
1

Reactive Systems:
The Why and the How

Dean	
 Wampler,	
 Ph.D.
Typesafe

©Typesafe 2014-2015, All Rights Reserved

Wednesday, March 18, 15

Photos from Colorado, Sept. 2014.
All photos are copyright (C) 2000-2015, Dean Wampler, except where otherwise noted. All Rights Reserved.

2

dean.wampler@typesafe.com
polyglotprogramming.com/talks

@deanwampler

Wednesday, March 18, 15

http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920033073.do
http://shop.oreilly.com/product/0636920033073.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do

Typesafe
Reactive Big Data

3

typesafe.com/reactive-big-data

Wednesday, March 18, 15

This is my role. We’re now rolling out commercial support for Spark in non-Hadoop environments and we have other
projects in the works. Talk to me if you’re interested in what we’re doing.

http://typesafe.com/reactive-big-data
http://typesafe.com/reactive-big-data

4

Later today:

Wednesday, March 18, 15

This talk is a general overview of Reactive concepts. I’m going to dive into the “Resilient” trait in more detail later
today.

Motivation:

5

eCommerce

Wednesday, March 18, 15

Let’s motivate the notion of “reactive” systems by exploring some common scenarios we see today.

Cyber Monday?

6

Wednesday, March 18, 15

Your online store needs to scale up and down with demand. It needs to degrade gracefully if some service
components are lost or disconnected by a network partition. For example, if the canonical catalog “disappears”
behind a network partition, it’s probably better to continue selling with a stale local copy.
photo: Amazon home page, http://amazon.com.

On demand?

7

Wednesday, March 18, 15

Netflix has extreme scale challenges, but they have become an innovator in building highly resilient, scalable services.
What happens when a new season of “House of Cards” is released? Spikes in traffic?
photo: Netflix home page, http://netflix.com.

Motivation:

8

Internet of Things

Wednesday, March 18, 15

Internet of Things has several categories of applications, each of which has needs that motivate reactive
programming.

9

Medical Devices,
IT Systems
Phone home:
•Upload data

•Usage patterns
•Predictive diagnostics

•Fetch patches
Wednesday, March 18, 15

Medical devices upload test results (e.g., ultrasound images and video) to servers. Med. devices and IT systems send
requests for automated updates, send the equivalent of “click-stream” data used to assess usability, etc., and
increasingly send metrics used to predict potential HW failures or other service needs.
ultrasound photo: http://www.usa.philips.com/healthcare-product/HC795054/hd11-xe-ultrasound-system
switch photo: http://networklessons.com/switching/introduction-to-vtp-vlan-trunking-protocol/

10

Medical Devices,
IT Systems
Characteristics:
•Stable to intermittent

network connectivity
•One way and two way
•Mixed bandwidth

Wednesday, March 18, 15

A mobile scanner might move in and out of WiFi zones, so caching data is necessary. IT appliances are (hopefully)
always online. Some data is one way, like diagnostic info for predictive analytics, while data uploads and patch
requests need acknowledgements. Bandwidth can vary.

11

Aircraft Engines

Phone home:
•Upload telemetry

•Predictive diagnostics
•Redundant tracking data!

Wednesday, March 18, 15

Each engine collects 0.5-1TB of data per flight. Most is currently tossed! Our only clue about the final resting place of
Malaysian Airlines Flight 370 was engine telemetry picked up by satellites and used to analyze possible routes.

12

Trucks, Farm
Equipment
GPS Tracking:
•Optimize routing,

fuel use, etc.
•Spy on drivers?
•Per plant tracking!

Wednesday, March 18, 15

Track data to optimize routing, minimize fuel use with shortest path and/or delivering heaviest items first. Ensure
drivers are obeying the rules of the road and company policies. Some farm equipment planting, watering, and
fertilizing gear now tracks data per plant!
UPS truck photo: http://en.wikipedia.org/wiki/United_Parcel_Service
Planter/seeder photo: http://www.deere.com/en_US/products/equipment/planting_and_seeding_equipment/
planting_and_seeding_equipment.page?

13

Trucks, Farm
Equipment
Connectivity:
•Always along roads
•Intermittent on

farms (WiFi in
barns?)

Wednesday, March 18, 15

Some rural areas don’t have sufficient wireless data coverage for farm equipment to remain to online full time.

14

Remote Sensors

Human to Real-time
Responsiveness:
•Earthquake, nuclear test

sensor networks.
•Climate change monitoring

Wednesday, March 18, 15

For earthquake sensor networks, you want to get the information to emergency services and community alarm
systems in milliseconds.
photo: http://www.iris.edu/hq/programs/gsn

15

Remote Sensors

Characteristics:
•Redundant sensors
•Low-latency connections
•Low-bandwidth

requirements
Wednesday, March 18, 15

This requires redundant sensors, always on connectivity, and low-latency connections. The amount of data isn’t large.
Some networks, like monitoring rainfall or glaciers for climate change studies, might be offline except for once-per-
year downloads done onsite!

16

Robotics

Connectivity:
•Two-way, but time

of flight matters!
•Autonomous?

Wednesday, March 18, 15

Some rural areas don’t have sufficient wireless data coverage for farm robots to remain to online full time. The one-
way time of flight between Earth and Mars is ~8 minutes.
Quadcopter photo: http://www.dji.com/product/phantom
Mars rover photo: http://en.wikipedia.org/wiki/Mars_Exploration_Rover

17

Health Monitoring

Characteristics:
•Occasional to always-on

connectivity
•Detect health emergencies:

call for help?
Wednesday, March 18, 15

Health monitoring tools are most popular for gathering activity data and some vital signs for analysis later. Some
monitors are designed to detect medical emergencies and call for help when needed.
photo: http://www.fitbit.com/force

18

Home Automation

Characteristics:
•ToD packet storms
•Fire & break-in detection:

automatic notification of
authorities

Wednesday, March 18, 15

These systems are subject to time of day packet storms, e.g., while everyone in a given time zone is waking up or
going to bed.
photo: https://store.nest.com/product/thermostat/

19

Reactive Systems

Wednesday, March 18, 15

The idea of Reactive Systems emerged to catalog several universally common characteristics of the systems we have
to build to support these scenarios, without over-specifying how these characteristics are satisfied.

2020

Message
Driven

ResilientElastic

Responsive

Wednesday, March 18, 15

The four characteristics or traits of Reactive Systems... as articulated by the Reactive Manifesto, which attempts to
codify lessons learned across many projects, industries, and years building highly available, scalable, and reliable
systems.

Message
Driven

ResilientElastic

Responsive

21

Wednesday, March 18, 15

The four characteristics of Reactive Systems... as articulated by the Reactive Manifesto, which attempts to codify
lessons learned across many projects, industries, and years building highly available, scalable, and reliable systems.

22

Myths

Wednesday, March 18, 15

Before discussing them in detail, let’s slay some myths.

23

Myths

“This is new.”

Wednesday, March 18, 15

The RM attempts to codify lessons learned over many years in many scenarios. It’s not new. It doesn’t claim to be
new.

24

Myths
“This is

Typesafe marketing.”
Wednesday, March 18, 15

While Typesafe’s Jonas Bonér was one of the originators of the RM, other originators and contributions include
experts in many companies and specialties.

Message
Driven

ResilientElastic

Responsive

25

Wednesday, March 18, 15

26

Requests or commands
require timely responses.

ResilientElastic

Responsive

Wednesday, March 18, 15

What does it mean if a service you rely on fails to respond to requests for service?

27

Responsive

Wednesday, March 18, 15

28

Cornerstone of
usability and utility.

Responsive

Wednesday, March 18, 15

29

Requires rapid
detection of errors

and quick responses.

Responsive

Wednesday, March 18, 15

30

Requires predictable
response times

and quality of service.

Responsive

Wednesday, March 18, 15

31

Requires planned
graceful degradation

of service.

Responsive

Wednesday, March 18, 15

You should plan in advance what level of service you’ll provide if (or better, when) certain failure scenarios arise.

32

Awareness of time
is first class.

Responsive

Wednesday, March 18, 15

You have to be a clock watcher of sorts.

Example:
Netflix Simian Army

33

Wednesday, March 18, 15

For each trait, I’ll cite some good examples of adding the trait. Image from http://devops.com/features/netflix-the-
simian-army-and-the-culture-of-freedom-and-responsibility/

Clobber services, servers,
even data centers

in production,
to verify service continuity.

34

Wednesday, March 18, 15

Message
Driven

ResilientElastic

Responsive

35

Wednesday, March 18, 15

36

Recovers
from errors

Message
Driven

ResilientElastic

Responsive

Wednesday, March 18, 15

Truly resilient systems must treat failures as routine, in some sense of the word, because they are inevitable when
the systems are big enough and run long enough.

37

Resilient

Wednesday, March 18, 15

38

Resilient

Failure is
not disruptive.

Wednesday, March 18, 15

39

Resilient

Failure is
expected.

Wednesday, March 18, 15

40

Resilient

So, failure must be
first class.

Wednesday, March 18, 15

A normal part of your domain model, implementation, etc.

41

Resilient

Requires replication,
containment, isolation,

and delegation.
Wednesday, March 18, 15

Replication - other copies (data and services) replaced lost copies.
Containment and isolation - firewalls stop disaster from spreading.
Delegation - indirection to allow new copies to step into “holes”.

42

Resilient

Requires separation between
normal control flow
and error handling.

Wednesday, March 18, 15

We’ll see an example of what I mean.

Example:
Failure-handling
in Actor Systems

43

Wednesday, March 18, 15

The Netflix Simian Army could also be cited here.
We’ll come back and fill in details of Actor systems shortly. For now, let’s focus on error handling.

44

Let it Crash!

Wednesday, March 18, 15

Rather than attempt to recover from errors inside the domain logic (e.g., elaborate exception handling), allow
services to fail, but with failure detection and reconstruction of those services, plus failover to other replicas.

Actors

45

Mail box
(message

queue)

Handle
a message

ActorRef

Send
a message

Actor Actor

Wednesday, March 18, 15

Actors are similar to objects in Smalltalk and similar, message-passing systems; autonomous agents with defined
boundaries that communicate through message passing. Actors, though process each message in a threadsafe way,
so they are great for concurrency. (This diagram illustrates the Akka implementation - http://akka.io)

46

Erlang introduced supervisors. A
hierarchy of actors that manage each
“worker” actor’s lifecycle.

Supervisor 1

Actor 12

Actor 111 Actor 112

Supervisor 11

Actor 131 Actor 132

Supervisor 1

Actor 13

Wednesday, March 18, 15

There are lots of so-called Actor systems, but be wary of them unless they have this sophisticated supervision model
or something like it (even though the original Actor model of Hewitt, et al., didn’t include supervision like this...).

47

Generalizes nicely to distributed actor
systems.

Supervisor 1

Actor 12

Actor 111 Actor 112

Supervisor 11

Actor 131 Actor 132

Supervisor 1

Actor 13

Wednesday, March 18, 15

Uniform abstraction when the lines cross process and machine boundaries.

Supervisor 1

Actor 12

Actor 111 Actor 112

Supervisor 11

Actor 131 Actor 132

Supervisor 1

Actor 13

48

X

Wednesday, March 18, 15

An actor dies. This one has children, too.

49

Supervisor 1

Actor 12

Actor 111 Actor 112

Supervisor 11

Wednesday, March 18, 15

The supervisor tears down the tree of dependent actors, then...

50

Actor 131 Actor 132

Supervisor 1

Actor 13

Supervisor 1

Actor 12

Actor 111 Actor 112

Supervisor 11

Wednesday, March 18, 15

... it reconstructs it.

The most
sophisticated error recovery

in reactive systems.

51

Wednesday, March 18, 15

I discuss this in more depth in my afternoon talk.

Clean separation
of normal processing

from recovery.

52

Wednesday, March 18, 15

Very important at scale. Exception handling is too limited for large-scale recovery and mixing error handling with
normal logic complicates code.

Not using Actors?
Consider Hystrix

from Netflix or similar...

53

https://github.com/Netflix/Hystrix

Wednesday, March 18, 15

I believe every environment must solve this problem one way or another.

https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix

Message
Driven

ResilientElastic

Responsive

54

Wednesday, March 18, 15

55

Scale up
and down

Message
Driven

ResilientElastic

Responsive

Wednesday, March 18, 15

As demand rises and falls, you must gracefully scale up to meet increasing demand and scale down to conserve
resources.

56

Elastic

Wednesday, March 18, 15

57

Elastic

Detect changing
input patterns.

Wednesday, March 18, 15

Not as trivial as it might sound. Just how big is this spike going to be? When do I pull the trigger to grow or shrink
resources? Machine learning is sometimes used to predict when to change based on past experience.

58

Elastic

Automatically
adjust services.

Wednesday, March 18, 15

Human intervention has to be minimal for this to really work.

59

Elastic

Scale across
commodity hardware.

Wednesday, March 18, 15

Typically you use redundant services again, across commodity (interchangeable) hardware.

60

Elastic

No bottlenecks
or contention points.

Wednesday, March 18, 15

61

Elastic

To scale down, must be able
 to drain services from nodes.

Wednesday, March 18, 15

So, harder if the nodes hold data!

62

Elastic

Wednesday, March 18, 15

“Concurrent” vs. “parallel”.

Message
Driven

ResilientElastic

Responsive

63

Wednesday, March 18, 15

64

To react, you must
be message driven.

Message
Driven

ResilientElastic

Wednesday, March 18, 15

To be responsive to the world around you, you must interact with it through messages.

Message
Driven

65

Wednesday, March 18, 15

66

Asynchronous
message passing.

Message
Driven

Wednesday, March 18, 15

It can’t be command and control. Blocking while waiting for a response fails to scale. (See Amdahl’s Law)

67

Defines boundaries,
promotes loose coupling

and isolation.

Message
Driven

Wednesday, March 18, 15

Clear separation between components (whether or not the messages cross process boundaries), which encourages
effective decomposition into focused services that are isolated from each other and loosely coupled.

68

 Promotes location transparency.

Message
Driven

Wednesday, March 18, 15

Source and receiver can change, so services can be migrated to adapt to changing load dynamics.

69

Handle errors as messages.

Message
Driven

Wednesday, March 18, 15

Also, you can use the same message infrastructure to communicate error scenarios as well as normal processing.

70

 Promotes global management
and flow control

through back pressure.

Message
Driven

Wednesday, March 18, 15

Think of the messages as forming a stream. If a common implementation infrastructure is used, it’s possible to
monitor and manage traffic flow. Back pressure is the idea of communication between sender and receiver to control
the rate of flow. We’ll return to it.

Reactive Extensions (Rx)

71

Wednesday, March 18, 15

Pioneered by Erik Meijer for .NET. Now ported to several languages, including RxJava (Netflix) and React (JS -
Facebook).

LINQ Rx

72

Observable

LINQ

filter …map

Async
Event Stream

Schedulers

Wednesday, March 18, 15

Events are observed (an extension of the observer pattern). Operations like filtering and mapping are provided to
work with the stream through LINQ (Language Integrated Query), which uses SQL-like expressions. The Schedulers
are used to trigger processing.

Events pushed to system.

73

Wednesday, March 18, 15

It’s essentially a push model.

FP/SQL-like
query semantics to
manipulate events.

74

Wednesday, March 18, 15

75

How: Reactive Tools

Wednesday, March 18, 15

We mentioned a few already, let’s fill in some details. This won’t be an exhaustive list.
Hat tip to Jamie Allen at Typesafe for some of these ideas.

How: Reactive Tools

76

•Functional Programming
•Distributed Computing “Laws”
•Software Transactional Mem.
•Event Loops

Wednesday, March 18, 15

We mentioned a few already, let’s fill in some details. This won’t be an exhaustive list.

How: Reactive Tools

77

•CSP
•Futures
•Actors - Erlang or Akka
•Rx and variants
•Reactive Streams

Wednesday, March 18, 15

CSP - Communicating Sequential Processes.

Functional Programming

78

Wednesday, March 18, 15

Functional Programming

79

 Prefer immutable values and
side-effect free functions...

Wednesday, March 18, 15

Functional Programming

80

 ... because they eliminate the
problems of multithreading.

Wednesday, March 18, 15

Why, because all the problems are caused by attempting to coordinate access to shared,mutable state. If the state is
no longer mutable, then it’s trivial to share. There are many other advantages of FP.

Functional Programming

81

Objects - suitable for modules.
Functions - for everything else.

Wednesday, March 18, 15

This is Scala’s view, that objects are useful as module constructs, but the code inside should be functional.

Architecture Side Note:

82

The biggest mistake
of OOP was the idea that

we should faithfully model
the world in code.

Wednesday, March 18, 15

Controversial, but I believe much of our code bloat and inflexibility is actually caused by this mistaken belief.
Example: Does a payroll calculator need the concepts of Pay, Deductions, etc.? Or should we just stream numbers
through math logic?

Distributed Computing

83

Wednesday, March 18, 15

84

 Need to be asynchronous
and nonblocking,

avoid locks.

Distributed Computing

Wednesday, March 18, 15

Messaging passing should be asynchronous. Any expensive calculation should be executed async, too, so main
threads are not blocked. There are many lock-free algorithms and datastructures now. Locks kill scalability and they
are hard to program correctly.

85

Serializability (order) and
Linearizability (change history

results in same order?).
CRDTs, Lattices.

Distributed Computing

Wednesday, March 18, 15

CRDTs - Commutative Replicated Data Types (http://pagesperso-systeme.lip6.fr/Marc.Shapiro/papers/RR-6956.pdf)
Lattices are more general concept applied here.

86

Software Transactional
Memory

Wednesday, March 18, 15

Popularized first in Hardware, then in Software by Haskell. Now used in persistent datastructures in many languages.
Great description of STM by Simon Peyton-Jones, from the O’Reilly Book Beautiful Code, http://
research.microsoft.com/en-us/um/people/simonpj/papers/stm/#beautiful

87

Basically, ACID
without the D.

Software Transactional
Memory

Wednesday, March 18, 15

88

Principled local state
mutation through transactions.

Software Transactional
Memory

Wednesday, March 18, 15

89

Limited scalability,
no distribution.

Software Transactional
Memory

Wednesday, March 18, 15

A very powerful tool for avoiding local locks and unprincipled mutation, but not a tool that scales to the global
challenges we’re discussing here.

90

Event Loops

Wednesday, March 18, 15

The standard technique for message/event driven programming. Usually pull based, for something that loops
continuously pulling events off a queue, or push based with callbacks.

91

Loop continuously on a thread,
pull an event on each pass.

Event Loops

Wednesday, March 18, 15

Consumes a thread, which can limit scalability. The event handler must not take too long or the queue can either
grow to exhaust available memory (unbounded) or drop events (bounded).

92

Callbacks invoked when
an event is pushed to it.

Event Loops

Wednesday, March 18, 15

Can use threads more efficiently, but callback hell is sometimes a problem.

93

No global
error handling strategy.

Event Loops

Wednesday, March 18, 15

Many of these systems don’t provide facilities for distribution or error recovery.

94

CSP

Communicating Sequential Processes

Wednesday, March 18, 15

Communicating Sequential Processes - The first mathematical model of distributed computing. It has evolved
somewhat and it’s still popular in Clojure and Go, for example.

95

Decouple sender and receiver
via a channel.

Can be sync. or async.
Not typically distributed...

CSP

Wednesday, March 18, 15

Great abstraction for coordinating exchange of data, with a level of abstraction, the channel. Not really a scalable
distributed system in the general sense.

96

CSP
Get
Value

Put
Value

Blocking
Channel

Get
Value

Put
Value

Bounded,
Nonblocking

Channel

N = 3

Wednesday, March 18, 15

Schematic view of simple CSP interactions. If the channel queue has one slot, then it’s blocking; the “putter” wait for a
“getter” to be on the other side. If there are >1 slots, the putter won’t block unless all the slots are full. See my talk
on error handling in reactive systems where I discuss CSP in more detail. (I’ll discuss CSP vs. Actors in more depth in
my other talk.)

97

Futures

Wednesday, March 18, 15

Fill more or less the same niche as CSP. That is, most Futures and CSP systems cover the same scope of concurrency
control, which is somewhat fine-grained as opposed to strategic.

98

Run logic asynchronously.

Futures

Apply map, flatMap, etc.
to the results.

Wednesday, March 18, 15

Like using the UNIX shell to fire a process in the background, but you either define callbacks to handle the success or
failure (a more procedure-oriented approach) or use functional operations like map, etc. to process the results on
success.

99

Run logic asynchronously.

Futures

Or use callbacks
and error handlers.

Wednesday, March 18, 15

Like using the UNIX shell to fire a process in the background, but you either define callbacks to handle the success or
failure (a more procedure-oriented approach) or use functional operations like map, etc. to process the results on
success.

Actor Systems

100

Let it Crash!

Wednesday, March 18, 15

We briefly visited this before.
Rather than attempt to recover from errors inside the domain logic (e.g., elaborate exception handling), allow
services to fail, but with failure detection and reconstruction of those services, plus failover to other replicas.

101

Mail box
(message

queue)

Handle
a message

ActorRef

Send
a message

Actor Actor

Wednesday, March 18, 15

Actors are similar to objects in Smalltalk and similar systems; autonomous agents with defined boundaries that
communicate through message passing. Actors, though process each message in a threadsafe way, so they are great
for concurrency. (This diagram illustrates the Akka implementation - http://akka.io)

102

Actor Systems

Pioneered by Hewitt, et al. 1973.
Made popular by Erlang,

which introduced Supervision.

Wednesday, March 18, 15

Erlang is a simple language with actor semantics baked in. It has been used to create extremely reliable telecom
switches, databases (e.g., Riak), and other services (e.g., GitHub).

103

Actor Systems

Distribution is a
natural extension.

Wednesday, March 18, 15

Erlang is a simple language with actor semantics baked in. It has been used to create extremely reliable telecom
switches, databases (e.g., Riak), and other services (e.g., GitHub).

Supervisor 1

Actor 12

Actor 111 Actor 112

Supervisor 11

Actor 131 Actor 132

Supervisor 1

Actor 13

104

X

Wednesday, March 18, 15

105

Supervisor 1

Actor 12

Actor 111 Actor 112

Supervisor 11

Wednesday, March 18, 15

106

Actor 131 Actor 132

Supervisor 1

Actor 13

Supervisor 1

Actor 12

Actor 111 Actor 112

Supervisor 11

Wednesday, March 18, 15

The most
sophisticated error recovery

in reactive systems.

107

Wednesday, March 18, 15

Again, I’ll discuss this in some more depth in my other talk.

Clean separation
of normal processing

from recovery.

108

Wednesday, March 18, 15

State mutation “firewalls”.
Supports location transparency.

109

Wednesday, March 18, 15

Reactive Extensions (Rx)

110

Wednesday, March 18, 15

Pioneered by Erik Meijer for .NET. Now ported to several languages, including RxJava (Netflix) and React (JS -
Facebook).

LINQ Rx

111

Observable

LINQ

filter …map

Async
Event Stream

Schedulers

Wednesday, March 18, 15

Events are observed (an extension of the observer pattern). Operations like filtering and mapping are provided to
work with the stream through LINQ (Language Integrated Query), which uses SQL-like expressions. The Schedulers
are used to trigger processing.

Events pushed to system.

112

Wednesday, March 18, 15

It’s essentially a push model.

FP/SQL-like
query semantics to
manipulate events.

113

Wednesday, March 18, 15

Combines Iterator and
Observer into Observable.

Stream oriented.
114

Rx

Wednesday, March 18, 15

I didn’t mention this before.

Need to add your own
fault-tolerance model.

115

Rx

Wednesday, March 18, 15

Reactive Streams

116

reactive-streams.org

Wednesday, March 18, 15

A standard with many implementations for streaming systems with truly “reactive” behavior.
photo: Bridge Creek, North Cascades National Park, Washington State (not Colorado ;)

http://reactive-streams.org/
http://reactive-streams.org/

117

Ev
en

t

Ev
en

t

Ev
en

t

Ev
en

t

Ev
en

t

Ev
en

tEvent/Data
Stream

Consumer

Consumerfeedback

feedback

feedback

Wednesday, March 18, 15

A stream of events from some upstream producer to one or more downstream consumers. Typically, queues are used
for buffering, since for asynchrony the production and consumption can’t be in lock step, that is synchronized! But
what happens if the queue is unbounded? Or bounded? That’s where the feedback comes in.

Unbounded queues
eventually exhaust

 the heap.
118

Reactive Streams

Wednesday, March 18, 15

Any rare, low-probability event will eventually happen for a system that’s big enough or runs long enough. Any
unbounded queue will eventually grow to consume all memory.

Bounded queues cause
blocking or arbitrary
dropping of events.

119

Reactive Streams

Wednesday, March 18, 15

Bounded queues avoid heap exhaustion, but force arbitrary dropping of events or blocking.

Solution: Back pressure
where the producer and

consumer negotiate.
120

Reactive Streams

Wednesday, March 18, 15

Back pressure, where the producer and consumer negotiate the flow rate dynamically, is the only way to avoid these
scenarios.

Back pressure
allows strategic
management of

event flows.
121

Reactive Streams

Wednesday, March 18, 15

With a system using backpressure for all flows, it’s possible to add global flow control and also strategically decide
when you must drop events or take other action.

Logical evolution of Rx.
More focus on possibly-
infinite streams of data.

122

Reactive Streams

Wednesday, March 18, 15

Like Rx, RS uses functional transformations to manipulate the data. It puts slightly more emphasis on the idea of
streams (possibly infinite) rather than an event loop.

Akka Streams:
a higher-level abstraction

implemented with
Akka Actors.

123

Reactive Streams

Wednesday, March 18, 15

We’re realizing that Actors are a low-level primitive and Actor systems can become unwieldy. Typesafe thinks that
higher-level abstractions, like reactive streams, implemented on low-level concurrency systems, like Actors, will be
the way to go for most future systems. Other implementations of RS include RxJava.

Recap

124

Wednesday, March 18, 15

125

 Four required properties
for highly-available, resilient,

and scalable services:

Wednesday, March 18, 15

126

Message
Driven

ResilientElastic

Responsive

Wednesday, March 18, 15

http://typesafe.com/reactive-big-data
dean.wampler@typesafe.com

©Typesafe 2014-2015, All Rights Reserved

Wednesday, March 18, 15

http://typesafe.com/reactive-big-data
http://typesafe.com/reactive-big-data
mailto:dean.wampler@typesafe.com?subject=Follow%20Up%20after%20Your%20Spark%20Workshop
mailto:dean.wampler@typesafe.com?subject=Follow%20Up%20after%20Your%20Spark%20Workshop
mailto:dean.wampler@typesafe.com?subject=Follow%20Up%20after%20Your%20Spark%20Workshop
mailto:dean.wampler@typesafe.com?subject=Follow%20Up%20after%20Your%20Spark%20Workshop

References

128

Wednesday, March 18, 15

See also links earlier in the presentation.

129

Wednesday, March 18, 15

Lots of interesting practical ideas for combining functional programming and reactive approaches to class Domain-
Driven Design by Eric Evans.

130

Wednesday, March 18, 15

Hoare’s book on CSP, originally published in ’85 after CSP had been significantly evolved from a programming
language to a theoretical model with a well-defined calculus. The book itself has been subsequently refined. The PDF
is available for free.

131

Wednesday, March 18, 15

Modern treatment of CSP. Roscoe helped transform the original CSP language into its more rigorous, process algebra
form, which was influenced by Milner’s Calculus of Communicating Systems work. This book’s PDF is available free.
The treatment is more accessible than Hoare’s book.

132

Wednesday, March 18, 15

A survey of theoretical models of distributed computing, starting with a summary of lambda calculus, then discussing
the pi, join, and ambient calculi. Also discusses the actor model. The treatment is somewhat dry and could use more
discussion of real-world implementations of these ideas, such as the Actor model in Erlang and Akka.

133

Wednesday, March 18, 15

Gul Agha was a grad student at MIT during the 80s and worked on the actor model with Hewitt and others. This book
is based on his dissertation.
It doesn’t discuss error handling, actor supervision, etc. as these concepts .

His thesis, http://dspace.mit.edu/handle/1721.1/6952, the basis for his book,http://mitpress.mit.edu/books/actors

See also Paper for a survey course with Rajesh Karmani, http://www.cs.ucla.edu/~palsberg/course/cs239/papers/
karmani-agha.pdf

134

Wednesday, March 18, 15

Survey of the classic graph traversal algorithms, algorithms for detecting failures in a cluster, leader election, etc.

135

Wednesday, March 18, 15

 A less comprehensive and formal, but more intuitive approach to fundamental algorithms.

136

Wednesday, March 18, 15

Comprehensive and somewhat formal like Raynal’s book, but more focused on modeling common failures in real
systems.

137

Wednesday, March 18, 15

1992: Yes, “Reactive” isn’t new ;) This book is lays out a theoretical model for specifying and proving “reactive”
concurrent systems based on temporal logic. While its goal is to prevent logic errors, It doesn’t discuss handling
failures from environmental or other external causes in great depth.

138

Wednesday, March 18, 15

1988: Another treatment of concurrency using algebra. It’s not based on CSP, but it has similar constructs.

139

Wednesday, March 18, 15

A recent text that applies combinatorics (counting things) and topology (properties of geometric shapes) to the
analysis of distributed systems. Aims to be pragmatic for real-world scenarios, like networks and other physical
systems where failures are practical concerns.

140

Wednesday, March 18, 15

http://mitpress.mit.edu/books/engineering-safer-world
Farther afield, this book discusses safety concerns from a systems engineering perspective.

