
Web Application and API Security
The Latest Trends and Threats

03/19/15 | Sean Leach

Web Application and API Security | 03/19/15

Sean Leach
Vice President, Product and Chief Security Officer - Fastly

>>> len("Vice President, Product and Chief Security Officer")
50

Previously
● VP, Technology – Verisign
● CTO, Name.com
● Sr. Director, Technology – UltraDNS then Neustar bought us

Who am I?

Web Application and API Security | 03/19/15

Who is Fastly?

Web Application and API Security | 03/19/15

We love open source - free CDN

Web Application and API Security | 03/19/15

Who is Fastly?
• Real time config/purge
• Can cache content you never could before
• Event driven content

• All SSD cache servers
• 768 GB of RAM
• Varnish based
• Custom SSD filesystem
• Lots of perf. tweaks

• Amazing support

Web Application and API Security | 03/19/15

Web Application and API Security | 03/19/15

FASTLY

Web App. Security

Web Application and API Security | 03/19/15

● Trends and Threats
○ Modern web applications are real time, complex, and layered
○ Less focus on desktop applications in favor of the web
○ Convergence towards web APIs - REST, microservices
○ Mobile apps and web apps sharing backend APIs/services

● Web attacks now affecting not just web users, but your mobile apps &
other integrators of your services

● OWASP Top 10 - https://www.owasp.org/index.php/Top_10_2013
○ Some very consistent entries between years
○ SQLi, XSS, CSRF, etc
○ The same threats have plagued web applications for years

Web App. Sec.

Web Application and API Security | 03/19/15

● Modern web applications are dynamic
○ Boundary between data and code is permeable
○ Data ends up in DOM via string manipulation

■ Elements created on the fly
■ Attributes populated with user data
■ Echoed into variables in script blocks

● Persistent XSS - present in server response, not request - stored in DB
● Reflected XSS - present in client request and rendered response - per

req.

Cross Site Scripting - XSS

● Impact not limited to alert(‘You have XSS’);
○ BEEF toolkit is a great example of post-exploitation functionality
○ Same origin bypassed
○ Session hijacking frequently possible

Web Application and API Security | 03/19/15

● Ideally solved at the framework level
○ Good templating languages are safe by default

■ E.g. Jinja2 autoescapes template content
○ Good frameworks provide safe sanitization helpers

■ E.g. AngularJS ngSanitize’s $sanitize
● Don’t try to blacklist characters/strings. You will fail.

○ Whitelisting is much easier/reliable
○ Understand the “context” the output will be placed

■ OWASP XSS Prevention Rules -
http://goo.gl/vm4Yqg

● Use modern JS best practices!
○ Avoid eval() - Use JSON.parse
○ Avoid inline <script> blocks
○ Don’t use JSONP - Use CORS

XSS - Fixes

Jinja2 security.py testsuite
https://github.com/mitsuhiko/jinja2/

Web Application and API Security | 03/19/15

● Consider a Web Application Firewall (WAF)
○ Best viewed as “defense in depth”
○ Stopgap - Not a full solution (Fix your apps!)

● Fastly customers have built anti-XSS WAF rules with Varnish
Config Language (VCL)

XSS - WAF

Web Application and API Security | 03/19/15

● Content Security Policy (CSP)
○ Have the browser enforce your best practices!
○ Limit your exposure based on what you know your app does/needs

● Extra header sent from your server to supporting browsers
○ Whitelist script sources (Google Analytics, JQuery, etc)
○ Turn off ‘eval’ entirely, inline scripts entirely
○ ‘report-uri’ lets you get back data on CSP failures/blocks

● Generate your own policy!
○ http://cspisawesome.com/

XSS - CSP is Awesome!

Web Application and API Security | 03/19/15

XSS - CSP is Awesome!

Web Application and API Security | 03/19/15

● Cookies are passed with all requests to origin that they are scoped
for
○ This happens regardless of whether the requests were user initiated
○ This happens regardless of what the request is for!

● Very easy to initiate HTTP requests from a user’s browser
○ Have them visit a page with IMG tags, CSS tags, other ‘src’

elements
● CSRF = Causing authenticated requests across-sites by abusing cookie

“stickyness” to requests
● on attacker page

○ Request generated to target.com
○ User has a cookie for target.com, it goes along for the ride
○ User is logged out :’(

● Not limited to GET - can POST from attacker JS to diff origin if you don’t
need to view the response

Cross Site Request Forgery - CSRF

Web Application and API Security | 03/19/15

CSRF Example

Web Application and API Security | 03/19/15

● Require additional request authentication above & beyond cookie
○ Generate a token/nonce, store server side, embed in client forms
○ Mandate requests include a valid nonce
○ Attacker can’t known nonce apriori to put in CSRF request

● Again, ideally solved at framework level!
○ ASP.NET MVC -

■ HTMLHelper.AntiForgeryToken
○ If not built-in, offered as a plugin

■ (e.g. flask-csrf)

● CSRF tokens can be a pain with caching
○ There are strategies to help! [1]

[1] http://www.fastly.com/blog/Caching-the-Uncacheable-CSRF-security/

CSRF - Fixes

Web Application and API Security | 03/19/15

● Standards track IETF draft - Mike West @ Google
● Proposes a CSRF Mitigation built into browsers
● Lets servers declare some cookies “First party only”

○ Request for https://fastly.com/logout when
https://fastly.com is in the browser URL bar -> First
party request!

○ Request for https://fastly.com/logout when
https://attacker.com/sketch is the in the browser URL
bar -> 3rd party request!

● Prevents the “ambient authority” of a session cookie from
being sent in a cross-site request vs a first-party request.

● No browser support yet, but one day!

CSRF - First Party Cookies

Web Application and API Security | 03/19/15

● Again abusing conflation of data and code
○ Boundaries between languages/systems
○ String concatenation the root of all evil

● Particularly insidious effects:
○ password hash dumps
○ filesystem access
○ pivoting to full DB server compromise

● What if userID is 99’; DROP DATABASE users ‘ ?
● Classic SQLi vs BlindSQLi

○ Amount of “feedback” given to attacker
○ Blind SQLi typically creates an ‘oracle’ with delays/sleeps

■ id=1' waitfor delay '00:00:10'-- (If it takes 10 seconds, it worked)

SQL Injection - SQLi

Web Application and API Security | 03/19/15

● Fix at the Object Relational Mapping (ORM) level
○ Don’t write SQL queries at all! Use a safe ORM :-)

● Fix at the statement level
○ Use parameterized queries
○ Don’t use string concatenation/string formatting to make queries!

● Escaping as a last resort
○ Its very hard to get right
○ “Right” can vary database vendor to database vendor

● Practice principle of least privilege
○ Does your app’s DB user need drop table perms?
○ Does your app’s DB user need INFILE/OUTFILE?

SQLi - Fixes

Web Application and API Security | 03/19/15

● Consider a Web Application Firewall (WAF)
○ Like with XSS, best viewed as “defense in depth”
○ Stopgap - Not a full solution (Fix your apps!)

● Fastly customers have built anti-SQLi WAF rules with Varnish
Config Language (VCL)

SQLi - WAF

Web Application and API Security | 03/19/15

● Supply vs Demand where Demand > Supply
○ How do you isolate “real” demand from an attacker?

● Distributed, so no one source point to block
● Attacker wants traffic amplification for greater success

○ Send as few bytes as possible
○ Amplify to as many bytes as possible
○ Typically abuse other services (DNS, NTP) to achieve this

● A problem of pattern identification
○ Identifying pattern of attacker behaviour/traffic
○ Dropping anything that matches on the floor

Distributed Denial of Service - DDOS

Web Application and API Security | 03/19/15

Happy Server Pong

Web Application and API Security | 03/19/15

DDOS’d Server Pong

Web Application and API Security | 03/19/15

• Targeted at Banks

• Compromised Shared Hosting Accounts

• Millions of GET and POST’s per second

• Couldn’t be spoofed (not running as root)

• 200 – 300 Gbps

DDOS Example - BroBot

Web Application and API Security | 03/19/15

Where do they come from?

Web Application and API Security | 03/19/15

● Fastly customers are strictly HTTP(S).
○ We absorb all lower layer/non-HTTP traffic at our edge

● Fastly customers know who is expected to talk to their origins -
Fastly!
○ An API endpoint exists to get up-to-date IP lists for our POP

servers
○ Block all other source IPs at the origin

● Application level DDOS (random URL parameters, bogus API
calls) are a little trickier
○ Identify the pattern, use VCL to serve synthetic

response/drop traffic
○ Sometimes very easy!

■ if (req.url ~ “cachebust”) { … }

DDOS - Fixes

Web Application and API Security | 03/19/15

● ~Analogous to CSRF at the presentation layer
● Attacker super imposes a fake UI on top of

embedded copy of targeted page/UI
○ “Click the weasle” game over top of the

“Transfer $1000 to Sean” bank transfer
website interface.

● Target site is typically iframed invisibly & moved
under the user’s cursor as they click

● User doesn’t know clicks are “Falling through” to
the target website

Clickjacking

Web Application and API Security | 03/19/15

● Use CSP! CSP is awesome!
○ The ‘frame-src’ knobs allow you to control how your page

can be framed

● Use the X-Frame-Options header
○ Older browser supported header for X frame controls
○ Can forbid framing entirely, limit to some domains

● Easy to serve either header from the edge with a CDN that has
VCL support (like Fastly!)

Clickjacking - Fixes

Web Application and API Security | 03/19/15

FASTLY

Web PKI/TLS Trends

Web Application and API Security | 03/19/15

Problem? Too many CA’s!!!
● 50 different root certs in browsers

● Many, many, many more intermediates

● How can you tell the right CA issued the right certificate?

● How do we solve this?

Web Application and API Security | 03/19/15

I’m not a cryptographer!

Web Application and API Security | 03/19/15

● Moving from monolithic apps to microservices involves more
communication/RPC
○ Increased need for confidentiality between services
○ Increased need for authentication between services
○ Ideally we want mutual authentication! Service<->Client

● TLS is the best hammer we have for this nail
○ Lots of refinement over the past few years
○ “Add-ons” and features to strengthen TLS PKI

● With Microservices, typically control both the consumer and producer
side
○ Great fit for many of the TLS/PKI addons

TLS for Microservices

Web Application and API Security | 03/19/15

● SPKI - Subject Public Key Identifier
● Client side technique

○ Pre-program knowledge of expected TLS public
keys

● HPKP - Public Key Pinning for HTTP (PKPH doesn’t
have a good ring…)

● A header for pinning!
○ Helps address the “too many CAs” problem
○ Specify the public key for the CA(s) you actually

use!

SPKI Pinning & HPKP

Web Application and API Security | 03/19/15

● HTTP Strict Transport Security
○ Strict mode for TLS/HTTPS

● Browser enforces HTTPS usage, rewrites HTTP to HTTPS
○ Addresses TLS stripping attacks

● Cert warnings are hard failure - no “click through”
● Enabled by Strict-Transport-Security header (TOFU)

o Must be delivered over HTTPS, with no cert errors
o Has an expiry
o Policy may optionally apply to all subdomains

● Supported by Chrome/Firefox/Safari/Opera, and soon IE!
o See chrome://net-internals/#hsts

HSTS - TLS Strict Mode

Web Application and API Security | 03/19/15

● Public record of all certs issued by all participating CAs
○ append only, cryptographically verified (merkle

tree!)
○ CA gets back a “proof of submission” (SCT)
○ Proof can get relayed to client

● 3rd parties can audit log to watch for certs being issued
● 3rd parties can audit log itself to ensure its playing fairly

● Chrome moving towards requiring CT for all EV certs
○ One day, all certs must have CT proof

Certificate Transparency

http://www.certificate-­transparency.org/

Web Application and API Security | 03/19/15

● DNS-based Authentication of Named Entities

● Bind x509 certificates to DNS names using DNSSEC

● Can store signature or content of certificate in DNS

● But requires DNSSEC…(and nobody supports it yet)

DANE

Web Application and API Security | 03/19/15

From: http://www.slideshare.net/Deploy360/8-­danehardaker

Web Application and API Security | 03/19/15

FASTLY

We are like…
totally hiring

fastly.com/about/careers

