
Taming the Cowboys

or:

How to Save a Doomed Project by

Refactoring it

bronstee.com
the source site O'Reilly Software Architecture Conference

March 19, 2015, Boston, MA

Ghica van Emde Boas
emdeboas@bronstee.com

Content
• The project

• Why was it a good project

• Why was it bad software

• Why not redevelop

• Refactoring challenges

• Questions and discussion

2
#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 2

Why me?

3
#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 3

• It was my gray hair and my knowledge of PHP and MySQL,

which brought me into this project.

• There are not too many of those, the project manager said,

who was asking for my help to review the project.

• My CV:
o 30 years with IBM, Relational Database development, Large Java Frameworks,

Software Architect.

o Founded Bronstee.com, Consultant for IBM SanFrancisco (Java Framework).

o Employed by: QAD, Backbase.

o Wrote books about PHP, MySQL (in Dutch), and the Backbase JavaScript

framework.

The School for which the Software
was Developed

• A vocational college in the southern part of the

Netherlands.

• The college is a merger of 23 schools.

• > 20,000 students in total, budget €120,000,000

• You can learn to become a baker, hairdresser, carpenter,

cook, plumber, and so on.

• In 3 of these schools they had introduced new web-based

software.

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 4

The Project: Planning & Scores (P&S)
• Software where a web-interface allowed students

and teachers to view or enter the information
relevant to them about:
o Attendance of the students,

o Their schedules,

o Notes from teachers,

o Their grades and study progress,

o And so on.

• The college wanted to roll out the software to the
other schools and add more functionality.

• The software: MySQL database, PHP backend.

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 5

>> Registration of Attendance

Let’s look at some Functionality

6>> Individual Schedule of Classes

>> Study Results

The Subject is Complex…

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 7

COLO

OWP

Cohort

BOL

Competence
matrix

LLB

CEF

MBO

Intake

OER

Project Architecture

Fronter
(Single Sign-on)

PeopleSoft-CS
(Names, Addresses) P&S

XML SSO

Education
content

XML

GP-Untis
(Time Schedule)

XML

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 8

o Time registration
hard- and software.

• The project was conceived as a web-interface to

various other software:

The Good Parts

• The functionality of the prototype was exactly what
the school wanted.

• There was a strong advocate within the school. He
was also the designer of the functionality.

• The project manager was on good terms with the
highest management in the school, while he could
talk about technical stuff to the developers and IT-
staff.

• The young programmers were passionate about
getting things done.

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 9

Why was the Software Bad?

• No structure, such as model- view- controller.

• Lots of copy-paste code.

• No objects, no classes.

• No normalization of the database.

• There were 800 separate calls to the database.

• No attention to security issues.

• No testing.

• No code versioning management.

• No development procedures.

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 10

I did a review and then I was asked to help

execute the recommendations:

 Make a functional description and a data model. 

 Normalize the database. 

 Implement test procedures , automated if possible. 

 Implement code versioning. 

 Implement Bug tracking. 

 Restructure the code into modules with object-oriented
interfaces. 

Ghica van Emde Boas, Bronstee.com – March 19, 2015 #oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 11

Main Requirements

1. Roll-out the software to all 23 schools

2. Make the software and the database

secure

3. Migrate from MySQL to Oracle

4. Many functional enhancements

No interruption for existing users!

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 12

Questions to Consider

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 13

Given this project, do you think that you would

have taken the job?

Maybe you will change your mind during the

talk…

 Look at the refactoring approach we took.

Specifically for the conversion Oracle…

What would you do differently?

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 14http://xkcd.com/844/

• It was clear that restructuring

would cause a rewrite of the code.

• With inexperienced programmers

there was a high risk that the

quality would not be significantly

better.

• Development of new functionality

would be delayed.

• High cost, because maintenance

of the old codebase and parallel

development of new code would

be required.

Rewrite the code?

Refactoring
• Refactoring is a controlled technique for

improving the design of an existing code

base.

• Its essence is applying a series of small

behavior-preserving transformations, each

of which "too small to be worth doing".

• However the cumulative effect of each of

these transformations is quite significant.

Martin Fowler made refactoring well known with his

book: “Refactoring, Improving the design of existing

code”

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 15

But… How do you Refactor PHP code?

• Refactoring in Fowler’s book is about modifying class hierarchies. Well

researched and used for Java code.

• PHP code can be object-oriented, to a large extent. Our PHP code did

not have a single class.

 Therefore: Use the spirit of the refactoring idea, not the rules.

 No refactoring of PHP code was done initially. In the spirit of

refactoring we did evolutianary improvement later.

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 16

And… How do you Provide Added

Value to the School while Refactoring?

Refactoring
by

Abstraction

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 17

http://xkcd.com/974/

Strategy pattern

Refactoring Mantra
• Every step is small.

• Every step has added value.

• No refactoring of code that does not need to change because of new or

changed functionality.

• The refactoring is done in a way that it can accommodate the new

functionality by adding just enough abstraction.

• The application is functioning as normal after every change.

 Less risk, because there is always a working version of the application that

can be rolled-out.

 Less deadline stress, because also with just a partial refactoring,

improvements and bug fixes are available.

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 18

Bug Tracking, Code Versioning, Testing.

Implement test procedures 
• Automated tests where all

testing should occur via user
interaction is theoretically
possible (tools exist, we tried
BadBoy).

o Too time consuming, large
effort.

• A testing group was formed.

• A set of test scripts was made.

• Many old bugs were found.

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 19

Bug Tracking 

• Mantis for development

problems,

• Topdesk for user problems

and new feature requests.

Code Version Control 

• Code version control –

Subversion (SVN)

Data Model , Normalization, Functional Description

• A data model was easy to make

from the current database using
Microsoft Visio. 

• The model itself was not so
promising. 

• Only normalize new data for

new functionality.

#oreillysacon Ghica van Emde Boas,

Bronstee.com - March 19, 2015
20

• We found duplicate data, Data
stored in vectors, columns that
should have been rows, tables
without keys, etc.

• But: If we would normalize the
data, what would have to
change in the code?

• It was hard to see what the
impact would be and how to
control it.

• Therefore: Database
normalization was too risky and
would stop new development
for too long.

23 -> 1 Database conversion

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 21

.

• Tables with MySQL auto
increment columns used as
key need a column with
school-id to prevent
duplicate keys.

• We ended up defining
school-id columns for all
tables

First integrate, then normalize!

• Adapt PHP code
(there are still 3
databases at this
stage).

Important first step to allow development on one database and one code base!

• Testing on a merged database and
on the separate databases!

The databases have the same data model

Performance Blues

• After integration of all databases into 1, the performance of MySQL

became an issue.

• What did we do?

 Convert from MyIsam to InnoDB, the transactional storage engine of

MySQL. InnoDB has many more options for tuning.
 Make table buffer size large enough.

 Activate the slow-query log and analyse the results.

 Migrate to a larger, faster new server.

 Rebuild the tables, to let MySQL sort the rows in an optimal fashion.

 Look at COUNT(*) queries without WHERE. Change to EXIST where

possible.

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 22

Security

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 23

HTTP://XKCD.COM/327/

Next Step: Database Access Abstraction

Why? To prepare for implementing better security and to
make transition to Oracle possible.

We considered using a PHP extension. There are three that
cover MySQL: mysql_, mysqli and PDO.

 The mysql_ extension is what was used in P&S. It offers no OO
interface, no prepared statements (data binding), no
transactions.

 The mysqli extension offers the best functionality, but only for
MySQL

PDO is an abstraction layer that offers functionality for many
databases, including Oracle.

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 24

Typical PHP example from P&S

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 25

DB access,
Already slightly
sanitized, through use
of the sqlq() function.

HTML output

$sql_deelnemer_result = sqlq("SELECT * FROM $roc_db[A103] WHERE gebruiker_id = '$id'");

Direct insertion of
variable values, open
for attack!

No separation of
Model and View

Stringing a Query Together

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 26

DB access,
Already slightly
sanitized, through use
of the sqlq() function.

HTML output

$sql_deelnemer_result = sqlq("SELECT * FROM

$roc_db[A103] WHERE gebruiker_id = '$id'");

Direct insertion of

variable values, open

for attack!
No separation of
Model and View

Database Access Abstraction
• 1st plan: use PDO, the PHP Data Object extension.

o Can be used for both MySQL and Oracle

o Allows parameter binding, to shield against SQL injection.

 No Oracle-approved database extension

 Still MySQL or Oracle specific code needed

• 2nd plan: use custom database abstraction layer using a strategy

pattern.

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 27

Transform Database connections

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 28

50

$connection =

mysql_connect($hostname,$username,

$password) or die(mysql_error());

$db = mysql_select_db($dbname,

$connection) or die(mysql_error());

$db = new clsDB();

$connection = $db->connect($host, $user, $pw, $db);

We noticed that a
new connection was
often not needed.

• Convert the other mysql_ functions such as:
mysql_num_rows, mysql_fetch_assoc,

mysql_free_result and others if present.

No mysql_ function
visible anymore

Transform Database Access

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 29

800 !
$result = sqlq(“...”);

$sQuery = “...”;

$result = sqlq($sQuery);

//$result = sqlq($sQuery);

$GLOBALS['oDB'] → query($sQuery, $aSubstitutes);

SQL strings could be very long or part of if-
then-else constructions.

We developed a
PHP script to help
with this conversion

No parameter binding initially,
because $aSubstitutes may still
be empty!

Instance of clsDB class,
containing DB-connection

Parameter Binding Example

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 30

$aSubstitutes['bpcode0'] = $bpcode[0];

$sQuery="SELECT bpcategory_child

FROM roc_beroepsproduct_category

WHERE bpcategory_parent='0'

AND bpcategory_nummer=:bpcode0";

$GLOBALS['oDB'] → query($sQuery, $aSubstitutes);

Parameter binding applied!

Note that the code
stays functioning,
even if parameter

binding is only
partially done.

Security Checklist
• SQL parameters are sanitized before use. This should make SQL-

injection impossible.

• LIKE queries. A hacker could try to mis-use smart search fields and

cause queries to take very long.

• Input fields where malicious HTML could be entered. Remedy: the

htmlentities PHP function.

• The register_globals .ini setting. Globalevariables, whose values could

automatically overwrite localevariables.

• $_REQUEST takes GET, POST or COOKIE variables. Using COOKIE

variables could be unsafe.

• Remove hidden fields like:
<input type=”hidden” name=”foo” value=”whatever” />

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 31

Security Checklist - 2
• The magic_quotes .ini setting. Relates to automatic escaping of ‘and

“. Must be off.

• Use explicit paths for file or script names, to avoid use of of another

script than intended.

• Command Injection by executing shell-commands. No problem for

P&S.

• Secure file upload. Check for example whether an image is really an

image. No problem, because no uploads are used.

• Application errors. Log all PHP error messages.

• Access Rights. Single-sign on. Session hi-jacking.. X-site scripting and

code injection. URL rewriting.

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 32

New Functionality

• For new modules, which were made after the first

restructuring, we made normalized data models, on which a

great deal of discussion and thought was spent.

• We also made models, views and controllers in the code to

interact with these new database parts.

• Old sections interacting with the new modules were

cleaned-up.

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 33

New Functionality
• Interfaces for a new release of GP-Untis, the time table scheduler.

• Extensive refactoring of the code related to this interface into a true
MVC setup.

• Reporting for student counting on October 1st, and February 1st, this
determines the school budget, around 120 million euros.

• Reporting for the 850 hour norm, the number of hours in a school year
that lessons should be offered to a student.

• Signaling of unauthorized absence of more than 3 consecutive school
days.

• Logging of changes to the database.

• Registration of study progress and (foreign) language learning.

• New intake form and process for new students.

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 34

MySQL -> Oracle

35

Adapt
queries from

MySQL to
Oracle

Oracle

Freeze
code base

1

MySQL -> Oracle

36

Filter

Queries stay
unchanged

OracleMySQL

2

Use regular
expressions

MySQL -> Oracle

37

Adapt some
queries to
become

compatible

OracleMySQL

Filter for LIMIT
NOW()
CURDATE()
…

TO_DATE()

3

MySQL -> Oracle

38

Make 2
versions,
decide at
runtime

OracleMySQL

4

MySQL -> Oracle

39

Filter

Adapt
queries from

MySQL to
Oracle

Oracle

Freeze
code base

1

Queries stay
unchanged

OracleMySQL

2
Adapt some

queries to
become

compatible

OracleMySQL

Filter for LIMIT
NOW()
CURDATE()
…

TO_DATE()

3
Make 2

versions,
decide at
runtime

OracleMySQL

4

And the winner is … 3

MySQL -> Oracle

Conversion principles:

• Keep one code base.

• Made possible by the database layer according to the

strategy pattern.

• Make compatibility functions and adaptations to account

for naming problems of columns.

• Server management aspects: SVN, DNS, admin of Oracle …

Allows to integrate bugs and improvements right until the

actual conversion.

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 40

MySQL -> Oracle
We made compatibility functions for these items:

MySQL mysql_num_rows (number of rows in a table)

MySQL LIMIT (restrict number of rows returned)

 JOIN syntax not the same for MySQL and Oracle.

 Date formats are different. Date() function cannot be used.

 NOW() function does not exist, replace by SYSDATE().

Oracle column names can only be 30 chars long.

 Naming of functions can be different

 Syntax of database procedures is different.

MySQL Text columns, convert to CLOB

MySQL auto-increment columns need extra tables.

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 41

Quality of Software

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 42

The software itself

The use of the software
(entering correct data
by teachers etc.)

Management of he
software: servers,
databases, networks

A Review 2 Years Later
• Security is still OK.

• Performance is good.

• Users: >22.000 students, parents and teachers.

• At peak times: thousands of concurrent users.

• All original programmers were replaced.

• IT management had been replaced.

• Renewed distrust of code quality (or the new developers just do not
understand the complex subject?)

• New programmers know a framework: Zend. Why don’t we convert?

• Because of fusion with yet-another-school, and because standard software
becomes available, migration to another package was planned within a
few years.

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 43

Conclusion of the Review 2 years later

• The proper functioning of P&S and the amazing

transformation from a prototype for 3 schools to a core

application for the fusion of 23 schools is, despite the flaws in

the code base, for a large part due to a very restrained

application of changes to this code base.

• The other side of the coin is, that with their current

knowledge and with the current tooling, the programmers

would not have developed code in this way.

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 44

Threats
Management not familiar with software development.

Distrust between developers and IT-service staff.

 Lack of subject-knowledge.

Programmers who write their own framework.

Programmers knowing another framework and who want to

convert the code to use it.

Programmers who want to start over to make things

“better”.

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 45

Other Lessons

• Continuity is more important than good code.

• Small steps and refactoring can achieve anything but is very hard to

explain to management.

• Cowboy programmers can be very productive but cause distrust that

seems to stay with a project forever.

• Programmers with certifications and rigid principles about code quality

can be a threat to continuity and productivity.

• Refactoring by abstraction: Look for ways to build new functionality

within existing code without actually using it (ex. MySQL -> Oracle).

• Do not touch code that works.

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 46

Again 2 Years Later…

A consortium of schools developed new software, with

Planning&Scores as one of the inputs.

 This software is now used in many vocational colleges in the

Netherlands with a similar curriculum.

 It also replaced some parts of Planning & Scores in

Eindhoven, but other parts are still used.

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 47

Questions and Discussion

Given this project, did you think at the start of this talk that

you would have taken the job?

Did you change your mind during the talk?

Did you think we took the right approach with the

conversion to Oracle?

What would you have done differently?

Do you have any recommendations for future, similar

projects?

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 48

The Problems and Advantages of Being Old and Female

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015

• Because you are old and female, you need a long time
to convince programmers that you know what you are
talking about.

• Because you are old and female, they do not want to
follow your orders.

• Because you are old, you are no threat to their career.
• Because you are old, maybe you cannot code very fast

anymore, but actually not that much has changed
since 1970, therefore you are faster at understanding
new things on an overview level.

• Because you are old and female, the lunch talk about
motorcycles and fast cars is not so interesting.

• Finally, it seems that even at the age of 91, you can be
hired at a tech job! http://youtu.be/WV_wQN7sUwM

49

http://youtu.be/WV_wQN7sUwM

Acknowledgements

• Willem van Dinther, the great motivator of the project and

for being helpful with providing material.

• Jurgen Weisfelt, the project manager.

• The cowboys, who were very productive!

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 50

Links
• PeopleSoft Campus Solutions

o http://www.oracle.com/us/products/applications/peoplesoft-enterprise/campus-
solutions/overview/index.html

• Fronter
o http://com.fronter.info/

• GP-Untis
o http://www.grupet.at/home_en.php

• Mantis
o https://www.mantisbt.org/

• TOPdesk
o http://www.topdesk.com/us/

• Subversion
o https://subversion.apache.org/

• Picture of a "Strategy Pattern in UML" by Jason S. McDonald –
o http://commons.wikimedia.org/wiki/File:Strategy_Pattern_in_UML.png#mediaviewer/File:Strategy_Pattern_in_UML.png

#oreillysacon Ghica van Emde Boas, Bronstee.com - March 19, 2015 51

http://www.oracle.com/us/products/applications/peoplesoft-enterprise/campus-solutions/overview/index.html
http://com.fronter.info/
http://www.grupet.at/home_en.php
https://www.mantisbt.org/
http://www.topdesk.com/us/
https://subversion.apache.org/
http://commons.wikimedia.org/wiki/File:Strategy_Pattern_in_UML.png#mediaviewer/File:Strategy_Pattern_in_UML.png
http://commons.wikimedia.org/wiki/File:Strategy_Pattern_in_UML.png#mediaviewer/File:Strategy_Pattern_in_UML.png

