

Data Science in a Spreadsheet

John Foreman
Data Scientist, MailChimp.com 2014

c (2)

Acquisition	Marshailing
Data Acquisition EBME Ciby gsas	VLDW and BI
	Gsas or
Microsoft (6) KALIDO ORACLE talen	Ekognitio Getion
iNFORMATICA splunk,	Microsoft pa: Act
ANumenta symisort	
Including Complex EventProcess	
Data Pro	No SQL
-1. LexisNexis Ol comscors	17.
EWindowasure INRIX	cloudera EMC ${ }^{2}$ Hortameks Google (iJ)
nielsen (t) REUTERS	Hortorwcerks MAER Microsoft
\# factual spmplwent	$0_{\text {mongo }}$ m ${ }^{\text {minaplogic }}$
OPEN kaggle OXP	amazon \&Palantir
DATA cik radian	
ificouser ims	parsity © TE

Content Management I) ORACLE EMC' IBM

Analysis	Action
Analytics	BPM \& Action
EMC' ${ }^{2}$ sas ($60 / 41$	RTIBCO EMC.
	4 PRACLE
Mzinga GoodData	
[¢mmener Microsolt kKeen	Adobe ${ }^{\text {POOFTWARE }}$
Terajata orracle	Pren 5 software
CEP) tools	
Data Virtualization DOMPOSTTE \square	Microsoft
Microsoft - ${ }^{\text {de-denodo }}$	[ERADATA
	ELOQUA IGrafx

Big Data Landscape (Version 2.0)

Publisher : Markating
 Yieldex if Bboomugoth $\because=2=-2=0=0=0=0$ hedustiv Applations
國 3 knewron \bigcirc nunthen Fire MowSensa Hu? Naw Cimale Soblan Bioomberg GUow,

Anplitation Service Prowiteta

ミlactual : imnoema GNIP YimidataMarliet; ; infochimpe OCO WWichwsAz.a!
20.

Wibings Perannaibata $-=-=-=$

- Choose tools first
- Know a fraction of what's possible
- Flail about

- Choose tools first
- Know a fraction of what's possible
- Flail about
- Create Infographic

твะ

conar

IMPORTANT BIG WORDS.

44901
101101
modestimatravio

THIS IS ALSO IMPORTANT.

- Know what's possible - Data
- Techniques
- Technologies
- Identify problems \& opportunities
- Choose what solves the problem
- Know what's possible - Data
- Techniques
- Technologies
- Identify problems \& opportunities
- Choose what solves the problem

What are we doing here?

- We're here to learn to:
-Differentiate
-Prototype
-Why Excel?

WARNING: I've never done this before. There will be stammering. We'll get through it.
WARNING \#2: There's math ahead. And formulas.

Agenda

- Supervised Machine Learning
- Forecasting
- Optimization
- FOR LATER:
- @John4man
- John.4man@gmail.com

Naïve Bayes

Ryan Seguin ©kerish42 1h
I liked a @YouTube video from @smoothmcgroove youtu.be/hyx9kWYjDI?a Megaman X - Spark Mandrill Acapella

- View media

KZKO The Vibe QKzkoTheVIbe
Git It All - Mandrill rdo.to/KZKO \#nowplaying \#listenlive Expand

CPAN New Modules ©cpan_new
WebService-Mandrill 0.3 by LEV - metacpan.org/release/LEV/We...
\square View summary

- A naïve Bayes model is a supervised Al model
-Takes in past data (in our case, word usage by category) and uses it to classify future observations
-But in order to use naïve Bayes, we need to learn probability

Introduction to Probability

- p (Michael Bay's next film will be terrible) $=1=100 \%$
- $p($ l eat wings today $)=.5=50 \%$

Conditional Probability

${ }^{\bullet} p($ John Foreman will ever go vegan $)=0.0000001$

- $p($ John Foreman will go vegan | you pay him \$1B) $=1$

Law of Total Probability

$$
\begin{aligned}
& \cdot p(\text { vegan })= p(\$ 1 B)^{*} p(\text { vegan } \mid \$ 1 B)+ \\
& p(\text { not } \$ 1 B)^{*} p(\text { vegan } \mid \text { not } \$ 1 B) \\
& \cdot p(\text { vegan })= 0 * 1+ \\
& 1^{*} .0000001=.0000001
\end{aligned}
$$

Joint Probability

- p (John eats Taco Bell) $=.2$
- p(John listens to cheesy electronic music) $=.8$
- p(John eats Taco Bell, John listens to cheese) = ?

The Chain Rule:

- p(John eats Taco Bell, John listens to cheese)
= p (John eats Taco Bell) *
p(John listens to cheese | John eats Taco Bell)

But these are independent:

- p(John listens to cheese | John eats Taco Bell) = p (John listens to cheese)
- p(John eats Taco Bell, John listens to cheese) $=$
p(John eats Taco Bell) * p(John listens to cheese) $=.2^{*} .8=.16$

What happens in a dependent situation?

- p (John listens to cheese) $=.8$
- p(John listens to Depeche Mode) $=.3$
-p(John listens to cheese | John listens to Depeche Mode) = 1
- p(John listens to cheese, John listens to DM) = p (John listens to Depeche Mode) * p(John listens to cheese | John listens to Depeche Mode) =
. 3 * 1
$=.3$

Bayes' Rule

- p(John listens to cheese) $=.8$
- p(John listens to Depeche Mode) $=.3$
- p(John listens to cheese | John listens to Depeche Mode) $=1$

But what about:

- p(John listens to Depeche Mode | John listens to cheese)

Bayes' Rule allows you to flip what you know around:

$$
\begin{aligned}
& { }^{\bullet} p(b)^{*} p(a \mid b)=p(a)^{*} p(b \mid a) \\
& { }^{\bullet} p(a \mid b)=p(a)^{*} p(b \mid a) / p(b) \\
& { }^{\bullet} p(D M \mid \text { cheese })=p(D M){ }^{*} p(\text { cheese } \mid D M) / p(\text { cheese }) \\
& =.3^{*}(1 / .8)=.375
\end{aligned}
$$

Using Bayes Rule to create an AI model

We care about comparing:

- p(app | word1, word2, word3, ...)
- p(other | word1, word2, word3, ...)

Bayes:

- p(app | word1, word2, ...) =
p(app) p(word1, word2, ...| app) /
p(word1, word2, ...)
- p(other | word1, word2, ...) =
p(other) p(word1, word2, ...| other) /
p(word1, word2, ...)
Drop the denominator!

Using Bayes' Rule to create an Al model

Let's get stupid and compare:

- $p(a p p) p(w o r d 1$, word2, ...| app) $=$
$p(a p p) p(w o r d 1 \mid$ app $) p$ (word2| app) p (word3| app)...
- p (other) p (word1| other) p (word2| other) p(word3| other)...

High-level class probabilities are often assumed to be equal. So we need only compare:

- p(word1| app) p(word2| app) ... >= p(word1| other) p (word2| other) ...

Using Bayes Rule to create an AI model

So what is p (word | app):

- p("spark" | app) = sum of "spark" in training app tweets divided by total number of words in app tweets

Rare Words

p(word1| app) p(word2| app) ... >= p (word1| other) p (word2| other) ...

But what if we've never seen one of the words? That's a problem. (Shortened links, new handles, etc.)

The solution: Additive smoothing.

- Give it a 1.
- And add 1 to all the counts!

Floating point underflow

$p(w o r d 1 \mid a p p) p(w o r d 2 \mid a p p) \ldots=. .00001$ * . 000073 * . 0000002 * $\ldots=$ BARF

Instead, take the log:
$\operatorname{In}(p(w o r d 1 \mid$ app $) p(w o r d 2 \mid$ app $) ..)=$.
$\ln (p(w o r d 1 \mid a p p))+\ln (p(w o r d 2 \mid a p p)) \ldots=$
$-11.5+-9.5+\ldots=$ A nice looking negative number

Everybody take a break

Stretch
Drink coffee
Escape out the back

Forecasting (and a little simulation and optimization)

Forecasting is a lot like machine learning. Take past data and turn it into a future prediction. E.g. demand, supply, weather, population ...

In machine learning though, usually you have lots of features. In forecasting, you generally only have a time series. A time series is a collection of values over time: (80s: 2 comic book movies, 90s: 10 comic book movies, 00s: 111 comic book movies, ...)

Time series analysis has been around for forever, but it's gotten some new life thanks to Google, Twitter, etc. (trend and anomaly detection)

Exponential smoothing

One of the best ways to forecast is via a technique called exponential smoothing. In exponential smoothing, you decompose the time series and then use its components to project out.

Today we'll learn Triple Exponential Smoothing with Multiplicative Seasonality.

Exponential Smoothing is an industry standard technique used by Fortune 500s and start-ups alike...and it can be implemented in a spreadsheet

Addierm

mailchimp

Search torm

* Add term

mailchimp
Search torm

+Add term

Share -

Search torm

Search torm

"Cheese Dip"
Gearch torm
+Add term

Multiplicative Seasonality will be a percentage by which a point in the TS moves from a baseline based on its seasonality

Multiplicative Seasonality will be a percentage by which a point in the TS moves from a baseline based on its seasonality

Exponential Smoothing:

(1) Use lots of your data (2) Recent data should be used more Interest over time

Everybody take a break

Stretch
Drink coffee
Escape out the back

Optimization - Making good decisions

- Predictive Modeling
- Given the inputs, what is my output?
- You can't control anything here
- Optimization Modeling
- Given the inputs, how do I optimize my output?
- You can change the future!
- Examples:
- Scheduling
- Investment
- Pricing

Optimization - Why care?

- Optimization can directly touch the bottom line
- Saves time and money
- Minimizes risk, maximizes profit
- Optimization is embedded in many data science techniques

Optimization - So how are optimization problems stated and solved?

- Objective
- Decisions
- Constraints
- And if these are linear then there's an awesome algorithm for solving these problems

Optimization - An example problem

- Decisions:
- Guns
- Butter
- Objective:
- Maximize Revenue
- Guns: \$195
- Butter: \$150
- Constraints:
- Cellar: 21 Cubic Meters
- Guns: 0.5 Cubic Meters
- Butter: 1.5 Cubic Meters
-Budget: \$1800
- Guns: \$150 cost
- Butter: \$100 cost

Optimization - Linear?

- Objective:
-Maximize Revenue
- \$195*Guns + \$150*Butter
- Constraints:
-Cellar: $\quad 0.5^{*}$ Guns $+1.5^{*}$ Butter ≤ 21
-Budget: $\quad \$ 150 * G u n s+\$ 100 * B u t t e r \leq \$ 1800$
-Nonnegative: Guns, Butter ≥ 0

Optimization - Linear?

- Objective:
-Maximize Revenue - \$195*Guns + \$150*Butter
- Constraints:
-Cellar: $\quad 0.5^{*}$ Guns + 1.5*Butter ≤ 21
-Budget: $\quad \$ 150 *$ Guns $+\$ 100 *$ Butter $\leq \$ 1800$
-Nonnegative: Guns, Butter ≥ 0
- Things that are linear in Excel:
-+/- decisions. */〒 decision by constants
- SUM () of decision
-SUMPRODUCT() where decisions are in one range only
-AVERAGE() or decisions

Butter

Butter

Setting up a spreadsheet

\bigcirc	\bigcirc				LPIntro．x	xlsx					
9	苗	目	do	F－	Q－ $\mathrm{S}^{\text {e }}$	earch	in Sheet				\geqslant
＾	Home	Layout	T	ables	Charts		smartart			\checkmark	＊
	M45	＊	$\otimes 0$	（－	$f x$						－
		A			B		C		D		
1	Reve	ue									
2											
3				Guns			tter（tons）				
4	Purc	ase Amo	unt								
5											
6				Guns			tter（tons）				
7	Stora				0.5		1.5				1
8	Price			\＄	150	\＄	100	\＄		1，800	
9	Reve	ue		\＄	195	\＄	150				
恛 葍围		$\begin{array}{\|l\|} \hline 14 \& \rightarrow+1 \\ \hline \text { Normal View } \\ \hline \end{array}$	$\underbrace{\text { Gundter } /+)}_{\text {Ready }}$			12				11	III

Pierre gives a $\$ 500$ bonus

- Not linear in Excel:
- IF(), AND(), OR()
- MAX(), MIN(), LARGE(), PERCENTILE()
- LOOKUP(), INDEX(), MATCH()

Evolutionary Algorithms

- Generate a pool of initial solutions
- Solutions breed through crossover
- Solutions mutate to create new solutions
- Some amount of local search takes place
- Selection occurs

Moving on to a larger problem - Orange Juice

- Color
- Brix/Acid
- Acid

- Astringency

Input Data

- Objective:
-Minimize Cost of Juice Procurement for 3 Months
- Decisions:
-How much to order of what in which month
- Constraints:
-Availability
-Demand: [600, 600, 700]
-Valencia: 40\% for a tax break
-BAR: 11.5-12.5
-Acid: .0075-. 0100
-Astringency: 0 - 4
-Color: 4.5-5.5
- You can only buy from 4 suppliers
- So you need to flick a switch each time you purchase any amount and then total up how many switches got flicked

