OREILLY"

Software
Architecture

ENGINEERING THE FUTURE OF SOFTWARE

Optimizing Uptime in SOA

by Matthew Barlocker
Chief Architect @ Lucid Software Inc

softwarearchitecturecon.com
#oreillysacon

“A distributed system is, at best, a necessary evil; evil
because of the extra complexity...

An application is rarely, If ever, intrinsically distributed.
Distribution Is just the lesser of the many evils, or
perhaps better put, a sensible engineering decision
given the trade-offs involved.”

-David Cheriton

#oreillysacon

Software Architecture

Distributed Systems

Local Functions are Deterministic

= Either the function returns or the server

shut down “‘My frontside bus falls
" No network hops for only 1 second every
" Avallability of libraries is guaranteed |If 27 8 hOUfS”

the server IS on
- 1O ONe ever

#oreillysacon Software Architecture

Distributed Systems are EVvil

" Network Fallure " Sick Server
- Dropped Packets - Thread starvation
- Corrupted Packets - Swapping
- Falled Router - Open file limit
- Traffic Spike - Application Monitoring went AWOL

- |diot with a shovel
" Service Not Running
- Deployment
- Troubleshooting
- Rogue Ops Member

O'REILLY

Software Architecture

#oreillysacon

Fallacies of Distributed Systems

The network is reliable.
Latency Is zero.
Bandwidth Is infinite.

The network Is secure.
Topology doesn't change.
There is one administrator.
Transport cost Is zero.

The network Is homogeneous.

#oreillysacon

RUSS/AN ROULETTE...

I MISSED FIVE TIMES
Q IN A ROW! I MUST BE

ON A LUCKY STREAK.

-

O'REILLY

Software Architecture

Distributed Systems have Good

" Separation of concern in the organization
" Fail independently

" Resource consumption

= Scaling profiles

" Code modularity

" Loose coupling

O'REILLY

#oreillysacon

Software Architecture

Lucid Software has SOA

Jobs

DLB

Chart Web

S3 Datq Stores

Mongo Shards

MySQL Shards

/

Chart Cake

Cloudfgont

ache cluster

Corporate

Y

N

Legacy DB ‘/‘

Manager

\

RDS Instances

Analytics Service

Admin2

Admin Console

Reporting Service

More Parts = More Fallures

O'REILLY

Software Architecture

#oreillysacon

More Parts = More Fallures

O'REILLY

Software Architecture

#oreillysacon

" Thread exhaustion

" Memory utilization

" File handle limits

" Database record locks

O'REILLY

Software Architecture

#oreillysacon

Uptime — What We Wish For

_99.999% 99.999%
— i
SEREES g Database 1
99.99999% - 99.999% 99.999%
Frontend)
Servers "'_ SemvicE g Database 3
_99.999% 99.999%
— -
SERTEES g Database 2

O'REILLY

Software Architecture

#oreillysacon

Uptime — What We Get

__99.9% 99.999%
~enaess ™ Database 1
99.9% * 99.7% * 99.4% = 99.0% _/\ |
99.0% ~_99./% 99.8%
Frontend :
Servers -'__ M ™| Database 3
_99.4% 99.6%
SonEE ™ Database 2

O'REILLY

Software Architecture

#oreillysacon

Strategies for Optimizing Uptime

" Tolerate Failures

Timeouts | | BUT THENTHIS GUY CLIMBED UP NO, HE IGNORED THEM.
- Retries SECURED THE BUILDING, AND | | THE VENTILATION DUCTS AND WALKED | | HE JUST RECONNECTEQD
f;Lﬂ‘ 'IHE Eﬂiﬂﬂmnﬂhl ACROSS BROKEN GLASS, KILLING THE CABLES WE CUT
- |[dempotence ANYONE WE SENT TO STOP HIM. MUTTERING SOMETHING
. . ABOUT “UPTIME",
" Sacrifice Consistency
- Caching

- Degraded Mode

\
éz K'nﬂ.ﬂl:: HE. RESCUED
THE HOSTAGESY

O'REILLY

#oreillysacon Software Architecture

OREILLY"

Software
Archltecture

FUTURE OF SOF

Tolerating Failures
“Just Like Mom”

softwarearchitecturecon.com
#oreillysacon

Timeouts - TCP

client server
gocket. bind, listen
socket | LISTEN {passive open)

connect (blocks) |

(active open) SYIN_SENT

ESTABLISHED

connect relums

<client forms request> |

write

read [blocks)

read retums

¢1¢sa;
factve close) FIN_WAIT_1 |

FIN_WAI I._Z

TIME_WAIT

#oreillysacon

accept (blocks)

| gk ACK LSSz U0

‘__..--———"_-_u_-_h

E——
| T ESTABLISHED

SYN_RCVD

accept relurms
read (blocks)

read reltums

|
| o 1ed prrsl
‘*-—mﬂﬂ‘—'ﬂf.ﬁ___i

=5OFINT eSS FI"l]'I'I'ﬂ""H'.FI-

Wwrite

read (blcks)

FIN M
i
| h{"'E |||,-1-I|I'I

CLOSE_WAIT (passive close)
read retums 0

FINN e ClOBe
_.______--—-—--“"' LAST_ACK
ACK N4

-_1___"""‘“‘-—-- CLOSED

O'REILLY

Software Architecture

Timeouts - TCP

Connection Timeout

client SECVEL
aocket, bind, listen

~ LISTEN {passive open)
socket accept (blocks)

~ connect [_hli'u:li:ij SYN [, MSg . 53¢
(active open) SYIN_SENT YT SYMN RCVD
|. & =
syN K, ACK 1, M5

ESTABLISHED -—""""

connect relums '———-——-.____‘_d'i:__l‘: K+]
E——
T | ESTABLISHED

accept relurms
read (blocks)

write data (regues
fest)
lr'.‘.:.“l [hlwmj _w* i .:_|_|;'] el urms

=5OFINT eSS FI"lII'I'ﬂ""H'.FI-

data (e V) write
read relhums i i i'l"'-!'-“-""t read (blocks)

ACK of pop)

closa FIN A
(active close) FIN_WAILT_]

CLOSE_WAIT (passive close)
ACK M+l read returms ()
FIN_WAIT_2

FINN et -:'_I:-.a.e |
TIME_WAIT I_‘________________— LAST_ACK

T——— ACK N+

. cLOSED

O'REILLY

#oreillysacon

Software Architecture

Timeouts - TCP

Lifetime Timeout

client server
aocket, bind, listen

~ LISTEN {passive open)
socket accept (blocks)

~ connect [_hli'u:li:ij SYN [, MSg . 53¢
(active open) SYIN_SENT YT SYMN RCVD
|. & =
syN K, ACK 1, M5

ESTABLISHED -—""""

connect relums '———-——-.____‘_d'i:_!‘: K+1
e

accept relurms
read (blocks)

write data (regues
fest)
lr'.‘.:.“l [hlwmj _w* i .:_|_|;'] el urms

=5OFINT eSS FI"lII'I'ﬂ""H'.FI-

<client forms requests

data (e V) Wwrite

read relhums i i i'l"'-!'-“-""t read (blocks)

ACK of pop)

closa FIN A
(active close) FIN_WAILT_]

CLOSE_WAIT (passive close)
ACK M+l read returms ()
FIN_WAIT_2

FINN et -:'_I:-.a.e |
TIME_WAIT " LAST_ACK
T ——— ACK N+

. cLOSED

O'REILLY

#oreillysacon

Software Architecture

Timeouts - TCP

client

socket |
connect [(blocks)

(active open) SYN_SENT ""“--——-__________
E N Q= l,-I-H.'l'

ESTABLISHED --«—-*F"““

connect relums -l'———-——..___;_'ﬂli:_'l{ K+l
Read TI meo Ut <client forms request> | | I——

server

gocket, bind, listen
LISTEN {passive open)
accept (blocks)

SYN_RCVD

ESTABLISHED
accept relurms

wEite '_WW*

read [blocks)
i

iﬁmeMM
read relurms » of pequest

read [DICKS)

read reltums
CECFINT PrOCESSes Fejiesis

Wwrite

read (blcks)

Read timeout resets ATK of rep]
“-————-1___1
after each read. | e —

Chunked responses |

I close | .
rarely get timed out (active close) FIN.WAILT 1| FIN M
on reads. /@
FIN WAL I'_E:
NN
TIME_WAIT .._.——-——-"'"'"_'_'
ACK N4+]

-—_-__—-_—__-‘h"—-—-n

#oreillysacon

CLOSE_WAIT (passive close)
read retums 0

cloga

LAST_ACK

CLOSED

O'REILLY

Software Architecture

The Reason to use Timeouts

" |s NOT to limit I/O walt time

" |Is NOT to catch theoretical upper bounds

" |Is NOT to be a cool unused feature

" |Is NOT to be a last resort for user response time

BUT DILBERTS .1 YOU CAN
CRUEL INVENTION BE MY

WILL MAKE FUEL DISPOSABLE
UNNECESSARY. NOW o EVIL

MY LIFE HAS

NO PURPOSE!

MY DREAM WAS TO
SOMEDAY DECOMPOSE

AND BECOME FOSSIL

www.dilbert.com scottadams®@aol.com

O'REILLY

#oreillysacon

Software Architecture

The reason to use timeouts Is to increase uptime

by failing fast and allowing retries, caching, and degraded modes.

#oreillysacon

Software Architecture

Timeout Statistics

— Around the World (in ms)

Oregon 59.21

California 74.74 185.85
Ireland 76.14 85.81
Brazil 123.53 1089.09
Australia 220.27 339.97

#oreillysacon

68.28 68.96 74.44 86.76
83.47 82.1 9.28 92.75 102.03 111.31
76.36 76.31 0.22 76.58 76.8 77.02
124.04 123.75 8.59 132.63 141.22 149.81
240.99 240.5 9.69 250.68 2060.37 270.06

O'REILLY

Software Architecture

Timeout Statistics - In the Data Center (in ms)

us-east-
1c

us-east-
1c

us-east-
le

us-east-
le

us-east-
1d

us-east-
1d

us-east-
le

us-east-
1d

us-east-
1c

us-east-
1d

us-east-
1c

us-east-
le

#oreillysacon

1.39

0.41

0.71

1.4

0.71

8.21

6.84

4.86

8.93

6.9

1.47

0.5

0.76

1.58

0.83

1.45

0.5

0.75

1.52

0.81

0.21

0.17

0.17

0.44

0.34

O'REILLY

1.68

0.67

0.93

2.02

1.17

1.89

0.84

1.1

2.46

1.51

2.1

1.01

1.27

2.9

1.85

Software Architecture

Timeout Comparison on Healthy Service

" Low Timeout Version " High Timeout Version
- 3ms TCP connect timeout - 3000ms TCP connect timeout
- 100ms TCP read timeout - 10000ms TCP read timeout
- 1 Immediate retry - 1 Immediate retry
" Timeline " Timeline
- Oms — Make request to service - Oms — Make request to service
- Ims — TCP connection established - Ims — TCP connection established
- 51ms — Data returned from service - 51ms — Data returned from service

Both versions are the same when the service Is healthy

O'REILLY

Software Architecture

#oreillysacon

Timeout Comparison with a Dropped Packet

" Low Timeout Version " High Timeout Version
- 3ms TCP connect timeout - 3000ms TCP connect timeout
- 100ms TCP read timeout - 10000ms TCP read timeout
- 1 Immediate retry - 1 Immediate retry
" Timeline " Timeline
- Oms — Make request to service - Oms — Make request to service
- 3ms — Make request to service - 1000ms — TCP retransmits packet
- 4ms — TCP connection established - 1001ms — TCP connection established
- 54ms — Data returned from service - 1051ms — Data returned from service

With a dropped packet, low timeouts provide 95% speedup

O'REILLY

Software Architecture

#oreillysacon

Timeout Comparison with Sick Server

" Low Timeout Version " High Timeout Version
- 3ms TCP connect timeout - 3000ms TCP connect timeout
- 100ms TCP read timeout - 10000ms TCP read timeout
- 1 Immediate retry - 1 Immediate retry
" Timeline " Timeline
- Oms — Make request to service - Oms — Make request to service
- Ims — TCP connection established - Ims — TCP connection established
- 101ms — Make request 2 to service - 1001ms — Make request 2 to service
- 102ms — TCP connection established - 1002ms — TCP connection established
- 152ms — Data returned from service - 1052ms — Data returned from service

With a sick server, low timeouts provide 86% speedup

O'REILLY

#oreillysacon

Software Architecture

Timeout Comparison with Network Hiccup

" Low Timeout Version " High Timeout Version
- 3ms TCP connect timeout - 3000ms TCP connect timeout
- 100ms TCP read timeout - 10000ms TCP read timeout
- 1 Immediate retry - 1 Immediate retry
" Timeline " Timeline
- Oms — Make request to service - Oms — Make request to service
- 3ms — Make request 2 to service - 4ms — TCP connection established
- 4ms — TCP connection established - 54ms — Data returned from service

- 54ms — Data returned from service

With a network hiccup, there iIs no difference.

O'REILLY

Software Architecture

#oreillysacon

Timeouts are worthless without retries, caching, or
some other recovery method.

#oreillysacon

Software Architecture

Retries

LICK CLICK CLICK

CK CLICK CLicY
K CLICK —) £
JCK o l\ F_I;E-ue-ﬂu:sn'hued |\
CL‘ }|' El?fﬁifﬂhm
T =
LA 555 C L ||\ =

WL \

_LICK/ZoCRELICK C

W mriovensteincom

#oreillysacon

Software Architecture

Retry Logic can Depend on Scenario

" Retry
- HTTP 5XX server errors
- TCP connection timeouts
" Don't Retry
- HTTP 4XX request errors
" You Decide
- TCP read timeout
- HTTP 2XX successes with unrecognizable or unparsable body

O'REILLY

#oreillysacon Software Architecture

Retrying Introduces Solvable Problems

#oreillysacon

Retrying Introduces Solvable Problems

#oreillysacon

Retrying Introduces Solvable Problems

#oreillysacon

Retrying Introduces Solvable Problems

#oreillysacon

Retrying Introduces Solvable Problems

#oreillysacon

Retrying Introduces Solvable Problems

#oreillysacon

Retrying can Corrupt Data

Bank Transaction with Retries " Transferring money between bank accounts
L.:n;,nr \ p— " Registering a user
TronsPer $3.00 from # -m_#.;n) " Add a block to a document
|7#| s 100, 3. e mmj " Delete 10 oldest users on account
F@ m@j] " Replace current API credentials

Tromsfer 3300 from # +o #é")l

=

Tronster $3.00 from # +o #‘é«).

Lﬁﬂ has $600, #3 has iﬂm}l

Eﬁ has 400, #3 has ﬁeo;:]

o =

www.websequencediagrams.com

O'REILLY

Software Architecture

#oreillysacon

ldempotence IS the property of certain operations

IN mathematics and computer science, that can be

applied multiple times without changing the result
beyond the Initial application.

#oreillysacon

Software Architecture

OREILLY"

Software
Archltecture

FUTURE OF SOF

Sacrificing Consistency
“Just Like Dad”

softwarearchitecturecon.com
#oreillysacon

CAP Theorem

" Consistency — all nodes see the same data at
the same time.

" Avallability — all client requests will get a

response.
. _ Avallability
" Partition Tolerance — the system continues
despite message loss or partial system failure.
Impossible

Partition

Consistency Tolerance

O'REILLY

#oreillysacon Software Architecture

‘Partitions are rare, there Is little reason to forfeit

consistency or availability when the system Is not

partitioned.... the choice between consistency and

avallability can occur many times within the same
system at very fine granularity”

-Eric Brewer

#oreillysacon

Software Architecture

Effective Cache Locations

" HTTP cache on client (memory and/or disk)

- Hit rate scales poorly +
MAN, YOURE BEING IN(ONSISTENT
- Fast responses WITH YOUR ARRAY INDICES. SOME
| ARE FROM ONE, S50ME. FrRoM ZERD.
" HTTP cache between client and server DIFFERENT TASKs CALL FOR AT WHAT?
. . | DIFFERENT CONVENTIONS. TO '
- Another service that can cascade failure QUOTE STANFORD ALGOR ITHAYS WELL, THATS WHAT HE
.. . . EXPERT DONALD KNUTH, SAID WHEN | ASKED
- Prevents access to origin during failure " JHO ARE you? HOW 3 Him ABOUT IT.
- High hit rate YOU GET IN MY HOUSE? /
= Well-known cache off to the side
- Another service that can fall
- High hit rate

O'REILLY

Software Architecture

#oreillysacon

Effective Caching Strategies

" Respect caching headers from server
- Allows server to determine consistency
- Mitigates fewer failures
" Prefer origin, fallback to respected cache
- Always consistent
- Sometimes unavailable
" Store responses until overwritten, prefer origin
- Always consistent unless availability would be sacrificed
- Sometimes unavailable

O'REILLY

#oreillysacon Software Architecture

Sometimes, the origin Is down and the cache Is empty.
You will need a failsafe.

#oreillysacon

Software Architecture

Degraded Mode

" Show default options

Glve temporary access T SPEND MOSTOF MY UFE | | BUT TODAY, THE PATTERN

PRESSING BUTTONS TO MAKE | | OF LIGHTS 15 AL LROMG!
THE PATTERN OF LIGHTS
CHANGE HOWEVER T WANT.

YOU KNOW THIS METAL

" Lock out features RECTANGLE FULL OF
UTTLE LIGHTS?

" Create a new account
= Assume the best
= Assume the worst

" It's your application,
you decide!

O'REILLY

#oreillysacon Software Architecture

OREILLY"

Software
Archltecture

FUTURE OF SOF

Lucid Software
On Avallabllity

softwarearchitecturecon.com
#oreillysacon

Lucid Software's Service Calls

Grow ExcepticD
A
No

Geturn CacheD
A
Yes

Fallback
? <
Cached- No Available? Yes Return Fallback
MAX No
Call Service
Service Thread
N Coy 0.1 Healthy? Yes Available?
Retry++
) A

71\ NO T\

2+

4

Sleep(2-retry + splay)
—Yes Can Retry? No Success?

No Yes
 J

Throw Exception

Yes

l

Make Call

l

Update Health

Cache Response

Return
Response

OREILLY"

Software
Archltecture

FUTURE OF SOF

Questions
Survey @ http://goo.gl/VDmCrt

softwarearchitecturecon.com
#oreillysacon

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

