Algebra for
Analytics:

Two pieces for scaling computations, ranking
and learning

Strata, Santa Clara




Who 1s this dude?

e Oscar Boykin @posco

e Staff Data Scientist at Twitter --
co—author of scalathadoop library
@Scalding -- co-author of realtime
analytics system @Summingbird

e Former Assistant Professor of
Electrical + Computer Engineering at
Univ. Florida -- Physics Ph.D.
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e Algebra (Monoids + Semigroups)

e Hash, don’t sample! (Bloom/
HyperLogLog/Count-min)
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Part 1: Algebra
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Assoclativity:
(at+b)+c = at(b+c)




“hey” + “yOu” + “2” =(‘heyy0u2”

“yOUZ”
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“hey” + “yOu” + “2” =(‘heyy0u2”

“heyyOU”
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Associlativity:
(a+b)+c = at(b+c)

Let’s you put ()
where you want!




atb+tc+d+e+f+g+h+i+j+k+1+m+tn+o+p=

Latency = =(n-1)

\ 4 +p
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atb+tc+d+e+f+g+h+i+j+k+1+m+tn+o+p=

A N A N NG

(atb) (ctd) (e+f) (g+th)(1+]) (k+1)(m+n) (o+p)




atb+tc+d+e+f+g+h+i+j+k+1+m+tn+o+p=

Latency|= 4 =10g_2(n)

AR AN NN
(ath) (c+d) (e+f) (g+h)(i+j) (k+1)(mn) (o+p)
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Associlativity allows
parallelism in reducing!




But not everything has this
structure!




LEY

-a

—nYIIIIIl OPINION. MAN_—
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Example Monoids

e (amin b) min ¢ = a min (b min c¢)

e (amax b) max ¢ = a max (b max c)

e (aorb) orc=aor (borc)

e int addition: (a + b) + c=a+ (b + ¢)
e set union: (aub) uc=au(buc)

e harmonic sum: 1/(1/a + 1/b)

and vectors: [al, a2] max [b1, b2] = [al max b1, a2 max b2]
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e Sets with associative operations
are called semigroups.

e With a special 0 such that 0+a=a
+@=a for all a, they are called
monoids.

e Many computations are associlative,
or can be expressed that way.

e Lack of associativity increases
latency exponentially.
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Part 2: Hash, don’t
sample




Problem: show cool tweets, don’t
repeat.

Users (>10"8) Tweets (>1078/day)




Problem: show cool tweets, don’t
repeat.

Users (>10"8) Tweets (>1078/day)

Storing the graph (u -> t) as a Set[(U,T)]
or Mapl[U, Set[T]] takes a lot of space,
costly to transfer, etc.
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Solution: Bloom
Filter

e L1ke an approximate Set
e Bloom.contains(x) => Maybe|No

e Prob false positive > 0.

e Prob false negative = 0.




Bloom Filter

We want to L

store 1 1n
our set:

m-bit array

0

0

0

ol efefofofofofefefofo]e]

Tuesday, February 11, 14



Bloom Filter

k hashes

hash3(1)=14
:>|:1 ,m:l daS (1)
hash1(1)=6
hash2(1)=10

m-bit array

0 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | €D| 0 | 0 | (D'
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Bloom Filter

1
k hashes
hash3(1)=14
:>|:1 ,m:l as (1)
hash1(1)=6
hash2[1)=10
OR each

location with




Bloom Fllter

To check for j,
AND(b[1],b[4],b[5])

ash3(j)=6
hash1(j)=1
hash2(j)\=4

0 0 1 |




What’s going on

e hash to a set of i1ndices, OR those
with 1, read by taking AND.

e writing uses boolean OR, that’s a
monold, so we can do this 1in parallel

=> lowers latency. Reading also a
monold (AND)!

e We can tune false prob by tuning
m(bits) and k(hashes),

e p~exp(—-m/(2n)) for n items, k=0.7m/n
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Problem: how many unique users
take all pairs of actions on the

site? |
Actions (look at Tweet x,
follow user y, etc...)

Users (>10"8)

To count Set size, we may need to store the
whole set (maybe all users?) for all these
pairs of actions (HUGE!)
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Solution:
HyperLoglLog

e L1ke an approximate Set

e HLL.size => Approx[Number]

e We know a distribution on the
error.




Hyperloglog

User 1 takes an action, we want to add to our

. approximate set:
1




Hyperloglog

hash(i)=0.11001010010. . .

i—




Hyperloglog

hash(i)=0.11001010010. . .

i — r’=r max
b1100=12 log_2(1/0.101001)

HEEENERREEEN

a_m m*2/Estimate = sum(1/2%r)

(where a_m is some normalizing constant).




Hyperloglog

hash(i)=0.11001010010. . .

i — r’=r max
b1100=12 log_2(1/0.101001)

HEEENERREEEN

Intuition: Each bucket holds max of ~1/m values,
so each bucket estimates size: S/m ~ 2*r
Harmonic mean estimates total size ~

1/(1/m sum(1/(m2%r)))




What’s going on

1n HyperLoglog

e hash to 1 index and value r, MAX that with
existing, read by taking HARMONIC_SUM of
buckets.

e writing uses MAX, that’s a monoid, so we can
do this in parallel => lowers latency.
reading also uses monoid! (HARMONIC_SUM)

e We can tune size error by tuning bucket
count (m) and bits used to store r.

e std. error ~ 1.04/sqgrt(m)
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It’s (monoidal)
deja vu all over
agaln




Remember:
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What’s going on

in Bloomfilter

hash to a set of indices, OR those with 1,
read by taking AND.

writing uses boolean OR, that’s a monoid, so
we can do this in parallel => lowers
latency. Reading also a monoid (AND)!

We can tune false prob by tuning m(bits) and
NUERUWEST

p~exp(—-m/(2n)) for n items, k=0.7m/n



What else looks
like this?




Problem: How many tweets did each
user make on each hour??

196 hours/week x 52 weeks/

Users (>1078) year x 7 years of tweets

If we make a key for each (user, hour) pair
we have 10s of trillions potential keys
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Solution: Count-Min
Sketch

e Like an approximate Counter or
Map[K, Number]

e CMS.get(key) => Approx[Number]

e It always returns an upper bound,
but may overestimate (we know the
control the error).
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k

We have k hash functions
onto a space of size m
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k

to add (Key,Val) -> add Va
to (1, h_i1(Key)) for 1 1in
(1,Kk)




k

To read, min(h_1(Key)) over
all 1.




What’s going on

in Count-Min-Sketch

e hash to a set of indices, ADD those with 1,
read by taking MIN.

e writing uses numeric ADD, that’s a monoid,

so we can do this in parallel => lowers
latency. Reading also a monoid (MIN)!

e We can tune error: Prob > 1 - delta, error
1s at most eps * (Total Count).

e m = 1/eps, k = log(1/delta)
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Write Read

Hashes Monoid Monoid

k-hashes into 1

m-dim binary Boolean OR Boolean

space, read same /\PJ[)

hashes.

Bloom Filter

1-hash into m . .
dimensional reall Numeric Harmonic

Hyperloglog space, read MAX Sum
whole space.
d-hashes onto d
non-overlapping | Nlumeric Numeric
Count-min-sketch m dimensional
spaces, read Sum MIN

same hashes.
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e All use hashing to prepare some
vector.

e The values are always Ordered
(bools, reals, integers).

e These monoids are all commutative.
e The write monoid has: a + b >= a, b

e The read monoid has: a + b <=a, b

Tuesday, February 11, 14



Summary: Why
Hashing

e We can model hashed data structures as
Sets, Maps, etc... familiar to
programmers => accessibility.

e Sampling 1in complex computations is hard!
How to sample correlated events (edges 1in
graphs, communities, etc...) hashing can
sidestep but still be on a budget.

e Hash-sketches are naturally are Monoids,
and thus are highly efficient for map/
reduce or streaming applications.
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Call to Arms!

e Many sketch/hashes are less than 10 years
old. Lots to do!

e There 1s clearly something general going
on here, what 1s the larger theory than
describes all of this?

e Sketches can be composed, which allows
non-experts to leverage them.

e Sketches often have properties amenable
to parallelization (Monoids)!
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Algebird

e http://github.com/twitter/algebird

e baked 1in to summingbird, scalding
and examples for spark.

e Implementations of all the monoids
here, and many more.



http://github.com/twitter/algebird
http://github.com/twitter/algebird

® Jons O’
Monoids:

o CMS,

HyperLoglog,
ExponentialMA,
BloomFilter,
Moments,

MinHash, TopK
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https://github.com/twitter/algebird/tree/develop/algebird-core/src/main/scala/com/twitter/algebird
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Follow

e @posco <-- me
e @scalding <-- easy Hadoop monoids!

e @summingbird <-- Monoids 1in realtime!
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ank you for coming
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