Algebra for
Analytics:

Two pieces for scaling computations, ranking
and learning

Strata, Santa Clara

Who 1s this dude?

e Oscar Boykin @posco

e Staff Data Scientist at Twitter --
co—author of scalathadoop library
@Scalding -- co-author of realtime
analytics system @Summingbird

e Former Assistant Professor of
Electrical + Computer Engineering at
Univ. Florida -- Physics Ph.D.

Tuesday, February 11, 14

e Algebra (Monoids + Semigroups)

e Hash, don’t sample! (Bloom/
HyperLogLog/Count-min)

Tuesday, February 11, 14

Part 1: Algebra

Tuesday, February 11, 14

Tuesday, February 11, 14

Tuesday, February 11, 14

Assoclativity:
(at+b)+c = at(b+c)

“hey” + “yOu” + “2” =(‘heyy0u2”

“yOUZ”

Tuesday, February 11, 14

“hey” + “yOu” + “2” =(‘heyy0u2”

“heyyOU”

Tuesday, February 11, 14

Associlativity:
(a+b)+c = at(b+c)

Let’s you put ()
where you want!

atb+tc+d+e+f+g+h+i+j+k+1+m+tn+o+p=

Latency = =(n-1)

\ 4 +p

Tuesday, February 11, 14

atb+tc+d+e+f+g+h+i+j+k+1+m+tn+o+p=

A N A N NG

(atb) (ctd) (e+f) (g+th)(1+]) (k+1)(m+n) (o+p)

atb+tc+d+e+f+g+h+i+j+k+1+m+tn+o+p=

Latency|= 4 =10g_2(n)

AR AN NN
(ath) (c+d) (e+f) (g+h)(i+j) (k+1)(mn) (o+p)

Tuesday, February 11, 14

Associlativity allows
parallelism in reducing!

But not everything has this
structure!

LEY

-a

—nYIIIIIl OPINION. MAN_—

Tuesday, February 11, 14

Example Monoids

e (amin b) min ¢ = a min (b min c¢)

e (amax b) max ¢ = a max (b max c)

e (aorb) orc=aor (borc)

e int addition: (a + b) + c=a+ (b + ¢)
e set union: (aub) uc=au(buc)

e harmonic sum: 1/(1/a + 1/b)

and vectors: [al, a2] max [b1, b2] = [al max b1, a2 max b2]

Tuesday, February 11, 14

e Sets with associative operations
are called semigroups.

e With a special 0 such that 0+a=a
+@=a for all a, they are called
monoids.

e Many computations are associlative,
or can be expressed that way.

e Lack of associativity increases
latency exponentially.

Tuesday, February 11, 14

Part 2: Hash, don’t
sample

Problem: show cool tweets, don’t
repeat.

Users (>10"8) Tweets (>1078/day)

Problem: show cool tweets, don’t
repeat.

Users (>10"8) Tweets (>1078/day)

Storing the graph (u -> t) as a Set[(U,T)]
or Mapl[U, Set[T]] takes a lot of space,
costly to transfer, etc.

Tuesday, February 11, 14

Solution: Bloom
Filter

e L1ke an approximate Set
e Bloom.contains(x) => Maybe|No

e Prob false positive > 0.

e Prob false negative = 0.

Bloom Filter

We want to L

store 1 1n
our set:

m-bit array

0

0

0

ol efefofofofofefefofo]e]

Tuesday, February 11, 14

Bloom Filter

k hashes

hash3(1)=14
:>|:1 ,m:l daS (1)
hash1(1)=6
hash2(1)=10

m-bit array

0 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | €D| 0 | 0 | (D'

Tuesday, February 11, 14

Bloom Filter

1
k hashes
hash3(1)=14
:>|:1 ,m:l as (1)
hash1(1)=6
hash2[1)=10
OR each

location with

Bloom Fllter

To check for j,
AND(b[1],b[4],b[5])

ash3(j)=6
hash1(j)=1
hash2(j)\=4

0 0 1 |

What’s going on

e hash to a set of i1ndices, OR those
with 1, read by taking AND.

e writing uses boolean OR, that’s a
monold, so we can do this 1in parallel

=> lowers latency. Reading also a
monold (AND)!

e We can tune false prob by tuning
m(bits) and k(hashes),

e p~exp(—-m/(2n)) for n items, k=0.7m/n

Tuesday, February 11, 14

Problem: how many unique users
take all pairs of actions on the

site? |
Actions (look at Tweet x,
follow user y, etc...)

Users (>10"8)

To count Set size, we may need to store the
whole set (maybe all users?) for all these
pairs of actions (HUGE!)

Tuesday, February 11, 14

Solution:
HyperLoglLog

e L1ke an approximate Set

e HLL.size => Approx[Number]

e We know a distribution on the
error.

Hyperloglog

User 1 takes an action, we want to add to our

. approximate set:
1

Hyperloglog

hash(i)=0.11001010010. . .

i—

Hyperloglog

hash(i)=0.11001010010. . .

i — r’=r max
b1100=12 log_2(1/0.101001)

HEEENERREEEN

a_m m*2/Estimate = sum(1/2%r)

(where a_m is some normalizing constant).

Hyperloglog

hash(i)=0.11001010010. . .

i — r’=r max
b1100=12 log_2(1/0.101001)

HEEENERREEEN

Intuition: Each bucket holds max of ~1/m values,
so each bucket estimates size: S/m ~ 2*r
Harmonic mean estimates total size ~

1/(1/m sum(1/(m2%r)))

What’s going on

1n HyperLoglog

e hash to 1 index and value r, MAX that with
existing, read by taking HARMONIC_SUM of
buckets.

e writing uses MAX, that’s a monoid, so we can
do this in parallel => lowers latency.
reading also uses monoid! (HARMONIC_SUM)

e We can tune size error by tuning bucket
count (m) and bits used to store r.

e std. error ~ 1.04/sqgrt(m)

Tuesday, February 11, 14

It’s (monoidal)
deja vu all over
agaln

Remember:

Tuesday, February 11, 14

What’s going on

in Bloomfilter

hash to a set of indices, OR those with 1,
read by taking AND.

writing uses boolean OR, that’s a monoid, so
we can do this in parallel => lowers
latency. Reading also a monoid (AND)!

We can tune false prob by tuning m(bits) and
NUERUWEST

p~exp(—-m/(2n)) for n items, k=0.7m/n

What else looks
like this?

Problem: How many tweets did each
user make on each hour??

196 hours/week x 52 weeks/

Users (>1078) year x 7 years of tweets

If we make a key for each (user, hour) pair
we have 10s of trillions potential keys

Tuesday, February 11, 14

Solution: Count-Min
Sketch

e Like an approximate Counter or
Map[K, Number]

e CMS.get(key) => Approx[Number]

e It always returns an upper bound,
but may overestimate (we know the
control the error).

Tuesday, February 11, 14

k

We have k hash functions
onto a space of size m

Tuesday, February 11, 14

k

to add (Key,Val) -> add Va
to (1, h_i1(Key)) for 1 1in
(1,Kk)

k

To read, min(h_1(Key)) over
all 1.

What’s going on

in Count-Min-Sketch

e hash to a set of indices, ADD those with 1,
read by taking MIN.

e writing uses numeric ADD, that’s a monoid,

so we can do this in parallel => lowers
latency. Reading also a monoid (MIN)!

e We can tune error: Prob > 1 - delta, error
1s at most eps * (Total Count).

e m = 1/eps, k = log(1/delta)

Tuesday, February 11, 14

Write Read

Hashes Monoid Monoid

k-hashes into 1

m-dim binary Boolean OR Boolean

space, read same /\PJ[)

hashes.

Bloom Filter

1-hash into m . .
dimensional reall Numeric Harmonic

Hyperloglog space, read MAX Sum
whole space.
d-hashes onto d
non-overlapping | Nlumeric Numeric
Count-min-sketch m dimensional
spaces, read Sum MIN

same hashes.

Tuesday, February 11, 14

e All use hashing to prepare some
vector.

e The values are always Ordered
(bools, reals, integers).

e These monoids are all commutative.
e The write monoid has: a + b >= a, b

e The read monoid has: a + b <=a, b

Tuesday, February 11, 14

Summary: Why
Hashing

e We can model hashed data structures as
Sets, Maps, etc... familiar to
programmers => accessibility.

e Sampling 1in complex computations is hard!
How to sample correlated events (edges 1in
graphs, communities, etc...) hashing can
sidestep but still be on a budget.

e Hash-sketches are naturally are Monoids,
and thus are highly efficient for map/
reduce or streaming applications.

Tuesday, February 11, 14

Call to Arms!

e Many sketch/hashes are less than 10 years
old. Lots to do!

e There 1s clearly something general going
on here, what 1s the larger theory than
describes all of this?

e Sketches can be composed, which allows
non-experts to leverage them.

e Sketches often have properties amenable
to parallelization (Monoids)!

Tuesday, February 11, 14

Algebird

e http://github.com/twitter/algebird

e baked 1in to summingbird, scalding
and examples for spark.

e Implementations of all the monoids
here, and many more.

http://github.com/twitter/algebird
http://github.com/twitter/algebird

® Jons O’
Monoids:

o CMS,

HyperLoglog,
ExponentialMA,
BloomFilter,
Moments,

MinHash, TopK

Tuesday, February 11, 14

https://github.com/twitter/algebird/tree/develop/algebird-core/src/main/scala/com/twitter/algebird

d Libi " RB g" My Delicious

algebird

Merge pull request

ﬂ johnynek

SavePublishing

a

Bookmark on Delic

136 from ccsevers/add foldM

month ago

18 days ago

a

a

a

a

a

a

a

a

a

a

month ago
month ago
month ago
month ago
month ago
days ago

month ago
month ago
month ago
month ago

month ago

18 days ago

month ago
month ago

month ago

/ days ago

month ago

month ago

Add to Wish List

algebird

Adds priority queue agaregator |

Cleans up intTimes |

w

tl

te

— —_— —_—
D D 1)
w w w
— —_ —

—
@
w
~

Hotfix for CMS |

w

tl
tl

te

—
@
w

add eventually |

t

@
w

t

test [

@
w

Cleans up intTimes |

w

tl
tl
tl

te

—
@
w

—
@
w

Adds a comment (to restart travis) |

t

@
w

tl
tl

—
@
w

W Twi

Follow

e @posco <-- me
e @scalding <-- easy Hadoop monoids!

e @summingbird <-- Monoids 1in realtime!

Tuesday, February 11, 14

ank you for coming

Tuesday, February 11, 14

