
Algebra for 
Analytics:

Two pieces for scaling computations, ranking 
and learning

Strata, Santa Clara

Tuesday, February 11, 14



Who is this dude?

• Oscar Boykin @posco

• Staff Data Scientist at Twitter -- 
co-author of scala+hadoop library 
@Scalding -- co-author of realtime 
analytics system @Summingbird

• Former Assistant Professor of 
Electrical + Computer Engineering at 
Univ. Florida -- Physics Ph.D.

Tuesday, February 11, 14



• Algebra (Monoids + Semigroups)

• Hash, don’t sample! (Bloom/
HyperLogLog/Count-min)

Tuesday, February 11, 14



Part 1: Algebra

Tuesday, February 11, 14



2 + 3 = 61 +

Tuesday, February 11, 14



2 + 3 = 61 +

5

=

Tuesday, February 11, 14



2 + 3 = 61 +

3

=

Tuesday, February 11, 14



Associativity:
(a+b)+c = a+(b+c)

Tuesday, February 11, 14



“you” + “2” =“heyyou2”

“you2”

+“hey”

=

Tuesday, February 11, 14



“you” + “2” =“heyyou2”

“heyyou”

+“hey”
=

Tuesday, February 11, 14



Associativity:
(a+b)+c = a+(b+c)

Let’s you put () 
where you want!

Tuesday, February 11, 14



a+b+c+d+e+f+g+h+i+j+k+l+m+n+o+p=

(a+b)
+c
+d
+e
+f
+g
+h
+i
+j
+k
+l
+m
+n
+o
+p

Latency = 15 =(n-1)

Tuesday, February 11, 14



a+b+c+d+e+f+g+h+i+j+k+l+m+n+o+p=

(a+b) (c+d)

+

(e+f) (g+h)

+

(i+j) (k+l)

+

(m+n) (o+p)

+

+ +

+

Tuesday, February 11, 14



a+b+c+d+e+f+g+h+i+j+k+l+m+n+o+p=

(a+b) (c+d)

+

(e+f) (g+h)

+

(i+j) (k+l)

+

(m+n) (o+p)

+

+ +

+
Latency = 4 =log_2(n)

Tuesday, February 11, 14



Associativity allows
parallelism in reducing! 

Even without commutativity 

Tuesday, February 11, 14



But not everything has this 
structure!

Tuesday, February 11, 14



Tuesday, February 11, 14



• (a min b) min c = a min (b min c)

• (a max b) max c = a max (b max c)

• (a or b) or c = a or (b or c)

• int addition: (a + b) + c = a + (b + c)

• set union: (a u b) u c = a u (b u c)

• harmonic sum: 1/(1/a + 1/b)

• and vectors: [a1, a2] max [b1, b2] = [a1 max b1, a2 max b2]

Example Monoids

Tuesday, February 11, 14



• Sets with associative operations 
are called semigroups.

• With a special 0 such that 0+a=a
+0=a for all a, they are called 
monoids.

• Many computations are associative, 
or can be expressed that way.

• Lack of associativity increases 
latency exponentially.

Tuesday, February 11, 14



Part 2: Hash, don’t 
sample

Tuesday, February 11, 14



Tweets (>10^8/day)Users (>10^8)

Problem: show cool tweets, don’t 
repeat.

Tuesday, February 11, 14



Problem: show cool tweets, don’t 
repeat.

Tweets (>10^8/day)Users (>10^8)

Storing the graph (u -> t) as a Set[(U,T)] 
or Map[U, Set[T]] takes a lot of space, 

costly to transfer, etc.

Tuesday, February 11, 14



Solution: Bloom 
Filter

• Like an approximate Set

• Bloom.contains(x) => Maybe|No

• Prob false positive > 0.

• Prob false negative = 0.

Tuesday, February 11, 14



Bloom Filter

m-bit array

i

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

We want to 
store i in 
our set:

Tuesday, February 11, 14



Bloom Filter

m-bit array

i

hash1(i)=6
hash2(i)=10

hash3(i)=14
k hashes 
=>[1,m]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Tuesday, February 11, 14



Bloom Filter
i

1 1 1

hash1(i)=6
hash2(i)=10

hash3(i)=14
k hashes 
=>[1,m]

0 0 0 0 0 1 0 0 0 1 0 0 0 1 0

OR each 
location with 

1

Tuesday, February 11, 14



Bloom Filter
i

0 0 0 0 0 1 0 0 0 1 0 0 0 1 0

j

hash1(j)=1

hash2(j)=4

hash3(j)=6

To check for j, 
AND(b[1],b[4],b[5])

Tuesday, February 11, 14



What’s going on

• hash to a set of indices, OR those 
with 1, read by taking AND.

• writing uses boolean OR, that’s a 
monoid, so we can do this in parallel 
=> lowers latency. Reading also a 
monoid (AND)!

• We can tune false prob by tuning 
m(bits) and k(hashes),

• p~exp(-m/(2n)) for n items, k=0.7m/n 

Tuesday, February 11, 14



Problem: how many unique users 
take all pairs of actions on the 

site?

Actions (look at Tweet x, 
follow user y, etc...) Users (>10^8)

To count Set size, we may need to store the 
whole set (maybe all users?) for all these 

pairs of actions (HUGE!)

Tuesday, February 11, 14



Solution: 
HyperLogLog

• Like an approximate Set

• HLL.size => Approx[Number]

• We know a distribution on the 
error.

Tuesday, February 11, 14



Hyperloglog 

i

User i takes an action, we want to add to our 
approximate set:

Tuesday, February 11, 14



Hyperloglog 
hash(i)=0.11001010010...

i

Tuesday, February 11, 14



Hyperloglog 
hash(i)=0.11001010010...

i
b1100=12

r

r’=r max 
log_2(1/0.101001)

a_m m^2/Estimate = sum(1/2^r)
(where a_m is some normalizing constant).

Tuesday, February 11, 14



Hyperloglog 
hash(i)=0.11001010010...

i
b1100=12

r

r’=r max 
log_2(1/0.101001)

Intuition: Each bucket holds max of ~1/m values, 
so each bucket estimates size: S/m ~ 2^r
Harmonic mean estimates total size ~

1/(1/m sum(1/(m2^r)))
Tuesday, February 11, 14



What’s going on

• hash to 1 index and value r, MAX that with 
existing, read by taking HARMONIC_SUM of all 
buckets.

• writing uses MAX, that’s a monoid, so we can 
do this in parallel => lowers latency. 
reading also uses monoid! (HARMONIC_SUM)

• We can tune size error by tuning bucket 
count (m) and bits used to store r.

• std. error ~ 1.04/sqrt(m) 

in HyperLogLog

Tuesday, February 11, 14



It’s (monoidal) 
deja vu all over 

again

Tuesday, February 11, 14



Remember:

Tuesday, February 11, 14



What’s going on

• hash to a set of indices, OR those with 1, 
read by taking AND.

• writing uses boolean OR, that’s a monoid, so 
we can do this in parallel => lowers 
latency. Reading also a monoid (AND)!

• We can tune false prob by tuning m(bits) and 
k(hashes),

• p~exp(-m/(2n)) for n items, k=0.7m/n 

in Bloomfilter

Tuesday, February 11, 14



What else looks 
like this?

Tuesday, February 11, 14



Problem: How many tweets did each 
user make on each hour?

196 hours/week x 52 weeks/
year x 7 years of tweetsUsers (>10^8)

If we make a key for each (user, hour) pair 
we have 10s of trillions potential keys

Tuesday, February 11, 14



Solution: Count-Min 
Sketch

• Like an approximate Counter or 
Map[K, Number]

• CMS.get(key) => Approx[Number]

• It always returns an upper bound, 
but may overestimate (we know the 
control the error).

Tuesday, February 11, 14



m

k

We have k hash functions 
onto a space of size m

Tuesday, February 11, 14



m

k

to add (Key,Val) -> add Val 
to (i, h_i(Key)) for i in 

(1,k)
Tuesday, February 11, 14



m

k

To read, min(h_i(Key)) over 
all i.

Tuesday, February 11, 14



What’s going on

• hash to a set of indices, ADD those with 1, 
read by taking MIN.

• writing uses numeric ADD, that’s a monoid, 
so we can do this in parallel => lowers 
latency. Reading also a monoid (MIN)!

• We can tune error: Prob > 1 - delta, error 
is at most eps * (Total Count).

• m = 1/eps, k = log(1/delta)

in Count-Min-Sketch

Tuesday, February 11, 14



Hashes Write 
Monoid

Read
Monoid

Bloom Filter

k-hashes into 1 
m-dim binary 

space, read same 
hashes.

Boolean OR Boolean 
AND

HyperLogLog

1-hash into m 
dimensional real 

space, read 
whole space. 

Numeric 
MAX

Harmonic 
Sum

Count-min-sketch

d-hashes onto d 
non-overlapping 
m dimensional 
spaces, read 
same hashes.

Numeric 
Sum

Numeric 
MIN

Tuesday, February 11, 14



• All use hashing to prepare some 
vector.

• The values are always Ordered 
(bools, reals, integers).

• These monoids are all commutative.

• The write monoid has: a + b >= a, b

• The read monoid has: a + b <= a, b

Tuesday, February 11, 14



Summary: Why 
Hashing

• We can model hashed data structures as 
Sets, Maps, etc... familiar to 
programmers => accessibility.

• Sampling in complex computations is hard! 
How to sample correlated events (edges in 
graphs, communities, etc...) hashing can 
sidestep but still be on a budget.

• Hash-sketches are naturally are Monoids, 
and thus are highly efficient for map/
reduce or streaming applications. 

Tuesday, February 11, 14



Call to Arms!

• Many sketch/hashes are less than 10 years 
old. Lots to do!

• There is clearly something general going 
on here, what is the larger theory than 
describes all of this?

• Sketches can be composed, which allows 
non-experts to leverage them.

• Sketches often have properties amenable 
to parallelization (Monoids)!

Tuesday, February 11, 14



Algebird

• http://github.com/twitter/algebird

• baked in to summingbird, scalding 
and examples for spark.

• Implementations of all the monoids 
here, and many more.

Tuesday, February 11, 14

http://github.com/twitter/algebird
http://github.com/twitter/algebird


• Tons O’ 
Monoids:

• CMS, 
HyperLogLog, 
ExponentialMA, 
BloomFilter, 
Moments, 
MinHash, TopK

Tuesday, February 11, 14



Follow

• @posco  <-- me

• @scalding <-- easy Hadoop monoids!

• @summingbird <-- Monoids in realtime!

Tuesday, February 11, 14



Thank you for coming

Tuesday, February 11, 14


