MAPRAnomaly Detection

Agenda

- What is anomaly detection?
- Some examples
- Some generalization
- More interesting examples
- Sample implementation methods

Who I am

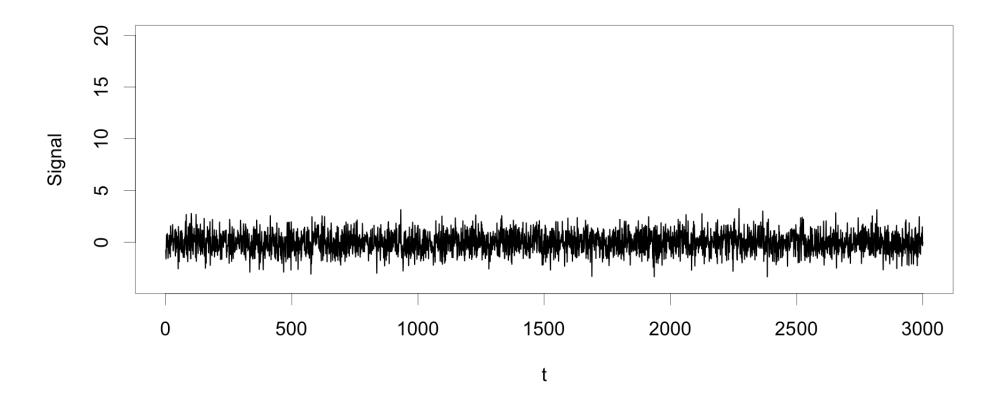
- Ted Dunning, Chief Application Architect, MapR tdunning@mapr.com tdunning@apache.org @ted dunning
- Committer, mentor, champion, PMC member on several Apache projects
- Mahout, Drill, Zookeeper others

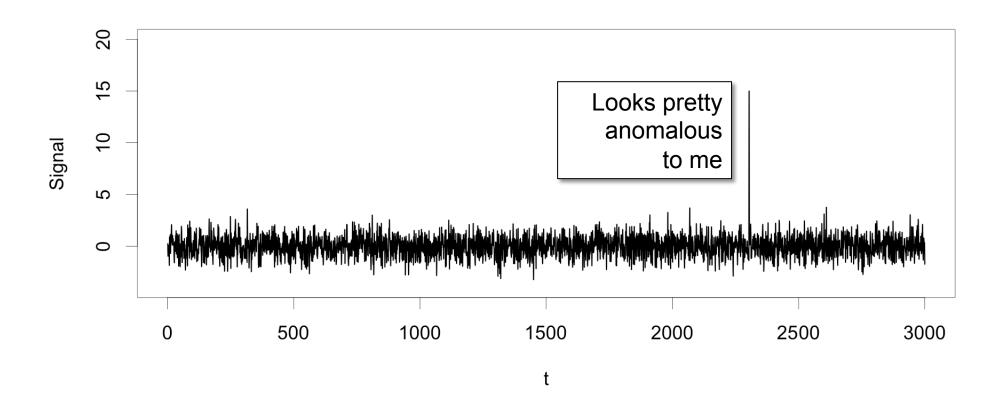
Who we are

- MapR makes the technology leading distribution including Hadoop
- MapR integrates real-time data semantics directly into a system that also runs Hadoop programs seamlessly
- The biggest and best choose MapR
 - Google, Amazon
 - Largest credit card, retailer, health insurance, telco
 - Ping me for info

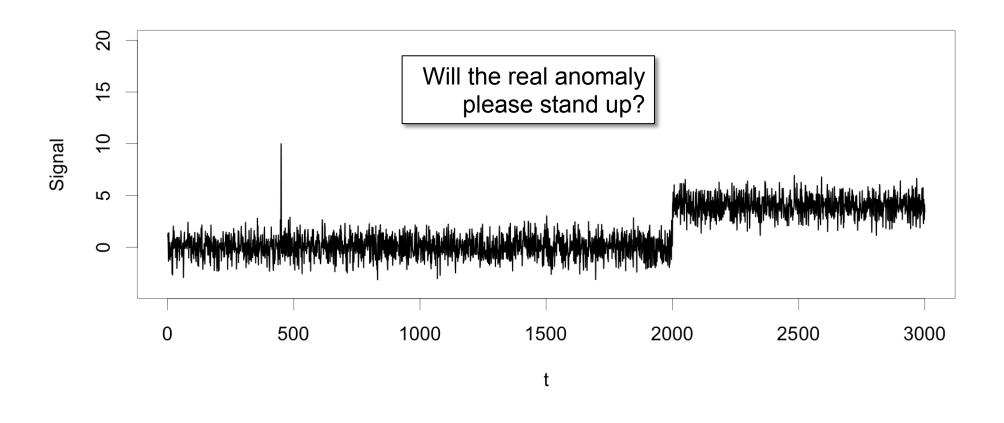
What is Anomaly Detection?

- What just happened that shouldn't? but I don't know what failure looks like (yet)
- Find the problem before other people see it – especially customers and CEO's
- But don't wake me up if it isn't really broken





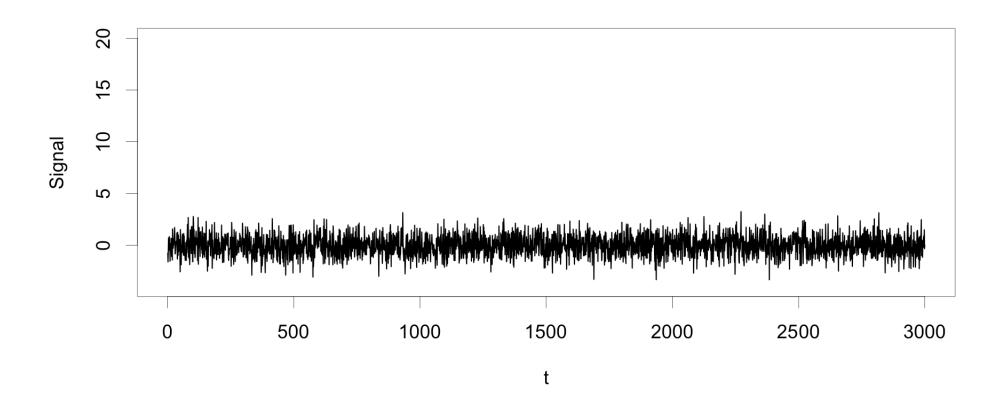
 $\mathbf{X}_{\mathbf{C},\mathbf{N}}$



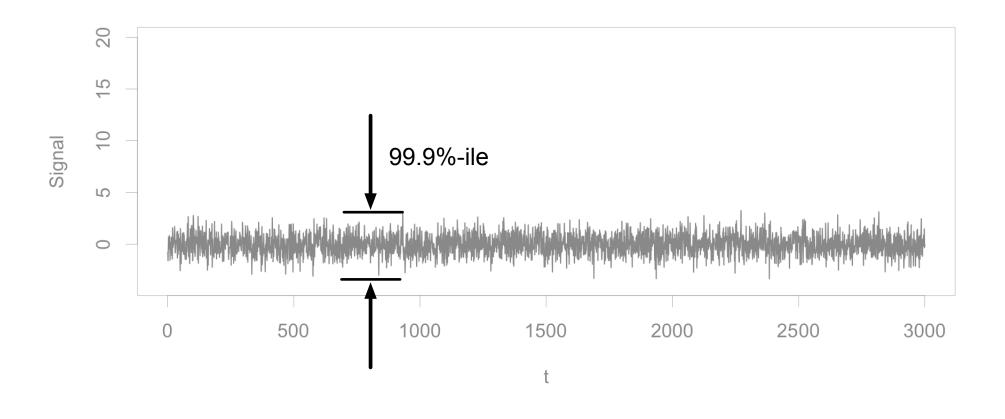
What Are We Really Doing

- We want action when something breaks (dies/falls over/otherwise gets in trouble)
- But action is expensive
- So we don't want false alarms
- And we don't want false negatives
- We need to trade off costs

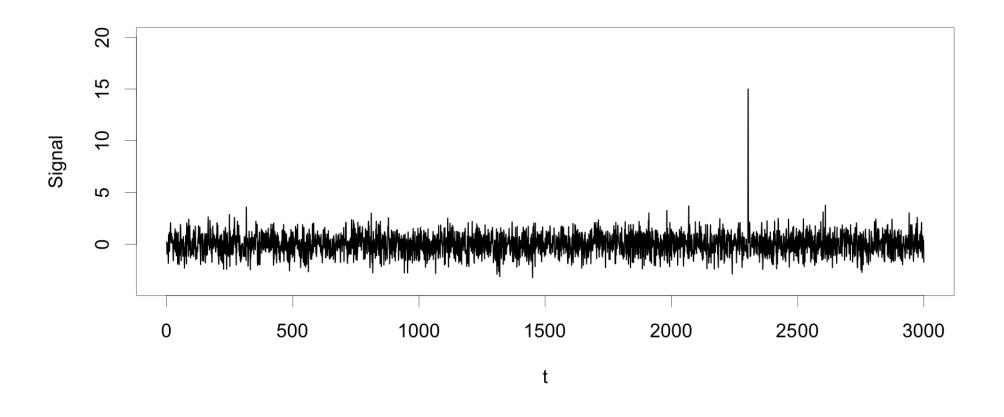
A Second Look



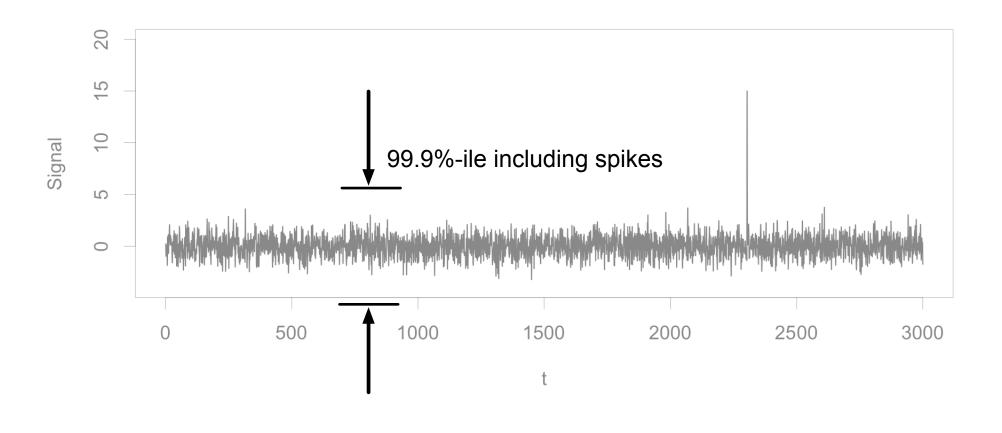
A Second Look



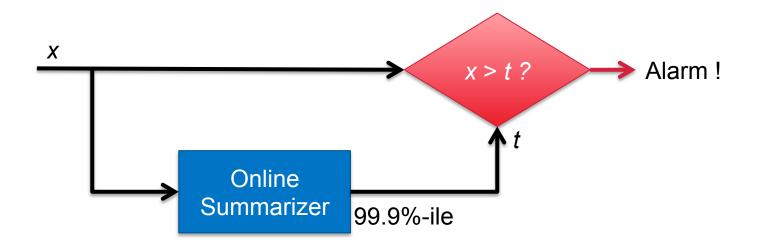
With Spikes



With Spikes



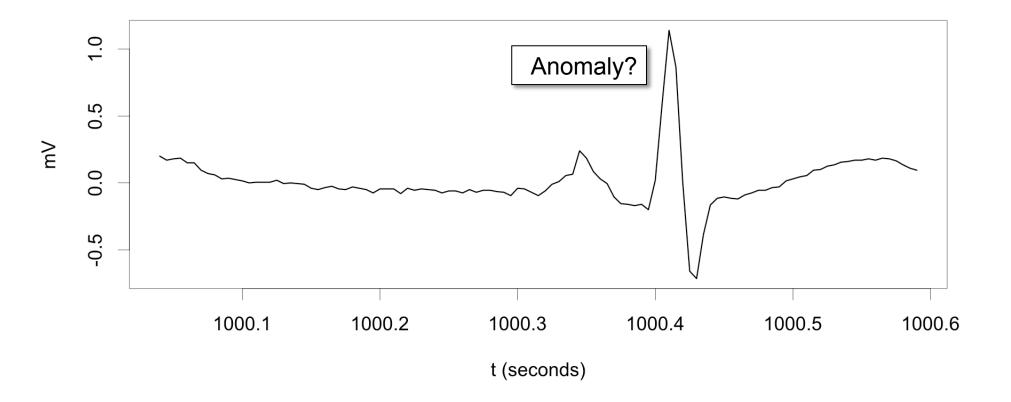
How Hard Can it Be?



On-line Percentile Estimates

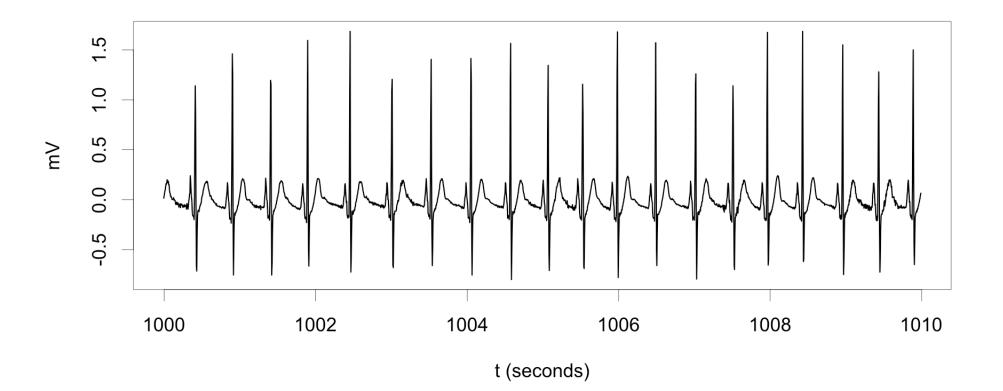
- Apache Mahout has on-line percentile estimator
 - very high accuracy for extreme tails
 - new in version 0.9 !!
- What's the big deal with anomaly detection?
- This looks like a solved problem

Spot the Anomaly

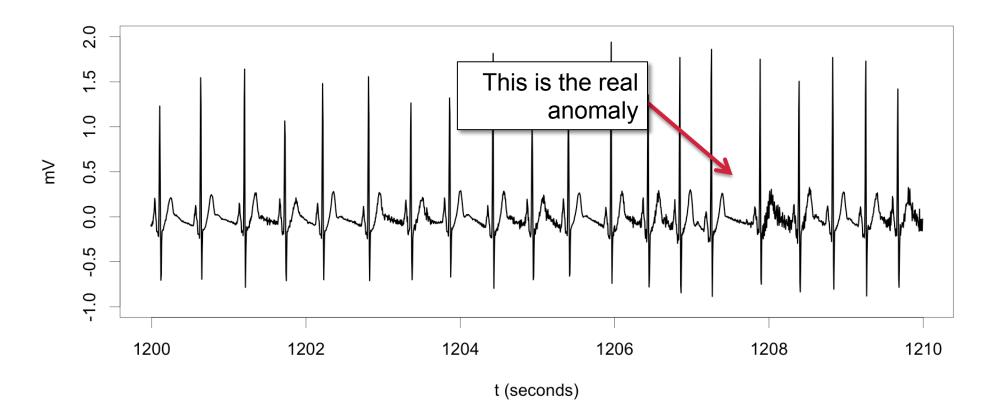


 $\mathbf{L}_{\mathbf{C},\mathbf{N}}$

Maybe not!



Where's Waldo?

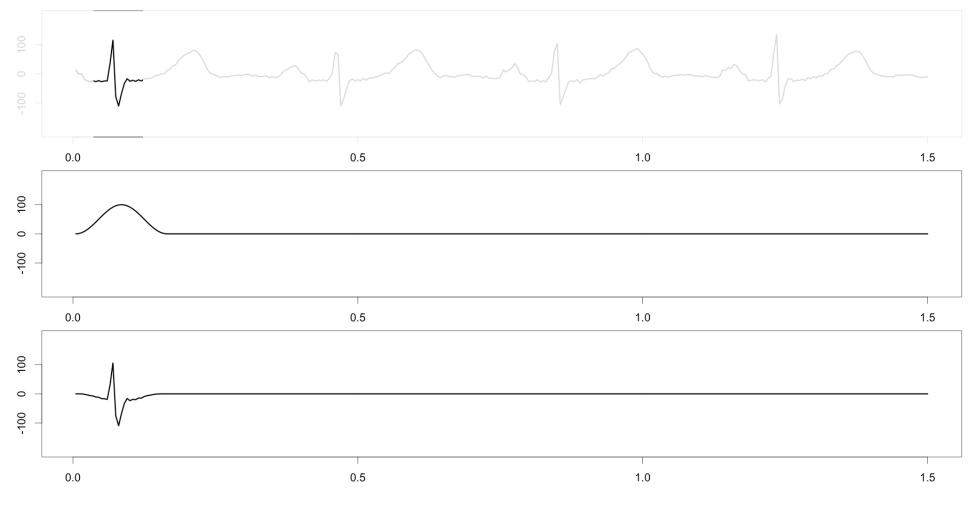


Normal Isn't Just Normal

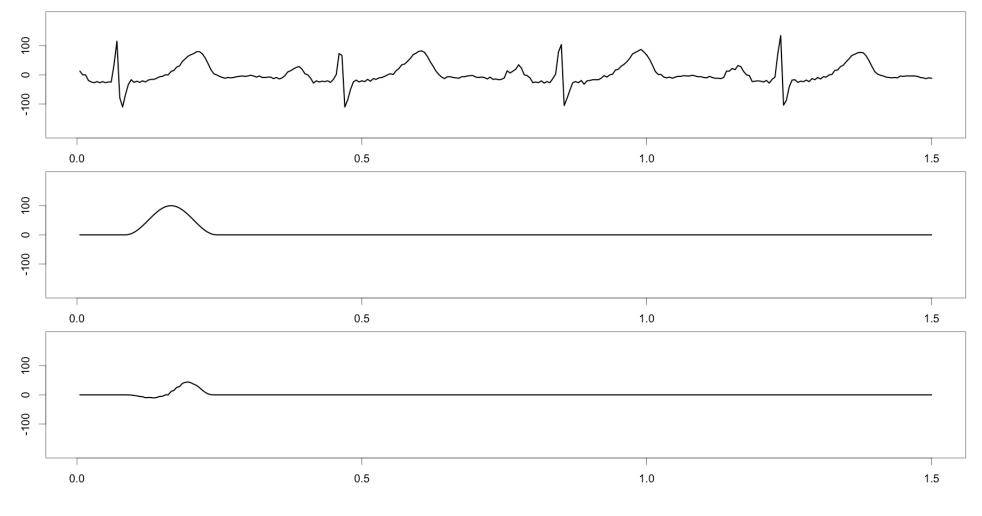
- What we want is a model of what is normal
- What doesn't fit the model is the *anomaly*
- For simple signals, the model can be simple ...

 $x \sim N(0,\varepsilon)$

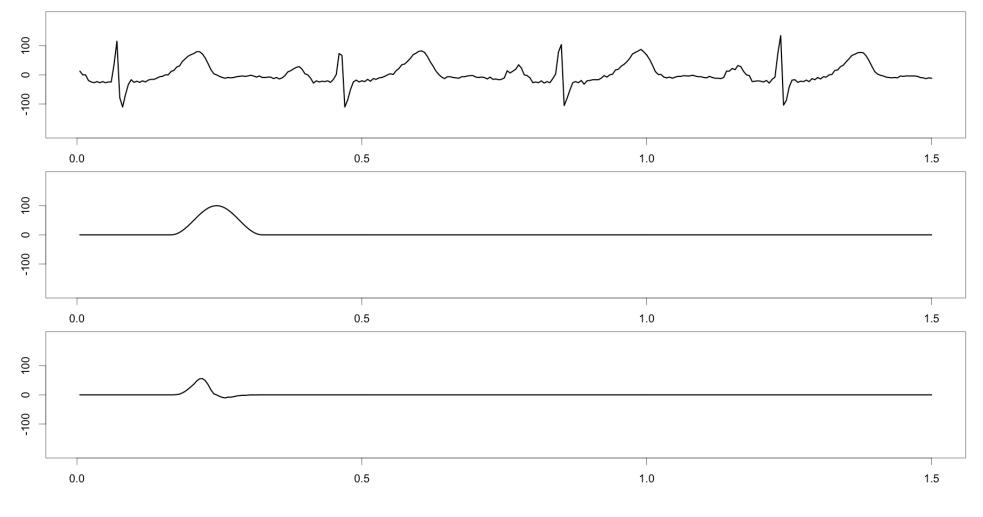
• The real world is rarely so accommodating



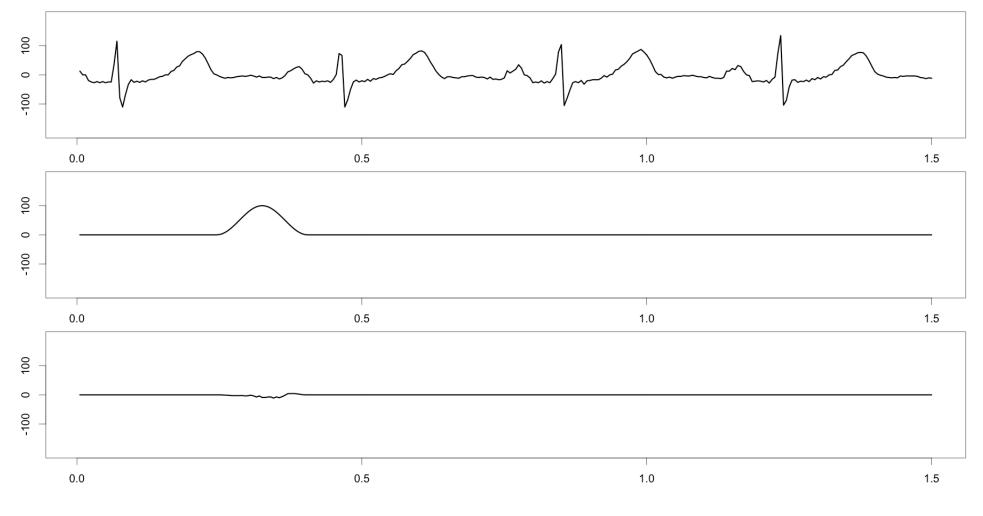
 $\mathbf{X}_{\mathcal{O}}$



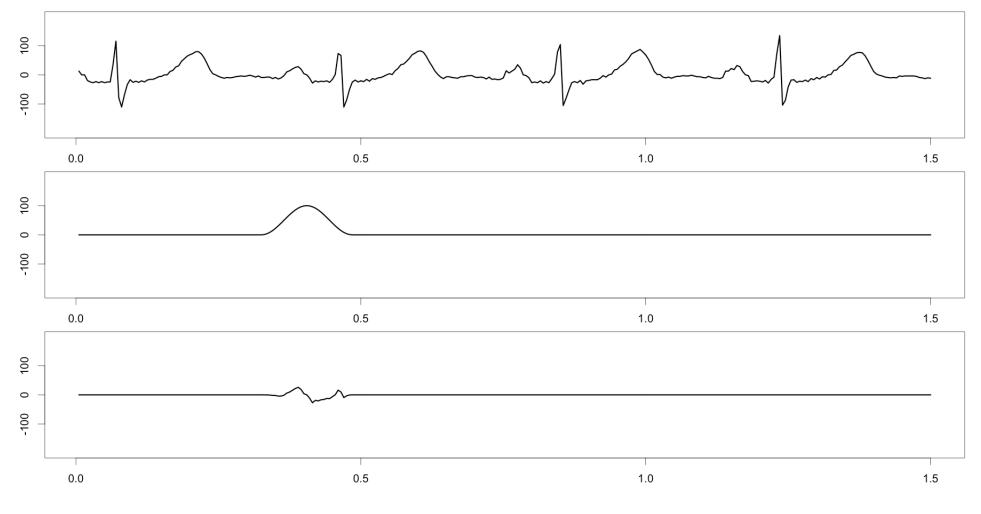
 $\mathbf{V}_{\mathbf{C},\mathbf{N}}$

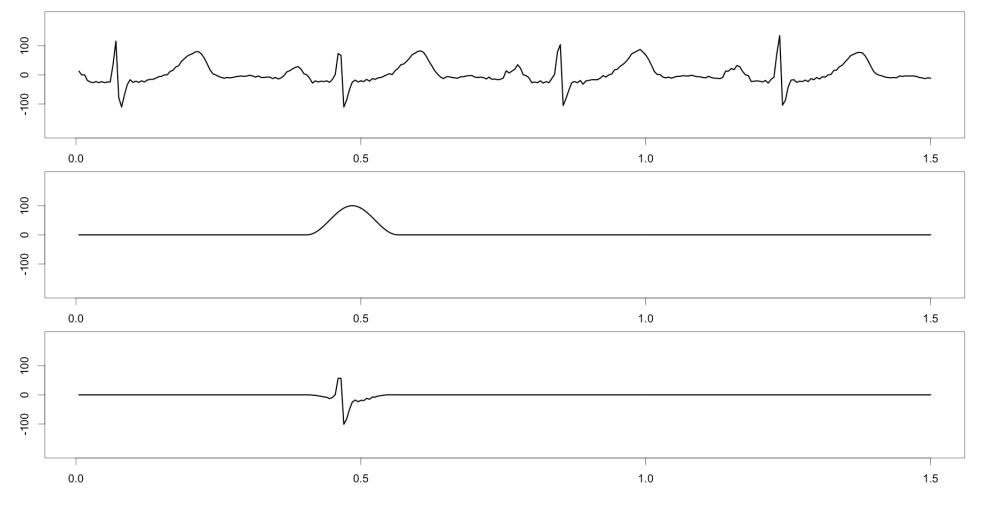


 $\mathbf{V}_{\mathbf{C},\mathbf{N}}$

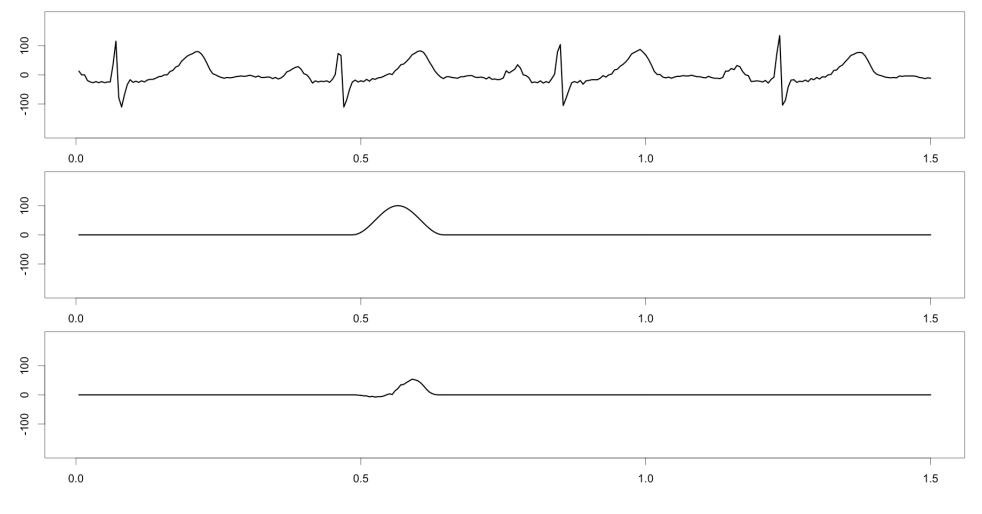


 $\mathbf{X}_{\mathbf{C},\mathbf{N}}$

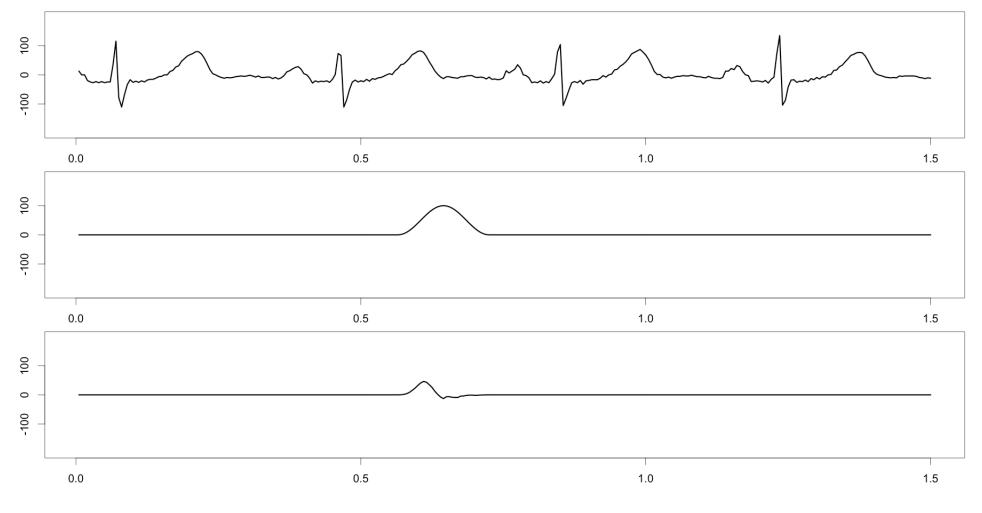




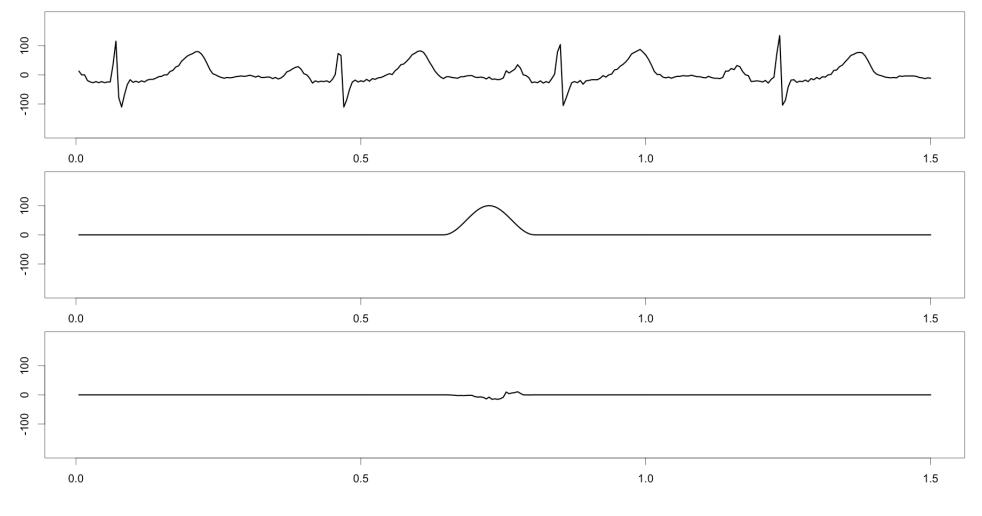
 $\mathbf{x}_{\mathbf{x}}$



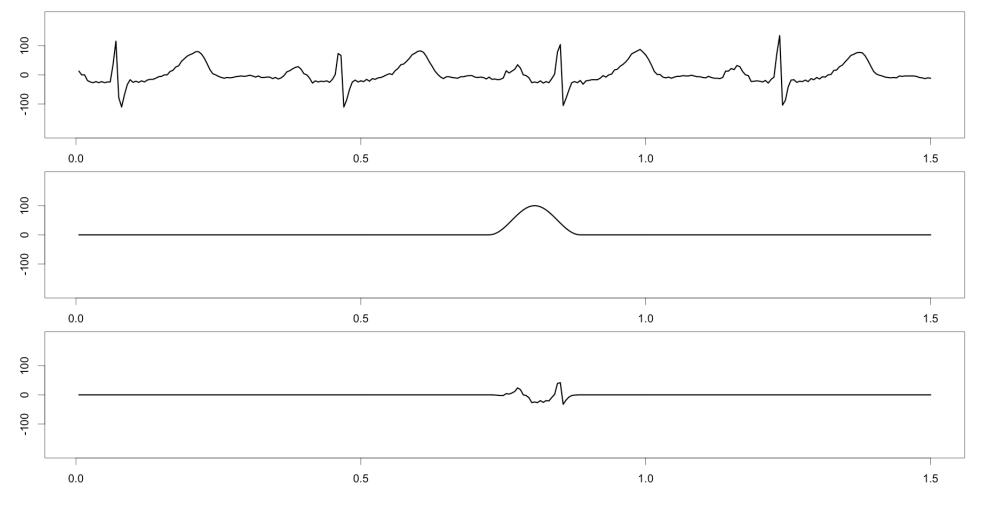
 $\mathbf{X}_{\mathbf{C},\mathbf{N}}$



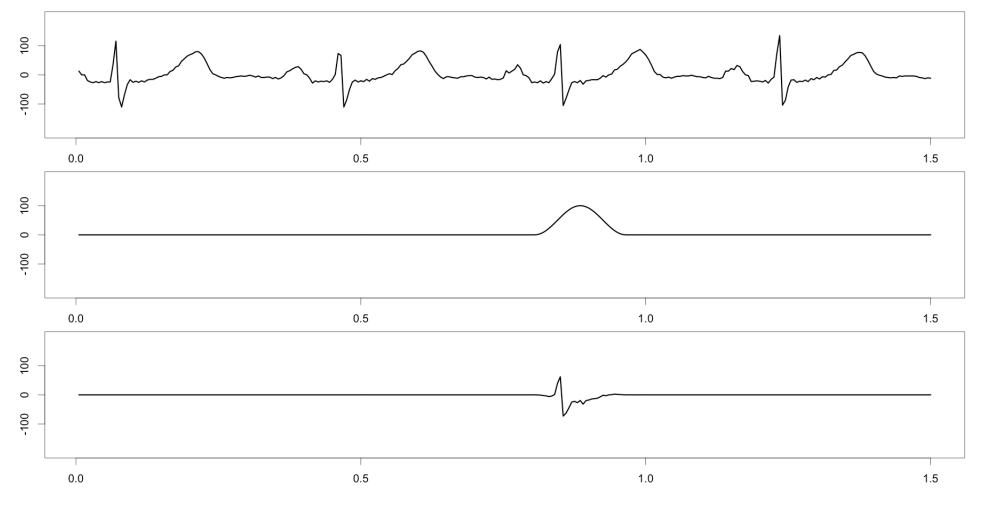
 $\mathbf{V}_{\mathbf{C},\mathbf{N}}$



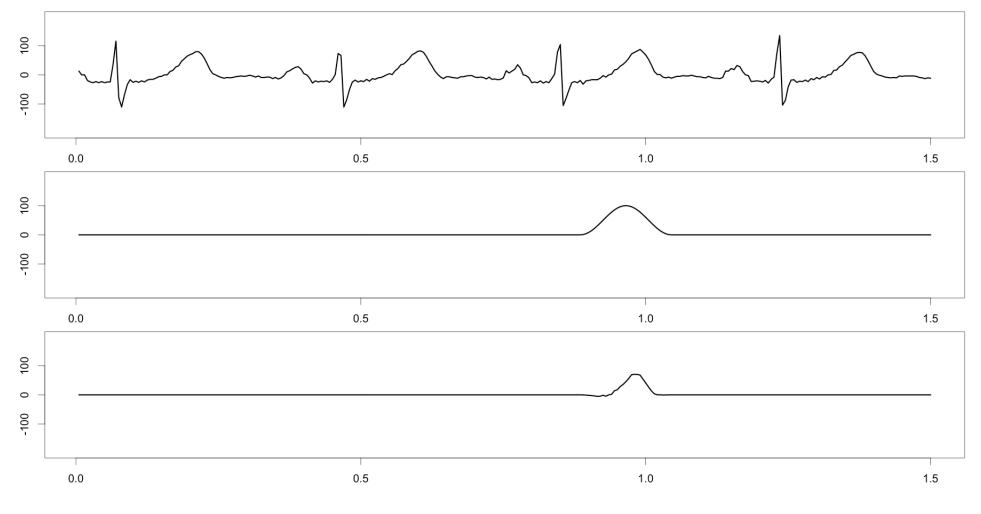
 $\mathbf{V}_{\mathbf{C},\gamma}$



 $\mathbf{X}_{\mathbf{C},\mathbf{N}}$

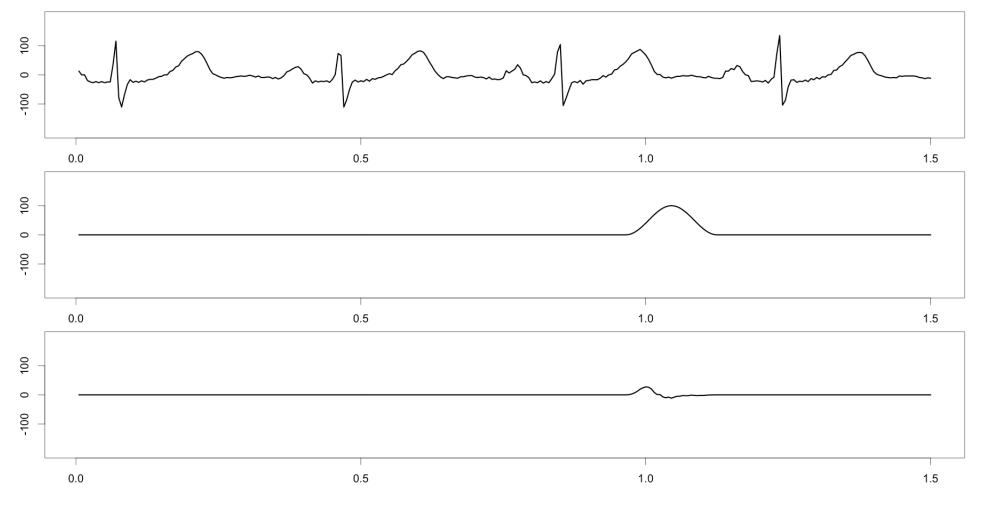


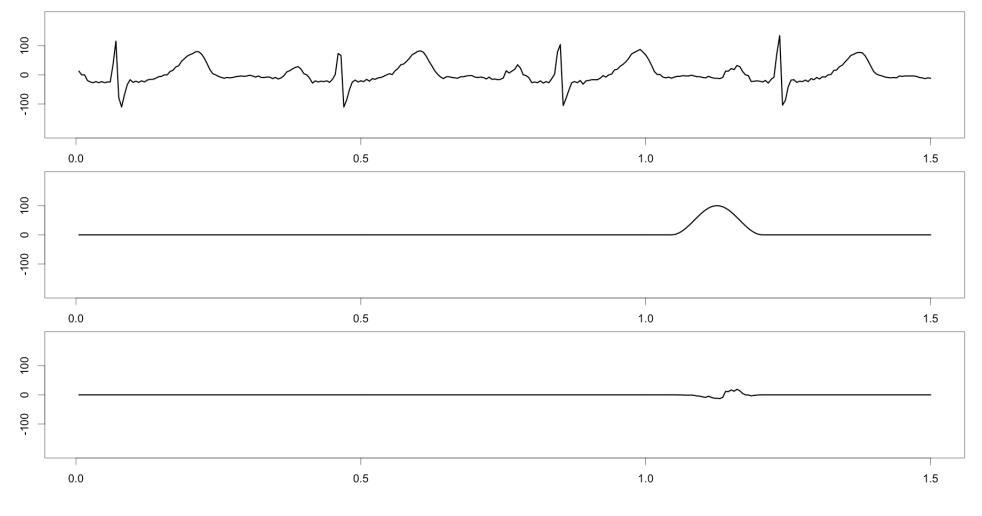
 $\mathbf{X}_{\mathbf{C},\mathbf{N}}$



© MapR Technologies, confidential

MAPS.

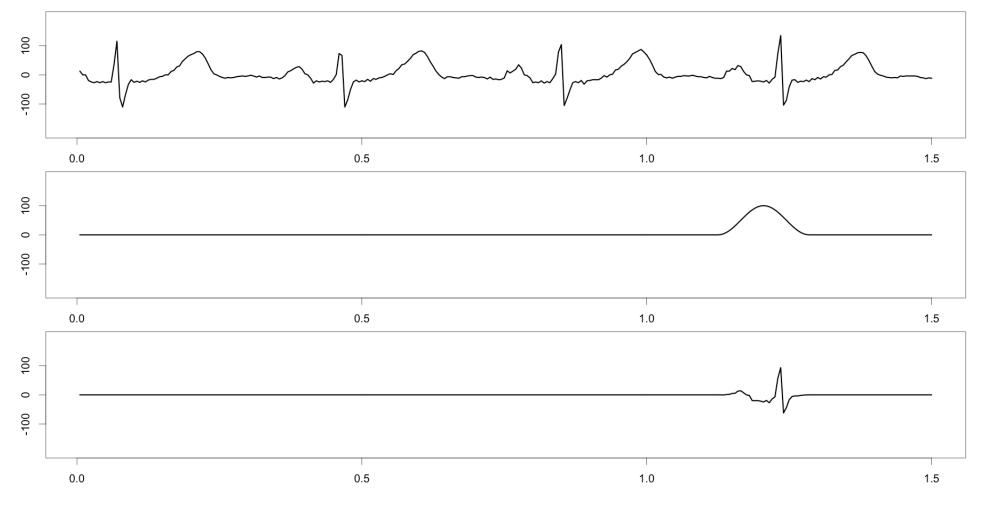




 $\mathbf{V}_{\mathbf{C}^{\mathcal{N}}}$

© MapR Technologies, confidential

MAPR.

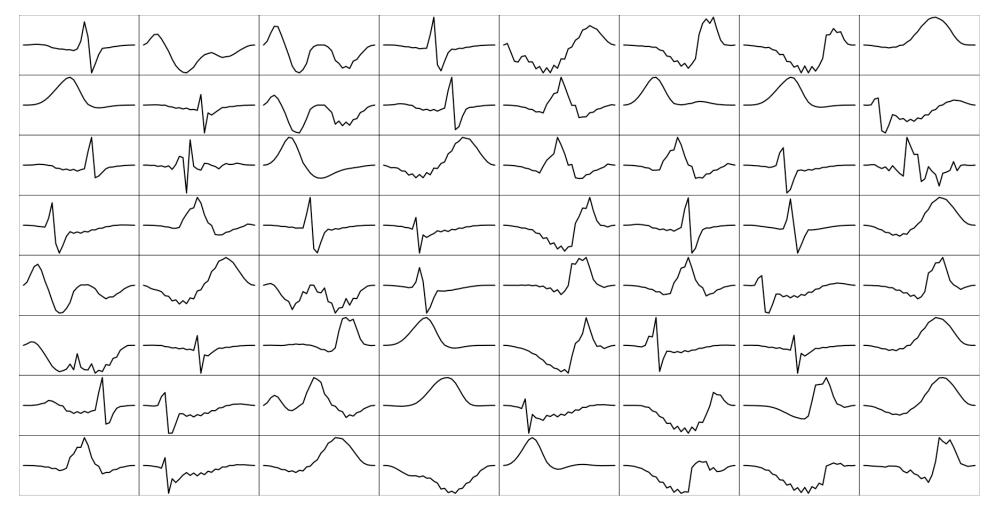


 $\mathbf{X}_{\mathbf{C},\mathbf{N}}$

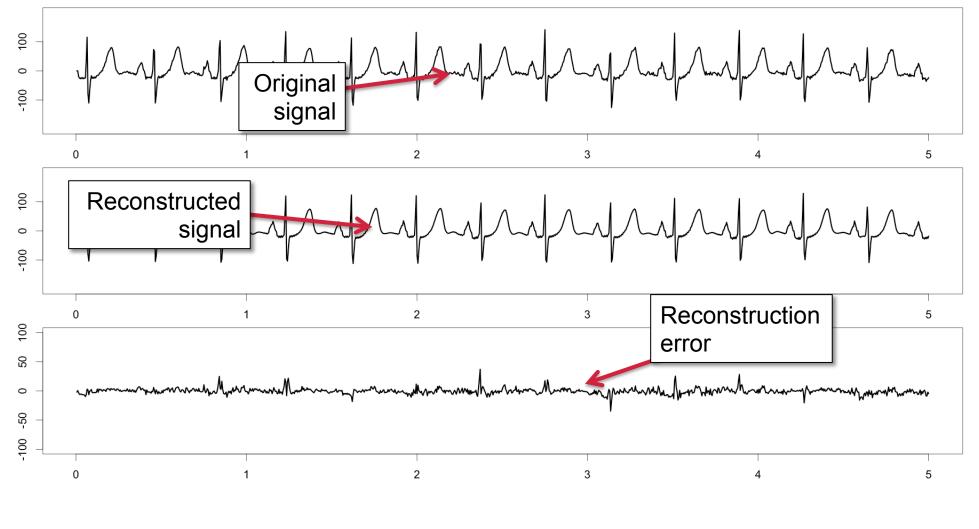
Windows on the World

- The set of windowed signals is a nice model of our original signal
- Clustering can find the prototypes
 - Fancier techniques available using sparse coding
- The result is a dictionary of shapes
- New signals can be encoded by shifting, scaling and adding shapes from the dictionary

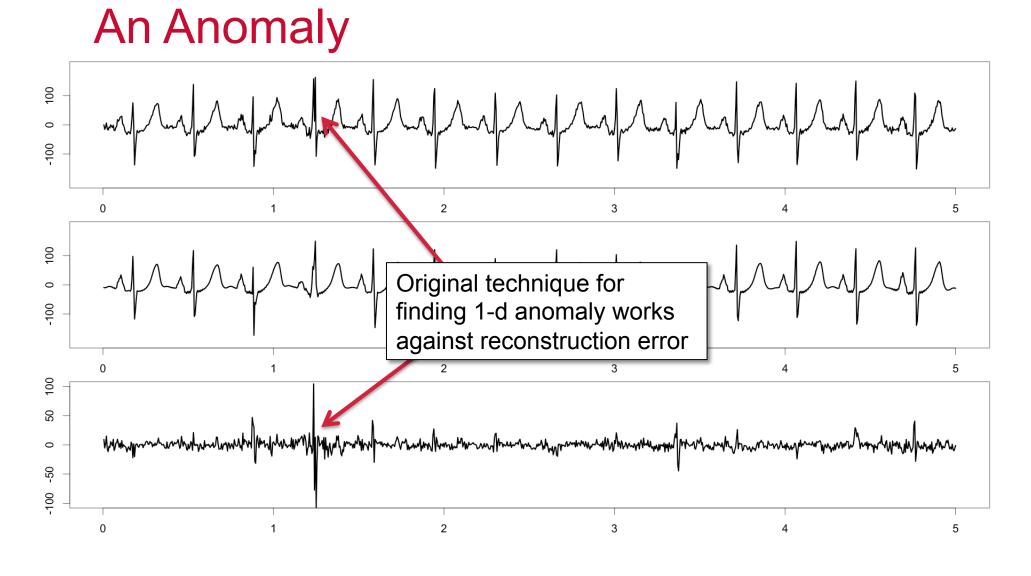
Most Common Shapes (for EKG)



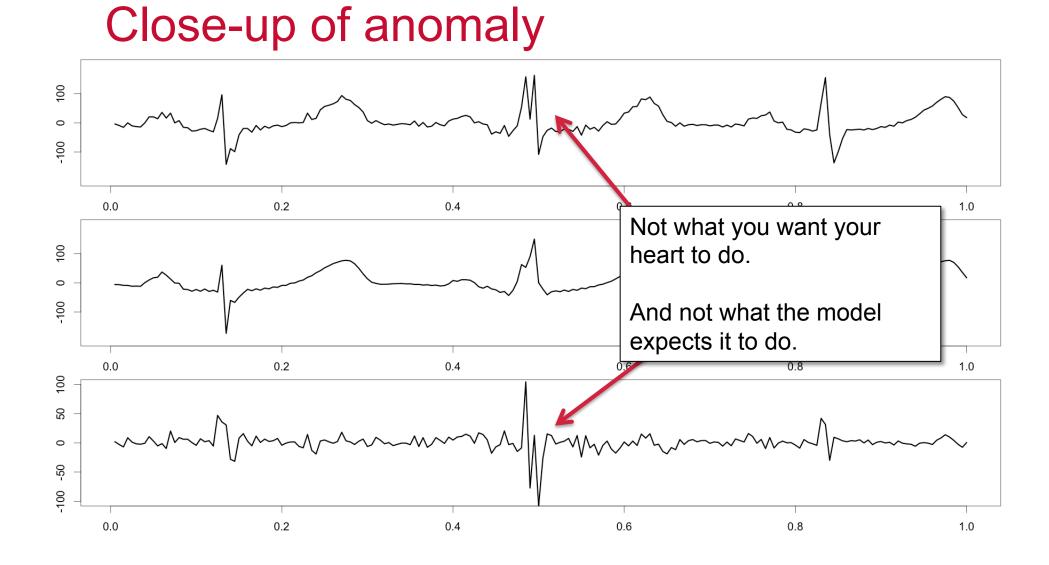
Reconstructed signal

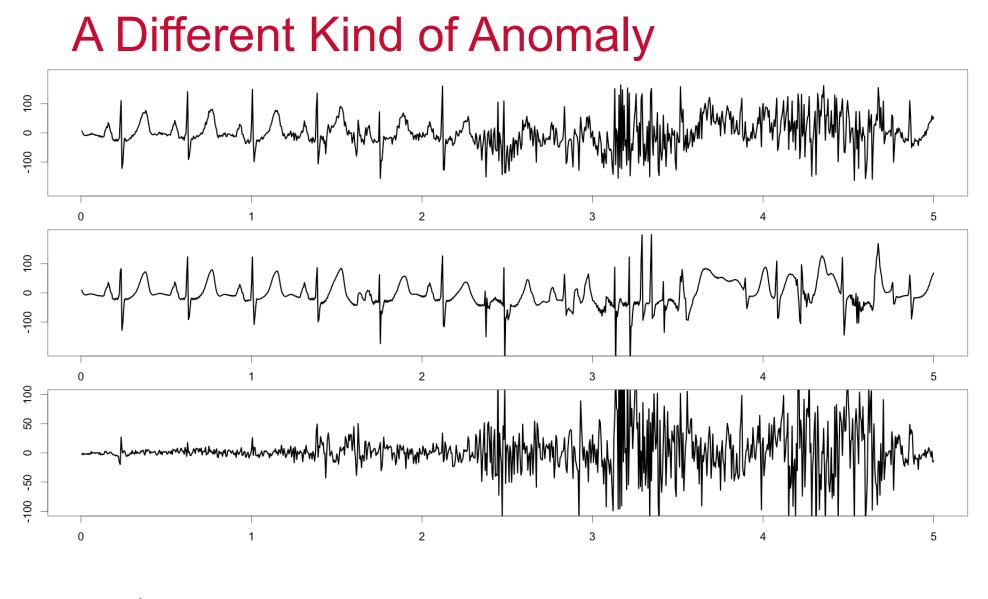


۲۷



 $\mathbf{x}_{\mathbf{c},\mathbf{v}}$





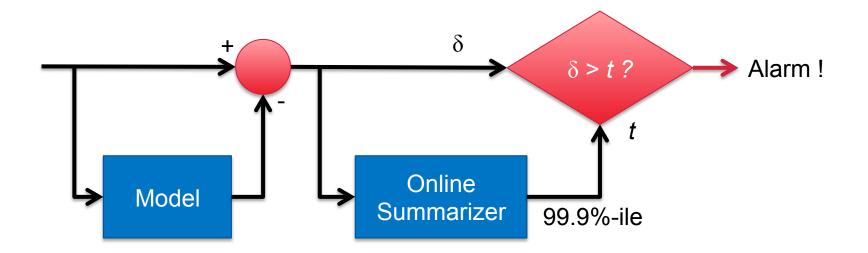
© MapR Technologies, confidential

VA

PR

لاري

Model Delta Anomaly Detection



The Real Inside Scoop

- The model-delta anomaly detector is really just a mixture distribution
 - the model we know about already
 - and a normally distributed error
- The output (delta) is (roughly) the log probability of the mixture distribution
- Thinking about probability distributions is good

Example: Event Stream (timing)

- Events of various types arrive at irregular intervals
 - we can assume Poisson distribution
- The key question is whether frequency has changed relative to expected values
- Want alert as soon as possible

Poisson Distribution

Time between events is exponentially distributed

$$\Delta t \sim \lambda e^{-\lambda t}$$

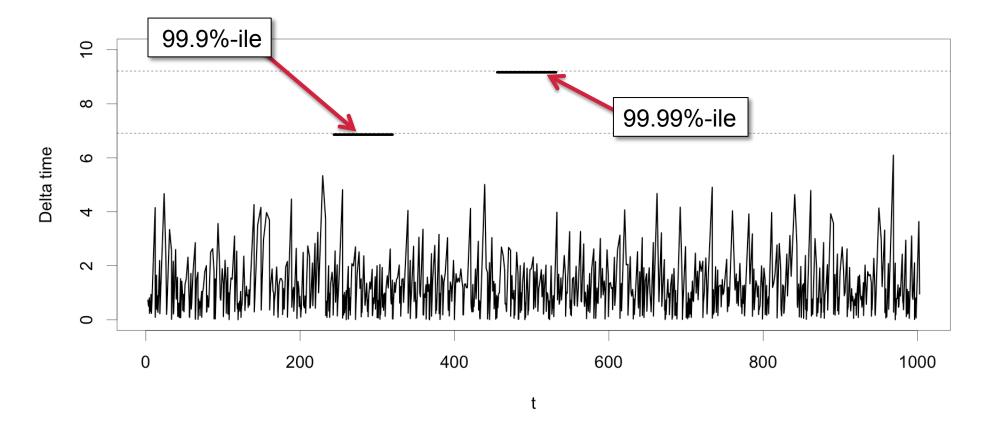
 This means that long delays are exponentially rare

$$P(\Delta t > T) = e^{-\lambda T}$$

$$-\log P(\Delta t > T) = \lambda T$$

• If we know λ we can select a good threshold or we can pick a threshold empirically

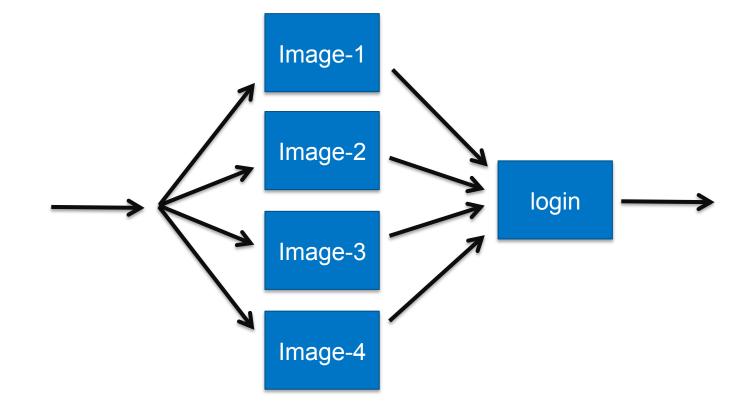
Converting Event Times to Anomaly



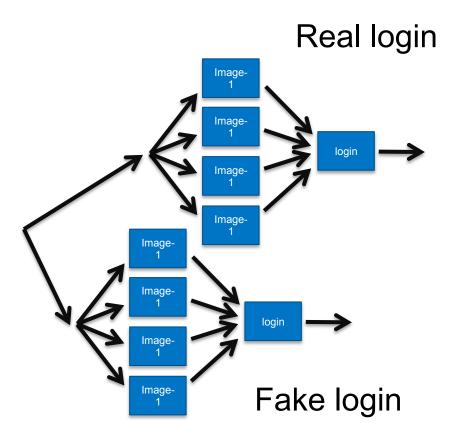
Example: Event Stream (sequence)

- The scenario:
 - Web visitors are being subjected to phishing attacks
 - The hook directs the visitors to a mocked login
 - When they enter their credentials, the attacker uses them to log in
 - We assume captcha's or similar are part of the authentication so the attacker has to show the images on the login page to the visitor
- The problem:
 - We don't really know how the attack works

Normal Event Flow



Phishing Flow



Key Observations

- Regardless of exact details, there are patterns
- Event stream per user shows these patterns
- Phishing will have different patterns at much lower rate
- Measuring statistical surprise gives a good anomaly (fraud or malfunction) indicator

Recap (out of order)

- Anomaly detection is best done with a probability model
- Deep learning is a neat way to build this model – converting to symbolic dynamics simplifies life
- log p is a good way to convert to anomaly measure
- Adaptive quantile estimation works for autosetting thresholds

Recap

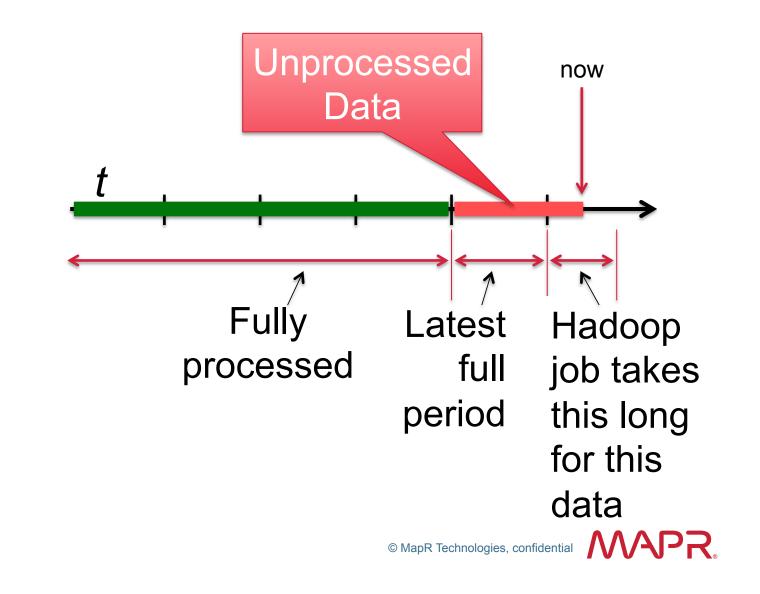
- Different systems require different models
- Continuous time-series
 - sparse coding or deep learning to build signal model
- Events in time
 - rate model base on variable rate Poisson
 - segregated rate model
- Events with labels
 - language modeling
 - hidden Markov models

How Do I Build Such a System

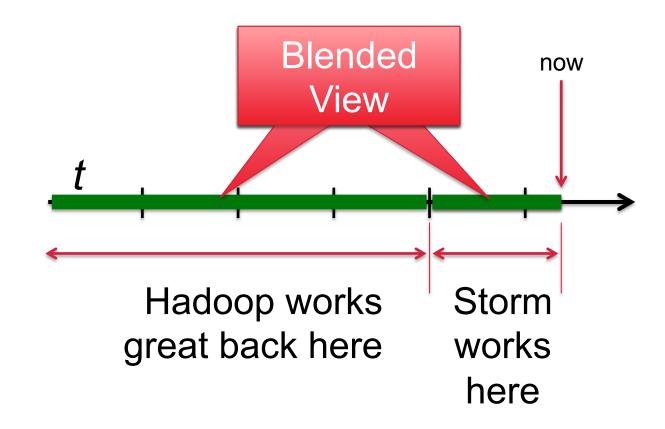
- The key is to combine real-time and long-time
 - real-time evaluates data stream against model
 - long-time is how we build the model
- Extended Lambda architecture is my favorite
- See my other talks on slideshare.net for info
- Ping me directly

Hadoop is Not Very Real-time

 \mathbf{r}



Real-time and Long-time together



Who I am

- Ted Dunning, Chief Application Architect, MapR tdunning@mapr.com tdunning@apache.org @ted dunning
- Committer, mentor, champion, PMC member on several Apache projects
- Mahout, Drill, Zookeeper others

