
Deliver Faster and Spend Less
with Cloud Native Microservices

Adrian Cockcroft @adrianco
Technology Fellow - Battery Ventures

 O’Reilly Software Architecture Workshop - March 2015

Agenda

Workshop vs. Presentation
Introductions

Faster Development
Microservice Architectures

Cloud Native Cost Optimization

Workshop vs. Presentation

Questions at any time
Interactive discussions
Share your experiences

Everyone’s voice should be heard

This is me, who are you?

Why am I here?

%*&!”

By Simon Wardley http://enterpriseitadoption.com/

Why am I here?

%*&!”

By Simon Wardley http://enterpriseitadoption.com/

2009

Why am I here?

%*&!”

By Simon Wardley http://enterpriseitadoption.com/

2009

Why am I here?

@adrianco’s job at the
intersection of cloud
and Enterprise IT,
looking for disruption
and opportunities.

%*&!”

By Simon Wardley http://enterpriseitadoption.com/

2014
2009

Why am I here?

@adrianco’s job at the
intersection of cloud
and Enterprise IT,
looking for disruption
and opportunities.

%*&!”

By Simon Wardley http://enterpriseitadoption.com/

2014
2009

Example: Docker
wasn’t on anyone’s
roadmap for 2014. It’s
on everyone’s roadmap
for 2015.

What does @adrianco do?

@adrianco

Technology Due
Diligence on Deals

Presentations at
Conferences

Presentations at
Companies

Technical Advice
for Portfolio
Companies

Program
Committee for
Conferences

Networking with
Interesting PeopleTinkering with

Technologies

Maintain
Relationship with
Cloud Vendors

Typical reactions to my Netflix talks…

Typical reactions to my Netflix talks…

“You guys are
crazy! Can’t
believe it”

– 2009

Typical reactions to my Netflix talks…

“You guys are
crazy! Can’t
believe it”

– 2009

“What Netflix is doing
won’t work”

– 2010

Typical reactions to my Netflix talks…

“You guys are
crazy! Can’t
believe it”

– 2009

“What Netflix is doing
won’t work”

– 2010 It only works for
‘Unicorns’ like

Netflix”
– 2011

Typical reactions to my Netflix talks…

“You guys are
crazy! Can’t
believe it”

– 2009

“What Netflix is doing
won’t work”

– 2010 It only works for
‘Unicorns’ like

Netflix”
– 2011

“We’d like to do  
that but can’t”

– 2012

Typical reactions to my Netflix talks…

“You guys are
crazy! Can’t
believe it”

– 2009

“What Netflix is doing
won’t work”

– 2010 It only works for
‘Unicorns’ like

Netflix”
– 2011

“We’d like to do  
that but can’t”

– 2012

“We’re on our way using
Netflix OSS code”

– 2013

What I learned from my time at Netflix

What I learned from my time at Netflix

•Speed wins in the marketplace

What I learned from my time at Netflix

•Speed wins in the marketplace
•Remove friction from product development

What I learned from my time at Netflix

•Speed wins in the marketplace
•Remove friction from product development
•High trust, low process, no hand-offs between teams

What I learned from my time at Netflix

•Speed wins in the marketplace
•Remove friction from product development
•High trust, low process, no hand-offs between teams
•Freedom and responsibility culture

What I learned from my time at Netflix

•Speed wins in the marketplace
•Remove friction from product development
•High trust, low process, no hand-offs between teams
•Freedom and responsibility culture
•Don’t do your own undifferentiated heavy lifting

What I learned from my time at Netflix

•Speed wins in the marketplace
•Remove friction from product development
•High trust, low process, no hand-offs between teams
•Freedom and responsibility culture
•Don’t do your own undifferentiated heavy lifting
•Use simple patterns automated by tooling

What I learned from my time at Netflix

•Speed wins in the marketplace
•Remove friction from product development
•High trust, low process, no hand-offs between teams
•Freedom and responsibility culture
•Don’t do your own undifferentiated heavy lifting
•Use simple patterns automated by tooling
•Self service cloud makes impossible things instant

2014 was the year that Enterprises
finally embraced cloud and DevOps.

2014 was the year that Enterprises
finally embraced cloud and DevOps.

2014 was the year that Enterprises
finally embraced cloud and DevOps.

2014 was the year that Enterprises
finally embraced cloud and DevOps.

What separates
incumbents from

disruptors?

Strategy Mapping

Simon Wardley http://blog.gardeviance.org/2014/11/how-to-get-to-strategy-in-ten-steps.html
Related tools and training http://www.wardleymaps.com/

“It isn't what we don't know that
gives us trouble, it's what we

know that ain't so.”
!

Will Rogers

Assumptions

Optimizations

Assumption:
Process prevents

problems

Organizations build up
slow complex “Scar

tissue” processes

"This is the IT swamp draining manual for anyone who is
neck deep in alligators.”

1984 2014

Product
Development

Processes

Waterfall Product Development

Business
Need
• Documents
• Weeks

Approval
Process
• Meetings
• Weeks

Hardware
Purchase
• Negotiations
• Weeks

Software
Development
• Specifications
• Weeks

Deployment and
Testing
• Reports
• Weeks

Customer
Feedback
• It sucks!
• Weeks

Waterfall Product Development

Hardware provisioning is undifferentiated heavy lifting – replace it with IaaS

Business
Need
• Documents
• Weeks

Approval
Process
• Meetings
• Weeks

Hardware
Purchase
• Negotiations
• Weeks

Software
Development
• Specifications
• Weeks

Deployment and
Testing
• Reports
• Weeks

Customer
Feedback
• It sucks!
• Weeks

Waterfall Product Development

Hardware provisioning is undifferentiated heavy lifting – replace it with IaaS

Business
Need
• Documents
• Weeks

Approval
Process
• Meetings
• Weeks

Hardware
Purchase
• Negotiations
• Weeks

Software
Development
• Specifications
• Weeks

Deployment and
Testing
• Reports
• Weeks

Customer
Feedback
• It sucks!
• Weeks

IaaS
Cloud

Waterfall Product Development

Hardware provisioning is undifferentiated heavy lifting – replace it with IaaS

Business
Need
• Documents
• Weeks

Software
Development
• Specifications
• Weeks

Deployment and
Testing
• Reports
• Weeks

Customer
Feedback
• It sucks!
• Weeks

Process Hand-Off Steps for Agile
Development on IaaS

Product Manager

Development Team

QA Integration
Team

Operations Deploy
Team

BI Analytics Team

IaaS Agile Product Development

Business Need
• Documents
• Weeks

Software Development
• Specifications
• Weeks

Deployment and Testing
• Reports
• Days

Customer Feedback
• It sucks!
• Days

IaaS Agile Product Development

Business Need
• Documents
• Weeks

Software Development
• Specifications
• Weeks

Deployment and Testing
• Reports
• Days

Customer Feedback
• It sucks!
• Days

etc…

IaaS Agile Product Development

Business Need
• Documents
• Weeks

Software Development
• Specifications
• Weeks

Deployment and Testing
• Reports
• Days

Customer Feedback
• It sucks!
• Days

etc…

IaaS Agile Product Development

Software provisioning is undifferentiated heavy lifting – replace it with PaaS

Business Need
• Documents
• Weeks

Software Development
• Specifications
• Weeks

Deployment and Testing
• Reports
• Days

Customer Feedback
• It sucks!
• Days

etc…

IaaS Agile Product Development

Software provisioning is undifferentiated heavy lifting – replace it with PaaS

Business Need
• Documents
• Weeks

Software Development
• Specifications
• Weeks

Deployment and Testing
• Reports
• Days

Customer Feedback
• It sucks!
• Days

PaaS
Cloud

etc…

IaaS Agile Product Development

Software provisioning is undifferentiated heavy lifting – replace it with PaaS

Business Need
• Documents
• Weeks

Software Development
• Specifications
• Weeks

Customer Feedback
• It sucks!
• Days

etc…

Process for Continuous Delivery of
Features on PaaS

Product Manager

Developer

BI Analytics Team

PaaS CD Feature Development

Business Need
• Discussions
• Days

Software Development
• Code
• Days

Customer Feedback
• Fix this Bit!
• Hours

etc…

PaaS CD Feature Development

Business Need
• Discussions
• Days

Software Development
• Code
• Days

Customer Feedback
• Fix this Bit!
• Hours

etc…

PaaS CD Feature Development

Business Need
• Discussions
• Days

Software Development
• Code
• Days

Customer Feedback
• Fix this Bit!
• Hours

etc…

PaaS CD Feature Development

Building your own business apps is undifferentiated heavy lifting – use SaaS

Business Need
• Discussions
• Days

Software Development
• Code
• Days

Customer Feedback
• Fix this Bit!
• Hours

etc…

PaaS CD Feature Development

Building your own business apps is undifferentiated heavy lifting – use SaaS

Business Need
• Discussions
• Days

Software Development
• Code
• Days

Customer Feedback
• Fix this Bit!
• Hours

SaaS/
BPaaS
Cloud

etc…

PaaS CD Feature Development

Building your own business apps is undifferentiated heavy lifting – use SaaS

Business Need
• Discussions
• Days

Customer Feedback
• Fix this Bit!
• Hours

etc…

SaaS Based Business Application
Development

Business Need
•GUI Builder
•Hours

Customer Feedback
•Fix this bit!
•Seconds

SaaS Based Business Application
Development

Business Need
•GUI Builder
•Hours

Customer Feedback
•Fix this bit!
•Seconds

and thousands more…

Observe

Orient

Decide

Act Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Measure
Customers

Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

INNOVATION

Measure
Customers

Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Analysis

Model
Hypotheses

INNOVATION

Measure
Customers

Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Analysis

Model
Hypotheses

BIG DATA

INNOVATION

Measure
Customers

Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Analysis

JFDI

Plan Response

Share Plans

Model
Hypotheses

BIG DATA

INNOVATION

Measure
Customers

Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Analysis

JFDI

Plan Response

Share Plans

Model
Hypotheses

BIG DATA

INNOVATION

CULTURE

Measure
Customers

Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Analysis

JFDI

Plan Response

Share Plans

Incremental
Features

Automatic
Deploy

Launch AB
Test

Model
Hypotheses

BIG DATA

INNOVATION

CULTURE

Measure
Customers

Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Analysis

JFDI

Plan Response

Share Plans

Incremental
Features

Automatic
Deploy

Launch AB
Test

Model
Hypotheses

BIG DATA

INNOVATION

CULTURE

CLOUD

Measure
Customers

Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Analysis

JFDI

Plan Response

Share Plans

Incremental
Features

Automatic
Deploy

Launch AB
Test

Model
Hypotheses

BIG DATA

INNOVATION

CULTURE

CLOUD

Measure
Customers

Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Analysis

JFDI

Plan Response

Share Plans

Incremental
Features

Automatic
Deploy

Launch AB
Test

Model
Hypotheses

BIG DATA

INNOVATION

CULTURE

CLOUD

Measure
Customers

Continuous
Delivery

Breaking Down the SILOs

Breaking Down the SILOs

QA DBA Sys
Adm

Net
Adm

SAN
AdmDevUXProd

Mgr

Breaking Down the SILOs

QA DBA Sys
Adm

Net
Adm

SAN
AdmDevUXProd

Mgr

Product Team Using Monolithic Delivery
Product Team Using Monolithic Delivery

Breaking Down the SILOs

QA DBA Sys
Adm

Net
Adm

SAN
AdmDevUXProd

Mgr
Product Team Using Microservices

Product Team Using Monolithic Delivery

Product Team Using Microservices

Product Team Using Microservices

Product Team Using Monolithic Delivery

Breaking Down the SILOs

QA DBA Sys
Adm

Net
Adm

SAN
AdmDevUXProd

Mgr
Product Team Using Microservices

Product Team Using Monolithic Delivery

Platform TeamProduct Team Using Microservices

Product Team Using Microservices

Product Team Using Monolithic Delivery

Breaking Down the SILOs

QA DBA Sys
Adm

Net
Adm

SAN
AdmDevUXProd

Mgr
Product Team Using Microservices

Product Team Using Monolithic Delivery

Platform Team
A
P
IProduct Team Using Microservices

Product Team Using Microservices

Product Team Using Monolithic Delivery

Breaking Down the SILOs

QA DBA Sys
Adm

Net
Adm

SAN
AdmDevUXProd

Mgr
Product Team Using Microservices

Product Team Using Monolithic Delivery

Platform Team

DevOps is a Re-Org!

A
P
IProduct Team Using Microservices

Product Team Using Microservices

Product Team Using Monolithic Delivery

Release Plan

Developer

Developer

Developer

Developer

Developer

QA Release
Integration

Ops Replace Old
With New

Release

Monolithic service updates

Works well with a small number
of developers and a single
language like php, java or ruby

Release Plan

Developer

Developer

Developer

Developer

Developer

QA Release
Integration

Ops Replace Old
With New

Release

Bugs

Monolithic service updates

Works well with a small number
of developers and a single
language like php, java or ruby

Release Plan

Developer

Developer

Developer

Developer

Developer

QA Release
Integration

Ops Replace Old
With New

Release

Bugs

Bugs

Monolithic service updates

Works well with a small number
of developers and a single
language like php, java or ruby

Developer

Developer

Developer

Developer

Developer

Old Release Still
Running

Release Plan

Release Plan

Release Plan

Release Plan

Immutable microservice deployment
scales, is faster with large teams and
diverse platform components

Developer

Developer

Developer

Developer

Developer

Old Release Still
Running

Release Plan

Release Plan

Release Plan

Release Plan

Deploy
Feature to
Production

Deploy
Feature to
Production

Deploy
Feature to
Production

Deploy
Feature to
Production

Immutable microservice deployment
scales, is faster with large teams and
diverse platform components

Developer

Developer

Developer

Developer

Developer

Old Release Still
Running

Release Plan

Release Plan

Release Plan

Release Plan

Deploy
Feature to
Production

Deploy
Feature to
Production

Deploy
Feature to
Production

Deploy
Feature to
Production

Bugs

Immutable microservice deployment
scales, is faster with large teams and
diverse platform components

Developer

Developer

Developer

Developer

Developer

Old Release Still
Running

Release Plan

Release Plan

Release Plan

Release Plan

Deploy
Feature to
Production

Deploy
Feature to
Production

Deploy
Feature to
Production

Deploy
Feature to
Production

Bugs

Deploy
Feature to
Production

Immutable microservice deployment
scales, is faster with large teams and
diverse platform components

Configure

Configure

Developer

Developer

Developer

Release Plan

Release Plan

Release Plan

Deploy
Standardized

Services

Standardized container deployment
saves time and effort

https://hub.docker.com

Configure

Configure

Developer

Developer

Developer

Release Plan

Release Plan

Release Plan

Deploy
Standardized

Services

Deploy
Feature to
Production

Deploy
Feature to
Production

Deploy
Feature to
Production

Bugs

Deploy
Feature to
Production

Standardized container deployment
saves time and effort

https://hub.docker.com

Developer Developer

Run What You Wrote

Developer Developer

Developer Developer

Run What You Wrote

Micro
service

Micro
service

Micro
service

Micro
service

Micro
service

Micro
service

Micro
service

Developer Developer

Developer Developer

Run What You Wrote

Micro
service

Micro
service

Micro
service

Micro
service

Micro
service

Micro
service

Micro
service

Developer Developer

Monitoring
Tools

DeveloperDeveloper Developer

Run What You Wrote

Micro
service

Micro
service

Micro
service

Micro
service

Micro
service

Micro
service

Micro
service

Developer Developer

Monitoring
Tools

DeveloperDeveloper Developer

Run What You Wrote

Micro
service

Micro
service

Micro
service

Micro
service

Micro
service

Micro
service

Micro
service

Developer Developer

Site
Reliability

Monitoring
Tools

Availability
Metrics

99.95% customer
success rate

DeveloperDeveloper Developer

Run What You Wrote

Micro
service

Micro
service

Micro
service

Micro
service

Micro
service

Micro
service

Micro
service

Developer Developer

Manager Manager

Site
Reliability

Monitoring
Tools

Availability
Metrics

99.95% customer
success rate

DeveloperDeveloper Developer

Run What You Wrote

Micro
service

Micro
service

Micro
service

Micro
service

Micro
service

Micro
service

Micro
service

Developer Developer

Manager Manager

VP
Engineering

Site
Reliability

Monitoring
Tools

Availability
Metrics

99.95% customer
success rate

Non-Destructive Production Updates

● “Immutable Code” Service Pattern

● Existing services are unchanged, old code remains in service

● New code deploys as a new service group

● No impact to production until traffic routing changes

● A|B Tests, Feature Flags and Version Routing control traffic

● First users in the test cell are the developer and test engineers

● A cohort of users is added looking for measurable improvement

Deliver four features every four weeks

Work In Progress = 4
Opportunity for bugs: 100% (baseline)
Time to debug each: 100% (baseline)

Deliver four features every four weeks
Bugs! Which feature broke?
Need more time to test!
Extend release to six weeks?

Work In Progress = 4
Opportunity for bugs: 100% (baseline)
Time to debug each: 100% (baseline)

Deliver four features every four weeks

But: risk of bugs in delivery increases with interactions!

Bugs! Which feature broke?
Need more time to test!
Extend release to six weeks?

Work In Progress = 4
Opportunity for bugs: 100% (baseline)
Time to debug each: 100% (baseline)

Deliver four features every four weeks

16

16

16

But: risk of bugs in delivery increases with interactions!

Bugs! Which feature broke?
Need more time to test!
Extend release to six weeks?

Work In Progress = 4
Opportunity for bugs: 100% (baseline)
Time to debug each: 100% (baseline)

Deliver six features every six weeks

Deliver six features every six weeks

Work In Progress = 6
Individual bugs: 150%
Interactions: 150%?

Deliver six features every six weeks
More features
What broke?
More interactions
Even more bugs!!

Work In Progress = 6
Individual bugs: 150%
Interactions: 150%?

36

36

Deliver six features every six weeks
More features
What broke?
More interactions
Even more bugs!!

Work In Progress = 6
Individual bugs: 150%
Interactions: 150%?

36

36

Deliver six features every six weeks

Risk of bugs in delivery increased to 225% of original!

More features
What broke?
More interactions
Even more bugs!!

Work In Progress = 6
Individual bugs: 150%
Interactions: 150%?

4
4

4
4

4
4

Deliver two features every two weeks

Complexity of delivery decreased by 75% from original

Fewer interactions
Fewer bugs
Better flow
Less Work In Progress

Work In Progress = 2
Opportunity for bugs: 50%
Time to debug each: 50%

What Happened?
Rate of change

increased

Cost and size and
risk of change

reduced

Developing at the Speed of Docker

Developers
• Compile/Build
• Seconds

Extend container
• Package dependencies
• Seconds

PaaS deploy Container
• Docker startup
• Seconds

Developing at the Speed of Docker

Speed is addictive, hard to go back to taking much longer to get things done

Developers
• Compile/Build
• Seconds

Extend container
• Package dependencies
• Seconds

PaaS deploy Container
• Docker startup
• Seconds

Disruptor:
Continuous Delivery with

Containerized Microservices

It’s what you know that isn’t so

It’s what you know that isn’t so
● Make your assumptions explicit

It’s what you know that isn’t so
● Make your assumptions explicit

● Extrapolate trends to the limit

It’s what you know that isn’t so
● Make your assumptions explicit

● Extrapolate trends to the limit

● Listen to non-customers

It’s what you know that isn’t so
● Make your assumptions explicit

● Extrapolate trends to the limit

● Listen to non-customers

● Follow developer adoption, not IT spend

It’s what you know that isn’t so
● Make your assumptions explicit

● Extrapolate trends to the limit

● Listen to non-customers

● Follow developer adoption, not IT spend

● Map evolution of products to services to utilities

It’s what you know that isn’t so
● Make your assumptions explicit

● Extrapolate trends to the limit

● Listen to non-customers

● Follow developer adoption, not IT spend

● Map evolution of products to services to utilities

● Re-organize your teams for speed of execution

Microservices

A Microservice Definition
!

Loosely coupled service oriented
architecture with bounded contexts

A Microservice Definition
!

Loosely coupled service oriented
architecture with bounded contexts

If every service has to be
updated at the same time
it’s not loosely coupled

A Microservice Definition
!

Loosely coupled service oriented
architecture with bounded contexts

If every service has to be
updated at the same time
it’s not loosely coupled

If you have to know too much about surrounding
services you don’t have a bounded context. See the
Domain Driven Design book by Eric Evans.

Coupling Concerns

http://en.wikipedia.org/wiki/Conway's_law

●Conway’s Law - organizational coupling

●Centralized Database Schemas

●Enterprise Service Bus - centralized message queues

●Inflexible Protocol Versioning

Speeding Up The Platform

Datacenter Snowflakes
• Deploy in months
• Live for years

Speeding Up The Platform

Datacenter Snowflakes
• Deploy in months
• Live for years

Virtualized and Cloud
• Deploy in minutes
• Live for weeks

Speeding Up The Platform

Datacenter Snowflakes
• Deploy in months
• Live for years

Virtualized and Cloud
• Deploy in minutes
• Live for weeks

Container Deployments
• Deploy in seconds
• Live for minutes/hours

Speeding Up The Platform

Datacenter Snowflakes
• Deploy in months
• Live for years

Virtualized and Cloud
• Deploy in minutes
• Live for weeks

Container Deployments
• Deploy in seconds
• Live for minutes/hours

Lambda Deployments
• Deploy in milliseconds
• Live for seconds

Speeding Up The Platform

Speed enables and encourages microservice architectures

Datacenter Snowflakes
• Deploy in months
• Live for years

Virtualized and Cloud
• Deploy in minutes
• Live for weeks

Container Deployments
• Deploy in seconds
• Live for minutes/hours

Lambda Deployments
• Deploy in milliseconds
• Live for seconds

Separate Concerns with Microservices

http://en.wikipedia.org/wiki/Conway's_law

● Invert Conway’s Law – teams own service groups and backend stores

● One “verb” per single function micro-service, size doesn’t matter

● One developer independently produces a micro-service

● Each micro-service is it’s own build, avoids trunk conflicts

● Deploy in a container: Tomcat, AMI or Docker, whatever…

● Stateless business logic. Cattle, not pets.

● Stateful cached data access layer using replicated ephemeral instances

Inspiration

http://www.infoq.com/presentations/scale-gilt

http://www.slideshare.net/mcculloughsean/itier-breaking-up-the-monolith-philly-ete

http://www.infoq.com/presentations/Twitter-Timeline-Scalability
http://www.infoq.com/presentations/twitter-soa

http://www.infoq.com/presentations/Zipkin

https://speakerdeck.com/mattheath/scaling-micro-services-in-go-highload-plus-plus-2014

State of the Art in Web Scale
Microservice Architectures

AWS Re:Invent : Asgard to Zuul https://www.youtube.com/watch?v=p7ysHhs5hl0
Resiliency at Massive Scale https://www.youtube.com/watch?v=ZfYJHtVL1_w

Microservice Architecture https://www.youtube.com/watch?v=CriDUYtfrjs

Microservice Concerns

ConfigurationTooling Discovery Routing Observability

Development: Languages and Container

Operational: Orchestration and Deployment Infrastructure

Datastores

 Microservices

Edda
Archaius !

Configuration

Asgard
Aminator !
Tooling

Eureka
Prana !

Discovery

Denominator
Zuul, Netty
Ribbon 2.0 !

Routing

Hystrix
Pytheus
SALP !

Observability

Java, Groovy, Scala, Clojure, Python with AMI and Docker Containers

Manual Orchestration with Asgard and deployment on AWS or Eucalyptus

Ephemeral datastores using Dynomite, Memcached, Astyanax, Staash, Priam, Cassandra

 Microservices

Edda
Archaius !

Configuration

Asgard
Aminator !
Tooling

Eureka
Prana !

Discovery

Denominator
Zuul, Netty
Ribbon 2.0 !

Routing

Hystrix
Pytheus
SALP !

Observability

Java, Groovy, Scala, Clojure, Python with AMI and Docker Containers

Manual Orchestration with Asgard and deployment on AWS or Eucalyptus

Ephemeral datastores using Dynomite, Memcached, Astyanax, Staash, Priam, Cassandra

Focus on global distribution, high scale and availability

 High Availability Patterns

● Business logic isolation in stateless micro-services

● Immutable code with instant rollback

● Auto-scaled capacity and deployment updates

● Distributed across availability zones and regions

● De-normalized single function NoSQL data stores

● See over 40 NetflixOSS projects at netflix.github.com

● Get “Technical Indigestion” trying to keep up with techblog.netflix.com

Cloud Native Storage
Business

Logic

Database
Master

Fabric

Storage
Arrays

Database
Slave

Fabric

Storage
Arrays

Cloud Native Storage
Business

Logic

Database
Master

Fabric

Storage
Arrays

Database
Slave

Fabric

Storage
Arrays

Business
Logic

Cassandra
Zone A nodes

Cassandra
Zone B nodes

Cassandra
Zone C nodes

Cloud Object
Store Backups

Cloud Native Storage
Business

Logic

Database
Master

Fabric

Storage
Arrays

Database
Slave

Fabric

Storage
Arrays

Business
Logic

Cassandra
Zone A nodes

Cassandra
Zone B nodes

Cassandra
Zone C nodes

Cloud Object
Store Backups

SSDs inside
arrays disrupt
incumbent
suppliers

Cloud Native Storage
Business

Logic

Database
Master

Fabric

Storage
Arrays

Database
Slave

Fabric

Storage
Arrays

Business
Logic

Cassandra
Zone A nodes

Cassandra
Zone B nodes

Cassandra
Zone C nodes

Cloud Object
Store Backups

SSDs inside
ephemeral
instances
disrupt an
entire industry

SSDs inside
arrays disrupt
incumbent
suppliers

Cloud Native Storage
Business

Logic

Database
Master

Fabric

Storage
Arrays

Database
Slave

Fabric

Storage
Arrays

Business
Logic

Cassandra
Zone A nodes

Cassandra
Zone B nodes

Cassandra
Zone C nodes

Cloud Object
Store Backups

SSDs inside
ephemeral
instances
disrupt an
entire industry

SSDs inside
arrays disrupt
incumbent
suppliers

NetflixOSS Uses Priam to create Cassandra clusters in minutes

● Edda - the “black box flight recorder” for configuration state

● Chaos Monkey - enforcing stateless business logic

● Chaos Gorilla - enforcing zone isolation/replication

● Chaos Kong - enforcing region isolation/replication

● Security Monkey - watching for insecure configuration settings

● See over 40 NetflixOSS projects at netflix.github.com

● Get “Technical Indigestion” trying to keep up with techblog.netflix.com

 Trust with Verification

Twitter Microservices

Decider !!
ConfigurationTooling

Finagle
Zookeeper !
Discovery

Finagle
Netty !

Routing

Zipkin !!
Observability

Scala with JVM Container

Orchestration using Aurora deployment in datacenters using Mesos

Custom Cassandra-like datastore: Manhattan

Twitter Microservices

Decider !!
ConfigurationTooling

Finagle
Zookeeper !
Discovery

Finagle
Netty !

Routing

Zipkin !!
Observability

Scala with JVM Container

Orchestration using Aurora deployment in datacenters using Mesos

Custom Cassandra-like datastore: Manhattan

Focus on efficient datacenter deployment at scale

Gilt Microservices

Decider !!
Configuration

Ion Cannon
SBT
Rake !

Tooling

Finagle
Zookeeper !
Discovery

Akka
Finagle
Netty !

Routing

Zipkin !!
Observability

Scala and Ruby with Docker Containers

Deployment on AWS

Datastores per Microservice using MongoDB, Postgres, Voldemort

Gilt Microservices

Decider !!
Configuration

Ion Cannon
SBT
Rake !

Tooling

Finagle
Zookeeper !
Discovery

Akka
Finagle
Netty !

Routing

Zipkin !!
Observability

Scala and Ruby with Docker Containers

Deployment on AWS

Datastores per Microservice using MongoDB, Postgres, Voldemort

Focus on fast development with Scala and Docker

Hailo Microservices

Configuration

Hubot
Janky

Jenkins !
Tooling

go-platform !
Discovery

go-platform
RabbitMQ !
Routing Observability

Go using AMI Container and Docker

Deployment on AWS

Deployment on AWS

Hailo Microservices

Configuration

Hubot
Janky

Jenkins !
Tooling

go-platform !
Discovery

go-platform
RabbitMQ !
Routing Observability

Go using AMI Container and Docker

Deployment on AWS

Deployment on AWS

Also watching: https://github.com/peterbourgon/gokit

 Microservices

Gconfig !
ConfigurationTooling

Grout !
Discovery

Grout !
Routing Observability

Javascript with Node.js container

Deployment Infrastructure

With AWS Lambda
compute resources are charged

by the 100ms, not the hour

First 1M node.js executions/month are free

Next Generation Applications

? !
Configuration

Docker?
PaaS? !
Tooling

Eureka?
Consul? !

Discovery

Ribbon?
Finagle?

Socketplane?
Weave?
Routing

Zipkin?
Metrics?
Hystrix? !

Observability

Development: Components assembled from Docker Hub as a composable “app store”

Operational: Many orchestration choices across public and private clouds

Datastores: Distributed Ephemeral, Orchestrated or DBaaS

Next Generation Applications

? !
Configuration

Docker?
PaaS? !
Tooling

Eureka?
Consul? !

Discovery

Ribbon?
Finagle?

Socketplane?
Weave?
Routing

Zipkin?
Metrics?
Hystrix? !

Observability

Development: Components assembled from Docker Hub as a composable “app store”

Operational: Many orchestration choices across public and private clouds

Datastores: Distributed Ephemeral, Orchestrated or DBaaS

Fill in the gaps, rapidly evolving ecosystem choices

Cloud Native
Monitoring and
Microservices

Cloud Native Microservices
● High rate of change

Code pushes can cause floods of new instances and metrics
Short baseline for alert threshold analysis – everything looks unusual

● Ephemeral Configurations
Short lifetimes make it hard to aggregate historical views
Hand tweaked monitoring tools take too much work to keep running

● Microservices with complex calling patterns
End-to-end request flow measurements are very important
Request flow visualizations get overwhelmed

Microservice Based Architectures

See http://www.slideshare.net/LappleApple/gilt-from-monolith-ruby-app-to-micro-service-scala-service-architecture

Continuous Delivery and DevOps

●Changes are smaller but more frequent

● Individual changes are more likely to be broken

●Changes are normally deployed by developers

●Feature flags are used to enable new code

● Instant detection and rollback matters much more

Whoops! I didn’t mean that!
Reverting… 

 
Not cool if it takes 5 minutes to see it failed and 5 more to see a fix  
 No-one notices if it only takes 5 seconds to detect and 5 to see a fix

NetflixOSS Hystrix/Turbine Circuit Breaker

http://techblog.netflix.com/2012/12/hystrix-dashboard-and-turbine.html

NetflixOSS Hystrix/Turbine Circuit Breaker

http://techblog.netflix.com/2012/12/hystrix-dashboard-and-turbine.html

Low Latency SaaS Based Monitors

www.vividcortex.com and www.boundary.com

Metric to display latency needs to be
less than human attention span (~10s)

Adrian’s Tinkering Projects

Model and visualize microservices
Simulate interesting architectures
Generate large scale configurations
Eventually stress test real tools
!
See github.com/adrianco/spigo
Simulate Protocol Interactions in Go

Load Balancer

API Proxy

Business
Logic

Data
Access
Layer

Cassandra
Datastore

Three
Availability
Zones

Cost Optimization

@adrianco

How is Cost
Measured?

1

Bottom Up

2

Product

3

Top Down

@adrianco

Bottom Up Costs

Add up the cost to
buy and operate
every component

1

@adrianco

Product Cost

Cost of delivering
and maintaining
each product

2

@adrianco

Top Down Costs

Divide total budget
by the number of
components

3

@adrianco

Top Down vs. Bottom Up

Will never match!
Hidden Subsidies vs.
Hidden Costs

1

3

@adrianco

Agile Team Product Profit

Value minus costs
Time to value
ROI, NPV, MMF
Profit center

2
$

See US Patent: 7467291Slideshare: 2003 Presentation on Capacity Planning Methods

Capacity Optimization for a
Single System Bottleneck

Upper Spec Limit
!
When demand
probability exceeds
USL by 4.0 sigma
scale up resource to
maintain low latency

Lower Spec Limit
!
When demand
probability is below
USL by 3.0 sigma
scale down resource
to save money

 To get accurate high dynamic range histograms see http://hdrhistogram.org/

Documentation on Capability Plots

But interesting systems
don’t have a single

bottleneck nowadays…

But interesting systems
don’t have a single

bottleneck nowadays…

@adrianco

What about cloud
costs?

@adrianco

Cloud Native Cost Optimization

Optimize for speed first
Turn it off!
Capacity on demand
Consolidate and Reserve
Plan for price cuts
FOSS tooling

$ $ $

@adrianco

The Capacity
Planning Problem

Best Case Waste

Product(Launch(Agility(2(Rightsized(

Pre
2La
un
ch
(

Bu
ild
2ou
t(

Te
s9
ng
(

La
un
ch
(

Gr
ow
th(

Gr
ow
th(

Demand(

Cloud(

Datacenter(

$(

Cloud capacity
used is maybe
half average
DC capacity

Failure to Launch
Product(Launch(-(Under-es1mated(

Pre
-L

au
nc

h

Buil
d-

ou
t

Te
sti

ng

La
un

ch

Gro
wth

Gro
wth

Mad scramble
to add more DC
capacity during
launch phase
outages

Over the Top Losses
Product(Launch(Agility(–(Over6es8mated(

Pre
-L

au
nc

h

Buil
d-

ou
t

Te
sti

ng

La
un

ch

Gro
wth

Gro
wth

$

Capacity wasted
on failed launch
magnifies the
losses

@adrianco

Turning off Capacity

Off-peak production
Test environments
Dev out of hours
Dormant Data ScienceWhen%you%turn%off%your%cloud%resources,%

you%actually%stop%paying%for%them%

@adrianco

Containerize Test Environments

Snapshot or freeze
Fast restart needed
Persistent storage
40 of 168 hrs/wk
Bin-packed containers
shippable.com saved 70%

Seasonal Savings

1 5 9 13 17 21 25 29 33 37 41 45 49

W
eb

 S
er

ve
rs

Week

Optimize during a year

50% Savings
Weekly&CPU&Load&

Autoscale the Costs Away

50%+%Cost%Saving%
Scale%up/down%

by%70%+%

Move%to%Load=Based%Scaling%

Daily Duty Cycle

Bu
si
ne

ss
'T
hr
ou

gh
pu

t'
In
st
an

ce
s'

Reactive Autoscaling
saves around 50%

Predictive Autoscaling saves around 70%
See Scryer on Netflix Tech Blog

Underutilized and Unused
AWS$Support$–$Trusted$Advisor$–$

Your$personal$cloud$assistant$

Clean Up the Crud
Other&simple&op-miza-on&-ps&

•  Don’t&forget&to…&
– Disassociate&unused&EIPs&
– Delete&unassociated&Amazon&
EBS&volumes&

– Delete&older&Amazon&EBS&
snapshots&

– Leverage&Amazon&S3&Object&
Expira-on&

& Janitor&Monkey&cleans&up&unused&resources&

Total Cost of Oranges
When%Comparing%TCO…!

Make!sure!that!
you!are!including!
all!the!cost!factors!
into!considera4on!

Place%
Power%
Pipes%
People%
Pa6erns%

Total Cost of Oranges
When%Comparing%TCO…!

Make!sure!that!
you!are!including!
all!the!cost!factors!
into!considera4on!

Place%
Power%
Pipes%
People%
Pa6erns%

How much does
datacenter automation
software and support
cost per instance?

When Do You Pay?

@adrianco

bill

Now
Next

Month
Ages
Ago

Lease
Building

Install
AC etc

Rack &
Stack

Private
Cloud SW

Run
My Stuff

Datacenter Up Front Costs

Cost Model Comparisons

AWS has most complex model
• Both highest and lowest cost options!

CPU/Memory Ratios Vary
• Can’t get same config everywhere

Features Vary
• Local SSD included on some vendors, not others
• Network and storage charges also vary

Digital Ocean Flat Pricing

Hourly Price ($0.06/hr) Monthly Price ($40/mo)

$ No Upfront $ No Upfront

$0.060/hr $0.056/hr

$1555/36mo $1440/36mo

Savings 7%

Prices on Dec 7th, for 2 Core, 4G RAM, SSD, purely to show typical savings

Google Sustained Usage

Full Price Without
Sustained Usage

Typical Sustained
Usage Each Month

Full Sustained Usage
Each Month

$ No Upfront $ No Upfront $ No Upfront

$0.063/hr $0.049/hr $0.045/hr

$1633/36mo $1270/36mo $1166/36mo

Savings 22% 29%

Prices on Dec 7th, for n1.standard-1 (1 vCPU, 3.75G RAM, no disk) purely to show typical savings

AWS Reservations

On Demand No Upfront
1 year

Partial Upfront
3 year

All Upfront
3 year

$ No Upfront $No Upfront $337 Upfront $687 Upfront

$0.070/hr $0.050/hr $0.0278/hr $0.00/hr

$1840/36mo $1314/36mo $731/36mo $687/36mo

Savings 29% 60% 63%

Prices on Dec 7th, for m3.medium (1 vCPU, 3.75G RAM, SSD) purely to show typical savings

Blended BenefitsMixandMatch$Reserved$TypesandOn4Demand$

In
st
an

ce
s(

Days(of(Month(

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Heavy&Utilization&Reserved Instances

Light&RI Light&RILight&RILight&RI

On8Demand

All Upfront

Partial Upfront

On Demand

@adrianco

Consolidated Reservations
Burst capacity guarantee
Higher availability with lower cost
Other accounts soak up any extra
Monthly billing roll-up
Capitalize upfront charges!
But: Fixed location and instance type

Use EC2 Spot Instances

Cloud native
dynamic autoscaled
spot instances
!
Real world total
 savings up to 50%

Right Sizing Instances
Fit the instance size to the workload

Six Ways to Cut Costs
#1#Business#Agility#by#Rapid#Experimenta8on#=#Profit#

#2#Business>driven#Auto#Scaling#Architectures#=#Savings##

#3#Mix#and#Match#Reserved#Instances#with#On>Demand#=#Savings#

#4#Consolidated#Billing#and#Shared#Reserva8ons#=#Savings#

#5#Always>on#Instance#Type#Op8miza8on#=#Recurring#Savings#

Building#Cost>Aware#Cloud#Architectures#

#6#Follow#the#Customer#(Run#web#servers)#during#the#day#
Follow#the#Money#(Run#Hadoop#clusters)#at#night#

Credit to Jinesh Varia of AWS for this summary

@adrianco

Compounded
Savings

Lift and Shift Compounding

0

25

50

75

100

Base Price Rightsized Seasonal Daily Scaling Reserved Tech Refresh Price Cuts

253030

707070

100 Traditional
application
using AWS
heavy use
reservations

Base price is for capacity bought up-front

Lift and Shift Compounding

0

25

50

75

100

Base Price Rightsized Seasonal Daily Scaling Reserved Tech Refresh Price Cuts

253030

707070

100 Traditional
application
using AWS
heavy use
reservations

Base price is for capacity bought up-front

Lift and Shift Compounding

0

25

50

75

100

Base Price Rightsized Seasonal Daily Scaling Reserved Tech Refresh Price Cuts

253030

707070

100 Traditional
application
using AWS
heavy use
reservations

Base price is for capacity bought up-front

Lift and Shift Compounding

0

25

50

75

100

Base Price Rightsized Seasonal Daily Scaling Reserved Tech Refresh Price Cuts

253030

707070

100 Traditional
application
using AWS
heavy use
reservations

Base price is for capacity bought up-front

Conservative Compounding

0

25

50

75

100

Base Price Rightsized Seasonal Daily Scaling Reserved Tech Refresh Price Cuts

152025
35

50

70

100 Cloud native
application
partially optimized
light use reservations

Conservative Compounding

0

25

50

75

100

Base Price Rightsized Seasonal Daily Scaling Reserved Tech Refresh Price Cuts

152025
35

50

70

100 Cloud native
application
partially optimized
light use reservations

Conservative Compounding

0

25

50

75

100

Base Price Rightsized Seasonal Daily Scaling Reserved Tech Refresh Price Cuts

152025
35

50

70

100 Cloud native
application
partially optimized
light use reservations

Conservative Compounding

0

25

50

75

100

Base Price Rightsized Seasonal Daily Scaling Reserved Tech Refresh Price Cuts

152025
35

50

70

100 Cloud native
application
partially optimized
light use reservations

Conservative Compounding

0

25

50

75

100

Base Price Rightsized Seasonal Daily Scaling Reserved Tech Refresh Price Cuts

152025
35

50

70

100 Cloud native
application
partially optimized
light use reservations

Agressive Compounding

0

25

50

75

100

Base Price Rightsized Seasonal Daily Scaling Reserved Tech Refresh Price Cuts

46812
25

50

100 Cloud native application
fully optimized autoscaling
mixed reservation use
costs 4% of base price
over three years!

Cost Monitoring and Optimization

@adrianco

Final Thoughts

Turn off idle instances
Clean up unused stuff
Optimize for pricing model
Assume prices will go down
Go cloud native to be fast and save

Forward Thinking

Forward Thinking

Forward Thinking

http://eugenedvorkin.com/seven-micro-services-architecture-advantages/

Any Questions?

Disclosure: some of the companies mentioned may be Battery Ventures Portfolio Companies
See www.battery.com for a list of portfolio investments

● Battery Ventures http://www.battery.com
● Adrian’s Tweets @adrianco and Blog http://perfcap.blogspot.com
● Slideshare http://slideshare.com/adriancockcroft
!

● Monitorama Opening Keynote Portland OR - May 7th, 2014
● GOTO Chicago Opening Keynote May 20th, 2014
● Qcon New York – Speed and Scale - June 11th, 2014
● Structure - Cloud Trends - San Francisco - June 19th, 2014
● GOTO Copenhagen/Aarhus – Fast Delivery - Denmark – Sept 25th, 2014
● DevOps Enterprise Summit - San Francisco - Oct 21-23rd, 2014 #DOES14
● GOTO Berlin - Migrating to Microservices - Germany - Nov 6th, 2014
● AWS Re:Invent - Cloud Native Cost Optimization - Las Vegas - November 14th, 2014
● O’Reilly Software Architecture Conference - Boston March 16th 2015

