
Optimizing Uptime in SOA
by Matthew Barlocker

Chief Architect @ Lucid Software Inc

“A distributed system is, at best, a necessary evil; evil
because of the extra complexity...

An application is rarely, if ever, intrinsically distributed.
Distribution is just the lesser of the many evils, or

perhaps better put, a sensible engineering decision
given the trade-offs involved.”

-David Cheriton

Distributed Systems

Local Functions are Deterministic

 Either the function returns or the server
shut down

 No network hops

 Availability of libraries is guaranteed if
the server is on

“My frontside bus fails
for only 1 second every

27.8 hours”
- no one ever

Distributed Systems are Evil

 Network Failure

- Dropped Packets

- Corrupted Packets

- Failed Router

- Traffic Spike

- Idiot with a shovel

 Service Not Running

- Deployment

- Troubleshooting

- Rogue Ops Member

 Sick Server

- Thread starvation

- Swapping

- Open file limit

- Application Monitoring went AWOL

Fallacies of Distributed Systems

 The network is reliable.

 Latency is zero.

 Bandwidth is infinite.

 The network is secure.

 Topology doesn't change.

 There is one administrator.

 Transport cost is zero.

 The network is homogeneous.

Distributed Systems have Good

 Separation of concern in the organization

 Fail independently

 Resource consumption

 Scaling profiles

 Code modularity

 Loose coupling

Lucid Software has SOA

More Parts = More Failures

More Parts = More Failures

The Domino Effect
 Thread exhaustion

 Memory utilization

 File handle limits

 Database record locks

Uptime – What We Wish For

Uptime – What We Get

Strategies for Optimizing Uptime

 Tolerate Failures

- Timeouts

- Retries

- Idempotence

 Sacrifice Consistency

- Caching

- Degraded Mode

Tolerating Failures
“Just Like Mom”

Timeouts - TCP

Timeouts - TCP
Connection Timeout

Timeouts - TCP
Lifetime Timeout

Timeouts - TCP

Read timeout resets
after each read.
Chunked responses
rarely get timed out
on reads.

Read Timeout

The Reason to use Timeouts

 Is NOT to limit I/O wait time

 Is NOT to catch theoretical upper bounds

 Is NOT to be a cool unused feature

 Is NOT to be a last resort for user response time

The reason to use timeouts is to increase uptime
by failing fast and allowing retries, caching, and degraded modes.

Timeout Statistics – Around the World (in ms)
From Virginia

To:
Min Max Avg Median Std Dev. 84.00% 97.50% 99.85%

Oregon 59.21 166 68.28 68.96 6.16 74.44 80.6 86.76

California 74.74 185.85 83.47 82.1 9.28 92.75 102.03 111.31

Ireland 76.14 85.81 76.36 76.31 0.22 76.58 76.8 77.02

Brazil 123.53 1089.09 124.04 123.75 8.59 132.63 141.22 149.81

Australia 220.27 339.97 240.99 240.5 9.69 250.68 260.37 270.06

Timeout Statistics – In the Data Center (in ms)
From To Min Max Average Median Std Dev. 84.00% 97.50% 99.85%

us-east-
1c

us-east-
1e

0.4 7.35 0.51 0.49 0.25 0.76 1.01 1.26

us-east-
1c

us-east-
1d

1.39 8.21 1.47 1.45 0.21 1.68 1.89 2.1

us-east-
1e

us-east-
1c

0.41 6.84 0.5 0.5 0.17 0.67 0.84 1.01

us-east-
1e

us-east-
1d

0.71 4.86 0.76 0.75 0.17 0.93 1.1 1.27

us-east-
1d

us-east-
1c

1.4 8.93 1.58 1.52 0.44 2.02 2.46 2.9

us-east-
1d

us-east-
1e

0.71 6.9 0.83 0.81 0.34 1.17 1.51 1.85

Timeout Comparison on Healthy Service
 Low Timeout Version

- 3ms TCP connect timeout

- 100ms TCP read timeout

- 1 Immediate retry

 Timeline

- 0ms – Make request to service

- 1ms – TCP connection established

- 51ms – Data returned from service

 High Timeout Version

- 3000ms TCP connect timeout

- 10000ms TCP read timeout

- 1 Immediate retry

 Timeline

- 0ms – Make request to service

- 1ms – TCP connection established

- 51ms – Data returned from service

Both versions are the same when the service is healthy

Timeout Comparison with a Dropped Packet
 Low Timeout Version

- 3ms TCP connect timeout

- 100ms TCP read timeout

- 1 Immediate retry

 Timeline

- 0ms – Make request to service

- 3ms – Make request to service

- 4ms – TCP connection established

- 54ms – Data returned from service

 High Timeout Version

- 3000ms TCP connect timeout

- 10000ms TCP read timeout

- 1 Immediate retry

 Timeline

- 0ms – Make request to service

- 1000ms – TCP retransmits packet

- 1001ms – TCP connection established

- 1051ms – Data returned from service

With a dropped packet, low timeouts provide 95% speedup

Timeout Comparison with Sick Server
 Low Timeout Version

- 3ms TCP connect timeout

- 100ms TCP read timeout

- 1 Immediate retry

 Timeline

- 0ms – Make request to service

- 1ms – TCP connection established

- 101ms – Make request 2 to service

- 102ms – TCP connection established

- 152ms – Data returned from service

 High Timeout Version

- 3000ms TCP connect timeout

- 10000ms TCP read timeout

- 1 Immediate retry

 Timeline

- 0ms – Make request to service

- 1ms – TCP connection established

- 1001ms – Make request 2 to service

- 1002ms – TCP connection established

- 1052ms – Data returned from service

With a sick server, low timeouts provide 86% speedup

Timeout Comparison with Network Hiccup
 Low Timeout Version

- 3ms TCP connect timeout

- 100ms TCP read timeout

- 1 Immediate retry

 Timeline

- 0ms – Make request to service

- 3ms – Make request 2 to service

- 4ms – TCP connection established

- 54ms – Data returned from service

 High Timeout Version

- 3000ms TCP connect timeout

- 10000ms TCP read timeout

- 1 Immediate retry

 Timeline

- 0ms – Make request to service

- 4ms – TCP connection established

- 54ms – Data returned from service

With a network hiccup, there is no difference.

Timeouts are worthless without retries, caching, or
some other recovery method.

Retries

Retry Logic can Depend on Scenario
 Retry

- HTTP 5XX server errors

- TCP connection timeouts

 Don't Retry

- HTTP 4XX request errors

 You Decide

- TCP read timeout

- HTTP 2XX successes with unrecognizable or unparsable body

Retrying Introduces Solvable Problems
Low Timeouts Exponential

backoff
Thread pools Splay Logging &

Stats

Denial of
service

Stampede
effect

Resource
starvation

User visible
slowness

Once in a blue
moon errors

Retrying Introduces Solvable Problems
Low Timeouts Exponential

backoff
Thread pools Splay Logging &

Stats

Denial of
service X

Stampede
effect

Resource
starvation

User visible
slowness

Once in a blue
moon errors

Retrying Introduces Solvable Problems
Low Timeouts Exponential

backoff
Thread pools Splay Logging &

Stats

Denial of
service X

Stampede
effect X

Resource
starvation

User visible
slowness

Once in a blue
moon errors

Retrying Introduces Solvable Problems
Low Timeouts Exponential

backoff
Thread pools Splay Logging &

Stats

Denial of
service X

Stampede
effect X

Resource
starvation X X

User visible
slowness

Once in a blue
moon errors

Retrying Introduces Solvable Problems
Low Timeouts Exponential

backoff
Thread pools Splay Logging &

Stats

Denial of
service X

Stampede
effect X

Resource
starvation X X

User visible
slowness X X

Once in a blue
moon errors

Retrying Introduces Solvable Problems
Low Timeouts Exponential

backoff
Thread pools Splay Logging &

Stats

Denial of
service X

Stampede
effect X

Resource
starvation X X

User visible
slowness X X

Once in a blue
moon errors X

Retrying can Corrupt Data
 Transferring money between bank accounts

 Registering a user

 Add a block to a document

 Delete 10 oldest users on account

 Replace current API credentials

 ...

Idempotence is the property of certain operations
in mathematics and computer science, that can be
applied multiple times without changing the result

beyond the initial application.

Sacrificing Consistency
“Just Like Dad”

CAP Theorem

 Consistency – all nodes see the same data at
the same time.

 Availability – all client requests will get a
response.

 Partition Tolerance – the system continues
despite message loss or partial system failure.

“Partitions are rare, there is little reason to forfeit
consistency or availability when the system is not
partitioned.... the choice between consistency and
availability can occur many times within the same

system at very fine granularity”

-Eric Brewer

Effective Cache Locations
 HTTP cache on client (memory and/or disk)

- Hit rate scales poorly

- Fast responses

 HTTP cache between client and server

- Another service that can cascade failure

- Prevents access to origin during failure

- High hit rate

 Well-known cache off to the side

- Another service that can fail

- High hit rate

Effective Caching Strategies
 Respect caching headers from server

- Allows server to determine consistency

- Mitigates fewer failures

 Prefer origin, fallback to respected cache

- Always consistent

- Sometimes unavailable

 Store responses until overwritten, prefer origin

- Always consistent unless availability would be sacrificed

- Sometimes unavailable

Sometimes, the origin is down and the cache is empty.
You will need a failsafe.

Degraded Mode
 Show default options

 Give temporary access

 Lock out features

 Create a new account

 Assume the best

 Assume the worst

 It's your application,
you decide!

Lucid Software
On Availability

Lucid Software's Service Calls

Questions
Survey @ http://goo.gl/VDmCrt

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

