

Rewriting a Plugin Architecture 3 Times
to Harness the API Economy

A couple of Atlassians who are passionate about plugins

Tim Pettersen
Developer Provocateur

@kannonboy

Ian Buchanan
Developer Partisan

@devpartisan

API
Economy

Economy

$50,000,000
*Paid to ISVs to date.

*2011. http://techcrunch.com/2012/04/24/facebook-revenue-share-apps/

15,000,000 paying
users

http://techcrunch.com/2012/04/24/facebook-revenue-share-apps/

$1,000,000,000
*Paid to ISVs in 2013. http://www.partner-path.com/2013/12/salesforce-partner-ecosystem/

http://www.partner-path.com/2013/12/salesforce-partner-ecosystem/

Blue log
os?

REST? OAuth?

API
EconomySPI

API Applicati
on

Program
ming

Interface

SPI Service

Provider

Interface

Atlassian
Plugins
(2004)

P2
(2008)

Atlassian
Connect

(2014)

Atlassian
Plugins
(2004)

Open(-ish)
Source
[2001]

Why it’s awesome!
Customers can “scratch their own itch”

Atlassian devs can focus on the 90%

Customization == stickier product

Devs who customize, evangelize

Why it sucks..

Developer support load

Poor plugin UX == poor product
perception

Pain to build the entire product

Massive barrier to upgrade

Atlassian
Plugins
(2004)

JIRA 3.0

How?

Wherever there is a collection of
type FOO, let the end user inject

their own implementations of FOO.

“Web fragments”

 Home
 Browse Project
 <!-- … -->
 Administration

interface WebItem {
 String getHref();
 String getText();
}

class FooWebLink implements WebItem {

}

 public String getHref() {
 return “http://foo.com”;
 }

 public String getText() {
 return “Foo”;
 }

List<WebItem> getModules()

PluginAccessor

 Home
 Browse Project
 <!-- … -->
 Administration

 <% for (WebItem wi : pluginAccessor.getModules()) { %>

 <a href=“<% wi.getHref() %>”>
 <% wi.getText() %>

 <% } %>

Plugins promote abstraction and enforce
modular architecture!

Two plugins
looks great!

3+ plugins.. not
so hot.

Every (pluggable) collection is now potentially
infinitely large.

List<WebItem> getModules()List<Type> getModules(Type)

PluginAccessor

public void transitionIssue(Issue issue, Transition tn) {

 // update issue state
 // ..

 // send email to watchers
 for (User watcher : issue.getWatchers()) {
 issue.emailTo(watcher);
 }

}

public void transitionIssue(Issue issue, Transition tn) {
 // update issue state
 // ..
}

public static interface PostFn {
 void onTransition(Issue issue);
}

public class EmailFn implements PostFn {
 public void onTransition(issue) {
 for (User watcher : issue.getWatchers()) {
 issue.emailTo(watcher);
 }
 }
}

public void transitionIssue(Issue issue, Transition tn) {
 // update issue state
 // ..
 // trigger post functions
 for (PostFn fn : pluginAccessor.get(PostFn.class)) {
 fn.onTransition(issue);
 }
}

public class EmailFn implements PostFn {
 public void onTransition(issue) {
 for (User watcher : issue.getWatchers()) {
 issue.emailTo(watcher);
 }
 }
}

Adding a new “plugin point” is easy if you
already have good abstraction!

You SHOULD make “pluginizing” a feature
as simple & quick as possible. Otherwise if
there’s a crunch for time, it won’t happen.

Spike it Make it
work Test itAdd an

API / SPI Ship it

 for (PostFn fn : pluginAccessor.get(PostFn.class)) {
 fn.onTransition(issue);
 }

ArithmeticException

StackOverflowEr
ror

while (true) {}

OutOfMemoryErro
r

ClassNotFoundException

ClassCastExcept
ion

Murphy’s law:
If a plugin can fail, it will.
Horrifically.

 for (PostFn fn : pluginAccessor.get(PostFn.class)) {

 fn.onTransition(issue);

 }

Code defensively

try {

} catch (Exception e) {
 log.error(“Plugin post-function failed”, e);
}

log.debug(“Invoking ” + fn);

Corollary:
If an API is public, it will be used.
Often incorrectly.

 public void publicApiMethod(List<?> list)

 ..
 }

Show them the way

 if (list == null) throw new NullPointerException(
 “list must not be null”
);

 if (list.isEmpty()) throw new IllegalArgumentException(
 “list must not be empty”
));

/**
 * @param list a non-null, non-empty list
 */

Backend
• Custom fields
• JQL functions
• Workflows (post-functions, conditions)

generic

• Servlets
• Filters
• Event listeners

https://bitbucket.org/atlassian/atlassian-plugins

Source (BSD 3-clause licensed)

Embedding Guide

http://bit.ly/embedding-plugins

Atlassian Plugins

http://bit.ly/embedding-plugins

• Host application exposes some “plugin point”
interfaces

public static interface PostFn {
 void onTransition(Issue issue);
}

• Plugin developer provides concrete implementations
public class EmailFn implements PostFn {
 // send email to watchers
 for (User watcher : issue.getWatchers()) {
 issue.emailTo(watcher);
 }
}

How it works (1 of 3)

• Plugin developer adds an XML descriptor (remember
it’s 2004)

<post-function class=“com.foo.EmailFn” weight=“10” />

• Developer packages up the class and XML in a JAR
and puts it on the classpath

atlassian-jira/WEB-INF/lib/my-cool-plugin-1.0.jar/

How it works (2 of 3)

atlassian-plugin.xml

com/foo/EmailFn.class

• On startup, plugin system parses the XML and
instantiates classes with Spring DI

• The PluginAccessor is injected into other
components and used to look up modules.

• Because the class path is static, the PluginAccessor
caches plugins very aggressively.

How it works (3 of 3)

commons-
lang.jar

atlassian-
jira.jar

plugin0.jar plugin1.jar

WEB-INF/lib

interface
com.atlassian.PostFn

class
com.foo.EmailFn

implements

my-cool-
lib.jar

Why it’s awesome!
Easier customization by end-users

Smoother upgrades

Improved customization UX

Architectural benefits

Simple to implement

Why it sucks..

Totally bespoke, non-standard

Need to restart to install plugins

No API delineation

Shared classpath

Re-architecting as plugins

a bunch of
work

Dogfooding APIs?

product

manager

“PM friendly” benefits!
Release plugins out of band

Ship “dark features”

Customers can turn stuff off

Release paid plugins ($$$)

Architecture == velocity

Make sure your plugin
system works.

Nothing turns off a plugin developer like
a broken API or an unstable platform.

P2
(2008)

P2
(2008)

Why plugins suck..

Totally bespoke, non-standard

Need to restart to install plugins

No API delineation

Shared classpath

OSGi

commons-
lang.jar

atlassian-
jira.jar

plugin0.jar plugin1.jar

WEB-INF/lib

my-cool-
lib.jar

commons-
lang-3.1.jar

atlassian-
jira.jar

WEB-INF/lib

Export-Package:
com.atlassian.jira;version=“5.0”,
org.apache;version=“3.1”,
…

MANIFEST.MF

Import-Package:
com.atlassian.jira;version=“5.0”,

MANIFEST.MF

Export-Package:
org.apache;version=“3.3”

plugin1.jar

Import-Package:
org.apache;version=“3.3”

MANIFEST.MF

my-cool-
lib.jar

plugin0.jar

commons-
lang-3.3.jar

Why it sucks..

Totally bespoke, non-standard

Need to restart to install plugins

No API delineation

Shared classpath

Why it sucks..

OSGi is pretty
complicated

175Kb of text

JIRA Agile’s
MANIFEST.MF

P1 P2
<post-function class=“com.foo.EmailFn”
 weight=“10” />

public class EmailFn implements PostFn {..}

+
=

a working plugin

<post-function class=“com.foo.EmailFn”
 weight=“10” />

public class EmailFn implements PostFn {..}

Import-Package:
com.atlassian.jira;version=“5.0”,
Export-Package:
org.apache;version=“3.3”

<component>
..

</component>

+
+

+

=
a working plugin

… maybe

Abstracting OSGi and a few
other things..()

C nsPr s
• Less upgrade pain
• Easy onboarding for

new users

• Startup time
• Leaky abstraction
• Non-standard use

of standard tech
• Proxies all the way

down
• Complexities

Was it
worth it?

Probably.

Supporting
your ecosystem

Photo: Nicholas A. Tonelli

Good for devs!
Paint-by-numbers marketing

Pricing & licensing APIs

Feedback

Tracking & analytics

Good for customers!
Central authority for add-ons

Less fragmented UX

Ratings & reviews

Unified billing

Focus shifts from user to
vendor customization

Building a marketplace is
non-trivial

Tim’s top tip for dev docs

Keep your documentation as close to
the code as possible.

Bind the code..

..to the docs!

master feature

Write the
docs

Code talks!

Make sure you have a simple process
for open sourcing and liberally
licensing example add-ons.

Meta-Developer Tools

Photo: Biser Todorov

SDK
Fully automate plugin ALM

Spin up products in “developer mode”

Tight development loop

Provide realistic test data

Dogfood it! FR
EE

/stash/projects

/stash/rest/api/1.0/projects

/stash/rest/api/1.0/projects

/stash/projects

?web.panels&web.items/stash/projects

?web.panels&web.items/stash/projects

Developer Mode
Trim out dev speed killers (websudo, etc)

Expose logs & debug info

Release your own internal
productivity tools

Add in custom “dev mode” plugins

(2014)

What is Atlassian Connect?
Remote Plugins

REST API

• Drive the product via its REST API

WebHooks

• Receive notifications from the product via WebHooks

• Inject content into the product UI via iframes

UI

Atlassian  
Product

Plugin
Service

Add-ons

Why?
Atlassian Cloud (SaaS)

Run 3rd party code out-of-process

Improved customization UX (yet again)

Architectural benefits

• Connect is a new layer on
top of the older plugin
model.

• Same Marketplace serves
up Connect plugins.

• Same plugins still available
in the Marketplace.

• Same REST APIs still
available for both Server
and Cloud.

• Connect adds a new mode
of integration.

Building up

http://housebeauty.net/dressy-modern-townhouse-design-with-rooftop-garden-and-glass-walls/eye-catching-green-
roofed-penthouse-apartment-rooftop-garden-with-deck-surrounded-by-glass-balustrades/#image-1

How?

Wherever a module is called,  
let a third-party inject a new feature.

remember web fragm
ents

AC WebPanel

AC IssueTab

• Declare plugin with a descriptor.

• Extend the Atlassian application UI with modules.

• Request appropriate scopes.

• Recognize the user.

• Call the Atlassian application's REST API.

• Respond to the Atlassian application's webhooks.

• Register on the Atlassian Marketplace.

• Respect plugin licensing.

How to author a Connect Plugin

"name": "Hello World", "description": "…",
"key": "com.example.myaddon", "apiVersion": 1,
"baseUrl": "http://example.com/myaddon",
"modules": {
 "generalPages": [{
 "name": { "value": "Greeting" }, "key": "hello-world",
 "location": "system.top.navigation.bar",
 "url": "/helloworld.html"
 }]
},
"scopes": ["read", "write"],
"authentication": { "type": "jwt" },
"lifecycle": { "installed": "/add-on-installed-callback" }

where it is hosted
which modules it uses

which scopes it needs
recognize the user

Example Scopes for JIRA

PROJECT_ADMIN

DELETEWRITE

ADMIN

READ

GET /myaddon?jwt=<jwt-token> http/1.1

POST /jira/rest/api/2/issue/AC-1/attachments http/1.1
Authorization: JWT <jwt-token>

Recognizing the user with JWT

Example REST API for Confluence

• URLs for resources

• HTTP verbs

• Parmeters filter collections

• JSON data

• HAL(ish) links (newer APIs)

Example JIRA WebHooks

• HTTP callback to a URL

• Filtered by JQL

• When specific event occurs

"modules": {
 "webhooks": [{
 "event": "jira:issue_created",
 "url": "/issue-created"
 }]
}

Register on the Atlassian Marketplace

• Find: in context
catalog of add-ons

• Try: manage leads

• Buy: manage sales
and licensing

• Vagrant Box for local development

• JSON descriptor validator

• JWT decoder

• Marketplace wizard to create a
Connect listing

• Access Token model for private plugins

• Webhook Inspector

Developer Tools for Atlassian Connect

C nsPr s
• Code in any language
• Use any build & dev

tools
• Use anything:

databases, search
indexes, caching
services, etc

• Host and scale a
service

• No automated
devloop (P2 SDK)

• Provide everything:
databases, search
indexes, caching
services, etc

Why it’s awesome!
BYOS (Bring your own stack)

More services, than products

Sandboxing

UI Design

Aligned with microservice thinking

Why it sucks..

Complex to troubleshoot

Harder to create concrete examples

More developer tools, not just docs

More interfaces must be stable

Remember
SPIs?

P1

open(ish) source

P2

What’s Next?
Consolidate and expand

Vendor
add-on

• Extend Bitbucket and HipChat

• Build complex vertical apps: powered by Atlassian

• Build integrations between Atlassian applications

Atlassian
add-on

Questions?

A couple of Atlassians who are passionate about plugins

Tim Pettersen
Developer Provocateur

@kannonboy

Ian Buchanan
Developer Partisan

@devpartisan

