium (1 vCPU, 3.75G RAM, SSD) purely to show typical savings

-

‘ Blended Benefits

Instances

12

10

A On-Demand >[\

/\
NI NI N

fo\ Lm0 [\ [

Heavy Utilization Reserved Instances

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Days of Month

On Demand

Partial Upfront

All Upfront

N\

@ Consolidated Reservations

Burst capacity guarantee

Higher availability with lower cost
Other accounts soak up any extra
Monthly billing roll-up

Capitalize upfront charges!

But: Fixed location and instance type

‘ Use EC2 Spot Instances

$0.6000
$0.5000
$0.4000
$0.3000
$0.2000

$0.1000

Availability zone
sssss t-1a
sssss t-1¢c

B us-eas t-1d

Date

Product : Linux/UNIX v

Spot Instance Pricing History

X

Instance type: m3.2xlarge v Daterange : 1day v Availability zone: All zones v

$0.0000 2200 0:00 200 400 600 8:00

Price

$0.1770

$0.1500

$0.1788

February 25, 2014 5:28:56 PM UTC-8

~—‘"‘—‘-—=r‘—"

~—

10:00 12:00

14:00 16:00 18:00 20:00

Cloud native
dynamic autoscaled
spot instances

Real world total
savings up to 50%

.

Total CPU in ECU

Right Sizing Instances

100

10

AWS Instance Types

11.micro

micro

Fit the instance size to the workload

3. dxarge
Ccot (ST
¢ cct 2xlarge Xarge Y
13 2xiarge i2 2darge }D
c1.xlarpe _
c3.xlarge
cIk Wb
LD, (s aroe)
c1.medium -

RAM in GB

AWS t1
AWS 12
W AWS m1
W AWS m2
I AWS m3
M AWS 3
AWS c1
AWS c3
0 AWS g1
W AWS g2
W AWS c2
W AWS i1
W AWS i2
W AWS s1

Six Ways to Cut Costs ab f/\/\

Business Agility by Rapid Experimentation = Profit

Business-driven Auto Scaling Architectures = Savings

Mix and Match Reserved Instances with On-Demand = Savings

Consolidated Billing and Shared Reservations = Savings

Always-on Instance Type Optimization = Recurring Savings

Follow the Customer (Run web servers) during the day
Follow the Money (Run Hadoop clusters) at night

Credit to Jinesh Varia of AWS for this summary

L

|G—

Compounded
Savings

Lift and Shift Compounding

100

Traditional
. application
— — — using AWS
heavy use
50 reservations
. EEEEN
0 ;

Base Price Rightsized Seasonal Daily Scaling Reserved Tech Refresh Price Cuts

—
Base price is for capacity bought up-front (

‘ Lift and Shift Compounding

100 Traditional
- application
using AWS
heavy use
0 1— reservations
L HE N
0 . .

Base Price nghtS|zed Seasenat Dally Scallng Reserved Tech Refresh Price Cuts

Base price is for capacity bought up-front (

‘ Lift and Shift Compounding

100 Traditional
- application
using AWS
heavy use
0 1— reservations
L HE N
0 . .

Base Price nghtS|zed Seasenat De-l-I-,-Sea-I-rng Reserved Tech Refresh Price Cuts

Base price is for capacity bought up-front (

‘ Lift and Shift Compounding

5 +—

50 1—

25 1—

Traditional
application

using AWS
heavy use

Base price is for capacity bought up-front

reservations

Base Price nghtS|zed Seasenet De-l-I-,-Sea-I-rng Reserved Teeh-Refresh Price Cuts

(

‘ Conservative Compounding
100

Cloud native

- application
| partially optimized
" light use reservations

SIi BB BN
.E B B 2 s

Base Price Rightsized Seasonal Daily Scaling Reserved Tech Refresh Price Cuts

=

‘ Conservative Compounding
100

Cloud native

- application
| partially optimized
" light use reservations

SIi BB BN
.E B B 2 s

Base Price Rightsized Seasonal Daily Scaling Reserved Tech Refresh Price Cuts

=

‘ Conservative Compounding
100

Cloud native
application

partially optimized
light use reservations

5 +—
50 1—
v

SIi BB BN
.E B B 2 s

Base Price Rightsized Seasonal Daily Scaling Reserved Tech Refresh Price Cuts

=

‘ Conservative Compounding
100

Cloud native

75 application
| 70 partially optimized
50 * light use reservations

y
i B R R AN

Base Price Rightsized Seasonal Daily Scaling Reserved Tech Refresh Price Cuts

=

‘ Conservative Compounding
100

Cloud native

- application
| partially optimized
" light use reservations

AR

Base Price Rightsized Seasonal Daily Scaling Reserved Tech Refresh Price Cuts

=

‘ Agressive Compounding

5 +—

50 1—

25-

Cloud native application
fully optimized autoscaling

Base Price

mixed reservation use
costs 4% of base price

Rightsized

over three years!

Seasonal

-ﬁﬁ

Daily Scaling Reserved Tech Refresh Price Cuts

=

Cost Monitoring and Optimization

2013-04-01 12AM @ cost
End Group by | UsageType #
2013-05-29 12AM Agaregate | hourly | 4

Plot Type [area |4
() Show Throughput
() Factor Throughput

submit | (%) Download

SHOW ALL HIDE ALL

UsageType Total
aggregated $
- $
L} $
a $
- $
a $
- $
[} $
[} $
L $
-
a $
L} $
L} $
- $
e $
- $
[} $
[} $
a $

v b b e e e

ap-northeast-1
ap-southeast-1
eu-west-1
sa-east-1
us-east-1

Cost per hour

Ondemandinstances
ReservedInstances
BorrowedInstances
LentInstances.
UnusedInstances.

fiter

Monday, Apr 15, 12am, 2013

aggregated : §;
: 8

i

= / hour

/ hour (0.1%)

+$10 / hour (0.0%)
& / hour (0.4%)

e = / hour (0.0%)

s
s

: S

) / hour (0.0%)
) / hour (3.3%)
% / hour (3.9%)
/ hour (0.0%)
/ hour (0.7%)
$w -/ hour (0.1%)
1 hour (0.4%)
/ hour (0.2%)
/ hour (14.9%)
= | hour (52.5%)
/ hour (7.3%)
/ hour (15.6%)
/ hour (0.0%)
= /[hour (0.1%)
/ hour (0.5%)

N

'\

ct.medium
cl.medium.
cl.xlarge
cl.xlarge.others
rge.windows.

ETFLX | OSSS

.28 Cloud Options.

#¢ cedexis ,—

Final Thoughts

-

Turn off idle instances

Clean up unused stuff

Optimize for pricing model
Assume prices will go down

Go cloud native to be fast and save

Battery Ventures

N\

@ Forward Thinking

-

Jez Humble, Joanne Molesky & Barry 0'Reilly

EAN

ENTERPRISE

How High Performance
Organizations
Innovate at Scale

O'REILLY

N\

@ Forward Thinking

-

@——:—:&a

Jez Humble, Joanne Molesky & Barry 0'Reilly

AN

ENTERPRISE

How High Performance
Organizations
Innovate at Scale

OREILLY

N\

@ Forward Thinking

Jez Humble, Joanne Molesky & Barry 0'Reilly

[EAN =] <

ENTERPRISE =

How High Performance MONOLTTHIC/LAYERED MICRO SERVICES

Organizations

Innovate at Scale

‘ Any Questions?

e Battery Ventures http://www.battery.com

e Adrian’s Tweets @adrianco and Blog http://perfcap.blogspot.com

e Slideshare http://slideshare.com/adriancockcroft

e Monitorama Opening Keynote Portland OR - May 7th, 2014

e GOTO Chicago Opening Keynote May 2oth, 2014

® Qcon New York — Speed and Scale - June 11th, 2014

e Structure - Cloud Trends - San Francisco - June 19th, 2014

e GOTO Copenhagen/Aarhus — Fast Delivery - Denmark — Sept 25th, 2014

e DevOps Enterprise Summit - San Francisco - Oct 21-23rd, 2014 #DOES14

e GOTO Berlin - Migrating to Microservices - Germany - Nov 6th, 2014

e AWS Re:Invent - Cloud Native Cost Optimization - Las Vegas - November 14th, 2014
O’Reilly Software Architecture Conference - Boston March 16th 2015

Disclosure: some of the companies mentioned may be Battery Ventures Portfolio Companies
See www.battery.com for a list of portfolio investments

