OTypesafe ©Typesafe 2014-2015, All Rights Reserved

Wednesday, March 18, 15
7 1

Photos from Jantar Mantar (“instrument”, “calculation”), the astronomical observatory built in Jaipur, India, by Sawai Jai

Singh, a Rajput King, in the 1720s-30s. He built four others around India. This is the largest and best preserved.
All photos are copyright (C) 2000-2015, Dean Wampler. All Rights Reserved.




Wednesday, March 18, 15


http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920033073.do
http://shop.oreilly.com/product/0636920033073.do
http://shop.oreilly.com/product/0636920033073.do
http://shop.oreilly.com/product/0636920033073.do
http://shop.oreilly.com/product/0636920033073.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do

Wednesday, March 18, 15

This is my role. We’re just getting started, but talk to me if you’re interested in what we’re doing.


http://typesafe.com/reactive-big-data
http://typesafe.com/reactive-big-data

Responsive

Elastic Resilient

Message Driven

Wednesday, March 18, 15



RESpPUIlISIVE

Resilient

VoYV RY TIW7 N
Wednesday, March 18, 15

Truly resilient systems must make failures first class citizens, in some sense of the word, because they are inevitable
when the systems are big enough and run long enough.




Wednesday, March 18, 15

I’ve structured parts of this talk around points made in Debasish’s new book, which has lots of interesting practical
ideas for combining functional programming and reactive approaches with classic Domain-Driven Design by Eric
Evans.



Wednesday, March 18, 15

This is how we’ve always done it, right?



Wednesday, March 18, 15




Wednesday, March 18, 15




Communicating
Sequential
Processes

Message passing
¢ via channels

Wednesday, March 18, 15

See
http://en.wikipedia.org/wiki/Communicating sequential processes
://clojure.com 28 /clojure-core-async-channels.html
blog.drewolson.org/blog/2013/07 clojure-core-dot-async-and-go-a-code-com

and other references in the “bonus” slides at the end of the deck. | also have some slides that describe the core
primitives of CSP that | won’t have time to cover.




Wednesday, March 18, 15

http://www.youtube.com/watch?v=f6kdp27TYZs&feature=youtu.be

From a talk Pike did at Google 1/0 2012.



CSP: inspired Go &
Clojure’s core.async




Blocking
Channel

13

Wednesday, March 18, 15
Simplest channel, a blocking, 1-element “connector” used to share values, one at a time between a source and a waiting sync. The put operation blocks if there is no sync waiting on the other end.

The channel can be typed (Go lang).

Doesn’t prevent the usual problems if mutable state is passed over a channel!




Bounded,
Nonblocking
Channel

D

14

Wednesday, March 18, 15

A non-blocking queue, but bounded in size. Normally, N wouldn’t be this small. You DON’T want it to be infinite either, because eventually you’ll fill it and run out of memory! So, what should you do when it’s full? We’ll come back to this question when we discuss Reactive Streams
later.




Bounded,

Go Block Nonblocking

Go Block
Channel

Put
Value

15

Wednesday, March 18, 15

So far, we haven’t supported any actual concurrency. I’'m using “Go Blocks” here to represent explicit threads in Clojure, when running on the JVM and you’re willing to dedicate a thread to the sequence of code, or core async “go blocks”, which provide thread-like async behavior,
but share real threads. This is the only option for clojure.js, since you only have one thread period.

Similarly for Go, “go blocks” would be “go routines”.

In all cases, they are analogous to Java/Scala futures.




Bounded,
Nonblocking
Channel

Go Block

Put
Value Go Block

Go Block

Put
Value

16

Wednesday, March 18, 15
You can “select’ on several channels, analogous to socket select. l.e., read from the next channel with a value. In go, there is a “select” construct for this. In core async, there are the “alt!” (blocking) and “alt!!” (nonblocking) functions.

Fan out is also possible.




17

Wednesday, March 18, 15

In other words, no one has extended the channel formalism outside process boundaries (compare to Actors...), but channels are often used to handle blocking 1/0,
etc.




Wednesday, March 18, 15

The situation is broadly similar for Go.
Some items here are adapted from a private conversation with Alex Miller (@puredanger).



19

Wednesday, March 18, 15

Using this feature is almost always what you should do, because you have almost no other good
options.




20

Wednesday, March 18, 15

Since it’s not a distributed system, core async only needs to handle errors in a single process, but you still can have multiple
threads.




Time

Go Block

Put
Value Go Block

Get
Value

o

i~
Handle Exception
Exception

pA

Wednesday, March 18, 15

One possible scheme is to push exceptions back through the channel and let the initializing go block decide what to do. It might rethrow the
exception.




Time

Go Block

Go Block

Error
Channel
Get

Value

Go Block

Handle

Exception Exception

Py

Wednesday, March 18, 15

Another possible scheme is to send exceptions down a specialized error
channel.




Blocking
Channel

Timeout

23

Wednesday, March 18, 15




Wednesday, March 18, 15

I’ll look at C# examples, but all the Rx language implementations work similarly.



Async Observable
Event Stream

LINQ

Wednesday, March 18, 15



Wednesday, March 18, 15



OnError notification caught with a Catch
method.

e Switch to a second stream.

val stream = new Subject<MyType>();
val observer = stream.Catch(otherStream);

stream.OnNext(iteml) ;

stream.OnError (new UnhappyException(“error”));
// continue with otherStream.

Wednesday, March 18, 15

Adapted from http://www.introtorx.com/content/v1.0.10621.0/11_AdvancedErrorHandling.html
“observer” will watch for raised exceptions. If caught, it will switch to “otherStream”. OnNext and OnError generate events onto “stream”.




Variant for catching a specific exception,
with a function to construct a new

stream.

val stream = new Subject<MyType>();
val observer = stream.Catch<MyType, MyException>(
ex => [/*x create new MyType stream */);

stream.OnNext(iteml) ;

stream.OnError (new MyException(“error”));
// continue with generated stream.

Wednesday, March 18, 15

Adapted from http://www.introtorx.com/content/v1.0.10621.0/11_AdvancedErrorHandling.html
In this case, we only want to watch for MyException instances. The function is passed the caught exception “ex” and it must return a new stream of the same “MyType”.




29

Wednesday, March 18, 15
Adapted from http:




OnErrorResumeNext: Swallows
exception, continues with alternative
stream(s).

public static IObservable<TSource> OnErrorResumeNext<TSource> (
this IObservable<TSource> first,
IObservable<TSource> second) {...}

public static IObservable<TSource> OnErrorResumeNext<TSource> (
params IObservable<TSource>[] sources) {...}

Wednesday, March 18, 15

Adapted from http://www.introtorx.com/content/v1.0.10621.0/11_AdvancedErrorHandling.html
2 of the 3 variants.




Retry: Are some exceptions expected, e.q.,
/O “hiccups”. Keeps trying. Optional max
retries.

public static void RetrySample<T>(
TObservable<T> source)
{
source.Retry(4) // retry up to 4 times.
.Subscribe(t => Console.WritelLine(t));
Console.ReadKey () ;

¥

Wednesday, March 18, 15
Adapted from http://www.introtorx.com/content/v1.0.10621.0/11_AdvancedErrorHandling.html




Wednesday, March 18, 15

What CSP-derived and Rx concurrency systems do, they do well, but we need a larger strategy for reactive resiliency
at scale.

Before we consider such strategies, let’s discuss another technique.



Wednesday, March 18, 15

This is how we’ve always done it, right?



Wednesday, March 18, 15

Reactive Streams extend the capabilities of CSP channels and Rx by addressing flow control concerns.



Bounded or Unbounded Queue?

Consumer

Event/Data
Stream

consumer

Wednesday, March 18, 15

You want a queue in the middle of producer and consumer to buffer events and enable asynchrony, but should that
queue be bounded or unbounded? If unbounded, eventually, it will grow to exhaust memory. If bounded, what should
happen when it’s full? Should the producer just drop messages, block, crash...?




Bounded Queue

pressure

Consumer

Event/Data = 7l
Stream

< back_ _ Consumer

pressure

36

Wednesday, March 18, 15

The key element of reactive streams (over any others...) is the notion of back pressure, where the producer and
consumer coordinate on the rate of event delivery.



http://www.reactive-streams.org/
http://www.reactive-streams.org/

37

Wednesday, March 18, 15

Benefits of back
pressure.




38

Wednesday, March 18, 15

Clarification of an implementation
detail.




Wednesday, March 18, 15

This is how we’ve always done it, right?



Wednesday, March 18, 15

First, let’s at least be honest with the reader about what’s actually happening in blocks of code.



When code raises exceptions:

case class Order(
id: Long, cost: Money, items: Seq[(Int,SKU)])

object Order {

def parse(string: String): Try[Order] = Try {
val array = string.split("\t")
if (bad(array)) throw new ParseError(string)
new Order(...)

}
private def bad(array: Array[String]): Boolean = {...

;

-

Wednesday, March 18, 15

Idiomatic Scala for “defensive” parsing of incoming data as strings. Wrap the parsing and construction logic in a Try {...}. Note the capital T; this will construct a Try instance, either a subclass Success, if everything works, or
a Failure, if an exception is thrown.
See the github repo for this presentation for a complete example: https://github.com/deanwampler/Presentations




Latency? Use Futures

* Or equivalents, like go blocks.

case class Account(
id: Long, orderlIds: Seqg[Long])

def getAccount(id: Long): Future[Account] =
Future { /*x Web service, DB query, etc... *x/ }

def getOrders(ids: Seq[Long]): Future[Seq[Order]] =
Future { /*x Web service, DB query, etc... *x/ }

Wednesday, March 18, 15

See the github repo for this presentation for a complete example: https://github.com/deanwampler/
Presentations




Latency? Use Futures

* Or equivalents, like go blocks.

def ordersForAccount(accountlId: Long): Future[Seq[Order]] =
for {
account <- getAccount(accountld)
orders <- getOrders(account.orderlds)
} yield orders.toVector

-

Wednesday, March 18, 15

Futures can be sequenced “monadically”, so our code has a nice synchronous feel to it, but we can exploit async. execution. “yield” specifies what’s returned, which will actually be wrapped in another Future by the for
comprehension. We convert orders to a Vector (a kind of Seq), which is a very efficient data structure in Scala.
See the github repo for this presentation for a complete example: https://github.com/deanwampler/Presentations




Latency? Use Futures

* Or equivalents, like go blocks.

val accountId =
val ordersFuture = ordersForAccount(accountId)

ordersFuture.onSuccess {
case orders =>
println(s"#SaccountId: Sorders'")
¥
ordersFuture.onFailure {
case exception => println(s"#SaccountId: " +
"Failed to process orders: Sexception")

;

-

Wednesday, March 18, 15

See the github repo for this presentation for a complete example: https://github.com/deanwampler/
Presentations




Wednesday, March 18, 15

First, let’s at least be honest with the reader about what’s actually happening in blocks of code.



. Functional
- Reactive
2 Programming

Wednesday, March 18, 15

On the subject of type safety, let’s briefly discuss FRP. It was invented in the Haskell community, where there’s a
strong commitment to type safety as a tool for correctness.




Represent evolving state by time-varying
values.

Reactor.flow { reactor =>
val path = new Path(
(reactor.await(mouseDown) ) .position)
reactor. loopUntil(mouseUp) {
val m = reactor.awaitNext(mouseMove)
path.lineTo(m.position)
draw(path)

¥

path.close() From Deprecating the Observer

draw(path)
Pattern with Scala.React.

-

Wednesday, March 18, 15

Draw a line on a Ul from the initial point to the current mouse point, as the mouse moves.
This APl is from a research paper. | could have used EIm (FRP for JavaScript) or one of the Haskell FRP APIs (where FRP was pioneered), but this DSL is reasonably easy to understand.

Here, we have a stream of data points, so it resembles Rx in its concepts.


http://infoscience.epfl.ch/record/176887/files/DeprecatingObservers2012.pdf
http://infoscience.epfl.ch/record/176887/files/DeprecatingObservers2012.pdf
http://infoscience.epfl.ch/record/176887/files/DeprecatingObservers2012.pdf
http://infoscience.epfl.ch/record/176887/files/DeprecatingObservers2012.pdf

Wednesday, March 18, 15

True to its Haskell routes, FRP tries to use the type system to explicitly
http://dl.acm.org/citation.cfm?doid=1596550.1596558



http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/

Wednesday, March 18, 15

This is how we’ve always done it, right?



Actor Model




Send
a message

-~ ActorRef

Handle
a message

Mail box
(message
gueue)

Wednesday, March 18, 15

This is how they look in Akka, where there is a layer of indirection, the ActorRef, between actors. This helps with the drawback that actors know each other’s identities, but mostly it’s there to make the system more
resilient, where a failed actor can be restarted while keeping the same ActorRef that other actors hold on to.


http://akka.io
http://akka.io

Send
a message

-~ ActorRef

Handle
a message

Mail box
(message
gueue)

Wednesday, March 18, 15

This is how they look in Akka, where there is a layer of indirection, the ActorRef, between actors. This helps with the drawback that actors know each other’s identities, but mostly it’s there to make the system more
resilient, where a failed actor can be restarted while keeping the same ActorRef that other actors hold on to.



53

Wednesday, March 18, 15




54

Wednesday, March 18, 15




Wednesday, March 18, 15



Bounded,
Go Block Nonblocking Go Block

Channel
Put Get
Value Value

N=3

56

Wednesday, March 18, 15




Bounded,
Go Block Nonblocking Go Block

Channel
Put Get
Value Value

N=3

57

Wednesday, March 18, 15

In actors, the receiver doesn’t even need to be ready to receive messages
yet.




Wednesday, March 18, 15



Send

a message
————— _ ActorRef
Bounded,

Go Block Nonblocking Go Block
Channel

Actor

Handle
a message

Put Get Mail box
Value Value (message
gueue)

I
I
I
A

59

Wednesday, March 18, 15

In actors, the receiver doesn’t even need to be ready to receive messages
yet.




60

Wednesday, March 18, 15




61

Wednesday, March 18, 15




blocking
message

- -
P 4 -

-~ ~

-—_ aoas o

Reply

62

Wednesday, March 18, 15

Most actor systems provide a blocking message send primitive where the “thread” blocks until an answer message is
received.




Bounded,
Go Block Nonblocking Go Block

Channel
Put Get
Value Value

N=23

63

Wednesday, March 18, 15

In actors, the receiver doesn’t even need to be ready to receive messages
yet.




Erlang
and
Akka




65

Wednesday, March 18, 15

URL vs. URI?? See http://danielmiessler.com/study/
url_vs_uri/




Wednesday, March 18, 15



Wednesday, March 18, 15



Wednesday, March 18, 15




Wednesday, March 18, 15




Wednesday, March 18, 15




Wednesday, March 18, 15




Wednesday, March 18, 15




73

Wednesday, March 18, 15




Wednesday, March 18, 15



75

Wednesday, March 18, 15
From http://clojure.com/blog/2013/06/28/clojure-core-async-

channels.html




76

Wednesday, March 18, 15

Most of these are based on his toy example, not a production-calibre implementation.




77

Wednesday, March 18, 15




Wednesday, March 18, 15

The fact that Actors and CSP can be used to implement each other suggests that the criticisms are less than meets
the eye...



79

Wednesday, March 18, 15

In other words, ignore toy
examples.




Bounded Queue

pressure

Consumer

Event/Data = 2+ ¢
Stream

<« back_ _ Cconsumer

pressure

80

Wednesday, March 18, 15




81

Wednesday, March 18, 15




82

Wednesday, March 18, 15




83

Wednesday, March 18, 15




84

Wednesday, March 18, 15




85

Wednesday, March 18, 15




Wednesday, March 18, 15



Wednesday, March 18, 15

Not all concurrency problems require something as sweeping as an actor system with supervisors, but at a certain
scale, you’ll need some sort of separation between your recovery strategy and the normal processing logic.



Wednesday, March 18, 15



Wednesday, March 18, 15


https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix

90

Wednesday, March 18, 15




A#l A #2

Normal Error Normal Error

B #1 B #2

Normal Error Normal Error

A#l A #2 B #1 B #2

Normal Normal Normal Normal

Wednesday, March 18, 15

Removed duplicated error-handling logic also makes the normal logic processes smaller, so you can run more of
them, etc.




Wednesday, March 18, 15



93

Wednesday, March 18, 15




94

Wednesday, March 18, 15




95

Wednesday, March 18, 15




96

Wednesday, March 18, 15

| would include futures in the list of
derivatives.




97

Wednesday, March 18, 15




Wednesday, March 18, 15
7 1

Photos from Jantar Mantar (“instrument”, “calculation”), the astronomical observatory built in Jaipur, India, by Sawai Jai
Singh, a Rajput King, in the 1720s-30s. He built four others around India. This is the largest and best preserved.
All photos are copyright (C) 2012-2015, Dean Wampler. All Rights Reserved.


http://typesafe.com/reactive-big-data
http://typesafe.com/reactive-big-data
mailto:dean.wampler@typesafe.com?subject=Follow%20Up%20after%20Your%20Spark%20Workshop
mailto:dean.wampler@typesafe.com?subject=Follow%20Up%20after%20Your%20Spark%20Workshop
http://poloyglotprogramming.com/talks
http://poloyglotprogramming.com/talks

Wednesday, March 18, 15



Communicating
Sequential
Processes

Message passing
¢ via channels

Wednesday, March 18, 15

See
http://en.wikipedia.org/wiki/Communicating sequential processes
://clojure.com 28 /clojure-core-async-channels.html
blog.drewolson.org/blog/2013/07 clojure-core-dot-async-and-go-a-code-com

and other references in the “bonus” slides at the end of the deck. | also have some slides that describe the core
primitives of CSP that | won’t have time to cover.




Wednesday, March 18, 15

Hoare’s book on CSP, originally published in ’85 after CSP had been significantly evolved from the initial
programming language he defined in the 70’s to a theoretical model with a well-defined calculus by the mid 80’s
(with the help of other people, too). The book itself has been subsequently refined. The PDF is available for free.



Wednesday, March 18, 15

Modern treatment of CSP. Roscoe helped transform the original CSP language into its more rigorous, process algebra
form, which was influenced by Milner’s Calculus of Communicating Systems work. This book’s PDF is available free.
This treatment is perhaps more accessible than Hoare’s book.



Wednesday, March 18, 15



104

Wednesday, March 18, 15
A process communicates




105

Wednesday, March 18, 15




106

Wednesday, March 18, 15




107

Wednesday, March 18, 15




108

Wednesday, March 18, 15




109

Wednesday, March 18, 15




Wednesday, March 18, 15



Wednesday, March 18, 15

Lots of interesting practical ideas for combining functional programming and reactive approaches to class Domain-
Driven Design by Eric Evans.



Wednesday, March 18, 15

Hoare’s book on CSP, originally published in 85 after CSP had been significantly evolved from a programming
language to a theoretical model with a well-defined calculus. The book itself has been subsequently refined. The PDF
is available for free.



Wednesday, March 18, 15

Modern treatment of CSP. Roscoe helped transform the original CSP language into its more rigorous, process algebra
form, which was influenced by Milner’s Calculus of Communicating Systems work. This book’s PDF is available free.
The treatment is more accessible than Hoare’s book.



Wednesday, March 18, 15

A survey of theoretical models of distributed computing, starting with a summary of lambda calculus, then discussing
the pi, join, and ambient calculi. Also discusses the actor model. The treatment is somewhat dry and could use more
discussion of real-world implementations of these ideas, such as the Actor model in Erlang and Akka.



Wednesday, March 18, 15

Gul Agha was a grad student at MIT during the 80s and worked on the actor model with Hewitt and others. This book
is based on his dissertation.

It doesn’t discuss error handling, actor supervision, etc. as these concepts .

His thesis, http://dspace.mit.edu/handle/1721.1/6952, the basis for his book,http://mitpress.mit.edu/books/actors

See also Paper for a survey course with Rajesh Karmani, http://www.cs.ucla.edu/~palsberg/course/cs239/papers/
karmani-agha.pdf




Wednesday, March 18, 15

Survey of the classic graph traversal algorithms, algorithms for detecting failures in a cluster, leader election, etc.



Wednesday, March 18, 15

A less comprehensive and formal, but more intuitive approach to fundamental algorithms.



Wednesday, March 18, 15

Comprehensive and somewhat formal like Raynal’s book, but more focused on modeling common failures in real
systems.



Wednesday, March 18, 15

1992: Yes, “Reactive” isn’t new ;) This book is lays out a theoretical model for specifying and proving “reactive”
concurrent systems based on temporal logic. While its goal is to prevent logic errors, It doesn’t discuss handling
failures from environmental or other external causes in great depth.



Wednesday, March 18, 15

1988: Another treatment of concurrency using algebra. It’s not based on CSP, but it has similar constructs.



Wednesday, March 18, 15

A recent text that applies combinatorics (counting things) and topology (properties of geometric shapes) to the
analysis of distributed systems. Aims to be pragmatic for real-world scenarios, like networks and other physical
systems where failures are practical concerns.



Wednesday, March 18, 15

http://mitpress.mit.edu/books/engineering-safer-world
Farther afield, this book discusses safety concerns from a systems engineering perspective.




123

Wednesday, March 18, 15



http://blog.drewolson.org/blog/2013/07/04/clojure-core-dot-async-and-go-a-code-comparison/
http://blog.drewolson.org/blog/2013/07/04/clojure-core-dot-async-and-go-a-code-comparison/
http://blog.drewolson.org/blog/2013/07/04/clojure-core-dot-async-and-go-a-code-comparison/
http://blog.drewolson.org/blog/2013/07/04/clojure-core-dot-async-and-go-a-code-comparison/

