

Data Science in a Spreadsheet

John Foreman Data Scientist, MailChimp.com 2014

Reviews that mention hipster in San Francisco

hangover

hipster noodles pasta patio pbr

....

Choose a city

Austin Boston Chicago London Los Angeles New York Paris

Philadelphia Portland San Diego San Francisco Seattle Toronto Washington DC

- Choose tools first
- Know a fraction of what's possible
- Flail about

- Know a fraction of what's possible
- Flail about
- Create Infographic

Girleg or go huwe

Know what's possible

- Data
- Techniques
- Technologies
- Identify problems & opportunities
- Choose what solves
 the problem

Know what's possible •

- Data
- Techniques
- Technologies
- Identify problems & opportunities
- Choose what solves the problem

WILEY

What are we doing here?

- We're here to learn to:
 - -Differentiate
 - -Prototype
- Why Excel?

WARNING: I've never done this before. There will be stammering. We'll get through it.

WARNING #2: There's math ahead. And formulas.

Agenda

- Supervised Machine Learning
- Forecasting
- Optimization

- FOR LATER:
 - @John4man
 - John.4man@gmail.com

Naïve Bayes

- A naïve Bayes model is a supervised Al model
 - -Takes in past data (in our case, word usage by category) and uses it to classify future observations
 - -But in order to use naïve Bayes, we need to learn probability

Introduction to Probability

• *p*(*Michael Bay's next film will be terrible*) = 1 = 100%

• p(I eat wings today) = .5 = 50%

Conditional Probability

• *p*(John Foreman will ever go vegan) = 0.0000001

• *p*(John Foreman will go vegan | you pay him \$1B) = 1

Law of Total Probability

Joint Probability

- *p*(*John eats Taco Bell*) = .2
- *p*(John listens to cheesy electronic music) = .8
- *p*(John eats Taco Bell, John listens to cheese) = ?

The Chain Rule:

p(John eats Taco Bell, John listens to cheese)
 = p(John eats Taco Bell) *
 p(John listens to cheese | John eats Taco Bell)

But these are independent:

- p(John listens to cheese | John eats Taco Bell) = p(John listens to cheese)
- p(John eats Taco Bell, John listens to cheese) =
 p(John eats Taco Bell) * p(John listens to cheese) = .2*.8 = .16

What happens in a dependent situation?

- *p*(*John listens to cheese*) = .8
- *p*(*John listens to Depeche Mode*) = .3
- *p*(John listens to cheese | John listens to Depeche Mode) = 1
- p(John listens to cheese, John listens to DM) = p(John listens to Depeche Mode) * p(John listens to cheese | John listens to Depeche Mode) = .3 * 1
 - = .3

Bayes' Rule

- p(John listens to cheese) = .8
- *p*(*John listens to Depeche Mode*) = .3
- *p(John listens to cheese | John listens to Depeche Mode) = 1* But what about:

• *p*(John listens to Depeche Mode | John listens to cheese)

Bayes' Rule allows you to flip what you know around:

•p(a | b) = p(a) * p(b | a) / p(b)

• p(DM | cheese) = p(DM) * p(cheese | DM) / p(cheese) = .3 * (1/.8) = .375

Using Bayes Rule to create an AI model

```
We care about comparing:
```

- *p*(*app* | *word1*, *word2*, *word3*, ...)
- •p(other | word1, word2, word3, ...)

Bayes:

- p(app | word1, word2, ...) = p(app) p(word1, word2, ...| app) / p(word1, word2, ...)
- p(other | word1, word2, ...) =
 p(other) p(word1, word2, ...| other) /
 p(word1, word2, ...)

Drop the denominator!

Using Bayes' Rule to create an AI model

Let's get stupid and compare:

• *p*(*app*) *p*(*word1*, *word2*, ...| *app*) =

p(app) p(word1| app) p(word2| app) p(word3| app)...

• p(other) p(word1| other) p(word2| other) p(word3| other)...

High-level class probabilities are often assumed to be equal. So we need only compare:

p(word1| app) p(word2| app) ... >=
 p(word1| other) p(word2| other) ...

Using Bayes Rule to create an AI model

So what is p(word | app):

 p("spark" | app) = sum of "spark" in training app tweets divided by total number of words in app tweets

Rare Words

```
p(word1| app) p(word2| app) ... >=
p(word1| other) p(word2| other) ...
```

But what if we've never seen one of the words? That's a problem. (Shortened links, new handles, etc.)

The solution: Additive smoothing.

• Give it a 1.

And add 1 to all the counts!

Floating point underflow

p(word1| app) p(word2| app) ... = .00001 * .000073 * .0000002 * ... = BARF

Instead, take the log: In(p(word1| app) p(word2| app) ...) = In(p(word1| app)) + In(p(word2| app)) ... = -11.5 + -9.5 + ... = A nice looking negative number

Everybody take a break

Stretch Drink coffee Escape out the back

Forecasting (and a little simulation and optimization)

Forecasting is a lot like machine learning. Take past data and turn it into a future prediction. E.g. demand, supply, weather, population ...

In machine learning though, usually you have lots of features. In forecasting, you generally only have a **time series**. A time series is a collection of values over time: (80s: 2 comic book movies, 90s: 10 comic book movies, 00s: 111 comic book movies, ...)

Time series analysis has been around for forever, but it's gotten some new life thanks to Google, Twitter, etc. (trend and anomaly detection)

Exponential smoothing

One of the best ways to forecast is via a technique called **exponential smoothing.** In exponential smoothing, you decompose the time series and then use its components to project out.

Today we'll learn **Triple Exponential Smoothing with Multiplicative Seasonality.**

Exponential Smoothing is an industry standard technique used by Fortune 500s and start-ups alike...and it can be implemented in a spreadsheet

Everybody take a break

Stretch Drink coffee Escape out the back

Optimization – Making good decisions

- Predictive Modeling
 - Given the inputs, what is my output?
 - You can't control anything here
- Optimization Modeling
 - Given the inputs, how do I optimize my output?
 - You can change the future!
- Examples:
 - Scheduling
 - Investment
 - Pricing

Optimization – Why care?

- Optimization can directly touch the bottom line
 - Saves time and money
 - Minimizes risk, maximizes profit
- Optimization is embedded in many data science techniques

Optimization – So how are optimization problems stated and solved?

- Objective
- Decisions
- Constraints
- And if these are *linear* then there's an awesome algorithm for solving these problems

Optimization – An example problem

- Decisions:
 - Guns
 - Butter
- Objective:
 - Maximize Revenue
 - Guns: \$195
 - Butter: \$150
- Constraints:
 - Cellar: 21 Cubic Meters
 - Guns: 0.5 Cubic Meters
 - Butter: 1.5 Cubic Meters
 - Budget: \$1800
 - Guns: \$150 cost
 - Butter: \$100 cost

Optimization – Linear?

• Objective:

-Maximize Revenue

- •\$195*Guns + \$150*Butter
- Constraints:
 - -Cellar: 0.5^* Guns + 1.5^* Butter ≤ 21
 - -Budget: \$150*Guns + \$100*Butter ≤ \$1800

-Nonnegative: Guns, Butter ≥ 0

Optimization – Linear?

- Objective:
 - -Maximize Revenue
 - \$195*Guns + \$150*Butter
- Constraints:
 - -Cellar: $0.5^{Guns} + 1.5^{Butter} \le 21$
 - -Budget: \$150*Guns + \$100*Butter ≤ \$1800
 - -Nonnegative: Guns, Butter ≥ 0
- Things that are linear in Excel:
 - -+/- decisions. */÷ decision by constants
 - -SUM() of decision
 - -SUMPRODUCT() where decisions are in one range only
 - -AVERAGE() or decisions

Setting up a spreadsheet

000				LPIntro.xlsx						
2) 🛅 🖘 🔜 🚔 🔀 🗅				Q- (Search in Sheet						
•	Home	Layout	Tables	Charts	Smar	tArt		>> ~ 3	* 1	
	M45	‡ €) © (~ f	×	<i>W</i>				1	
2	1	A		B		C		D		
1	Revenue									
2			100							
3			Guns	1	Butter	(tons)			1	
4	Purchase Amount		unt							
5							ĺ			
6			Guns	Guns		Butter (tons)		Limit		
7	Stora	ge		0.5		1.5		21		
8	Price		\$	150	\$	100	\$	1,800		
9	Rever	nue	\$	195	\$	150	2.			
-	mm) H		GunAndButte	r / + /			t:	11	1	
	No	rmal View	Ready							

Pierre gives a \$500 bonus

- Not linear in Excel:
- IF(), AND(), OR()
- MAX(), MIN(), LARGE(), PERCENTILE()
- LOOKUP(), INDEX(), MATCH()

Evolutionary Algorithms

00	Solver Parameters	
Set Objective:	85 IJ	
To: 💽 Max 🔘 By Changing Variable	Min 🕜 Value OF Cells:	0
\$8\$4:\$C\$4		
Subject to the Constru	sints:	
\$8\$4:SC\$4 <= 25		Add
SES7 <- SDS7 SES8 <- SDS8		Change
		Delete
		Reset All
		Load/Save
Make Unconstrain	ed Variables Non-Negati	we
Select a Solving Metho	ed Evolutionary	Options
Solving Method Select the GRG Nonline nonlinear. Select the L and select the Evolutio smooth.	ear engine for Solver Proble P Simplex engine for linear many engine for Solver prot	ms that are smooth Solver Problems, dems that are non-
	Close	Solve

- Generate a pool of initial solutions
- Solutions breed through crossover
- Solutions *mutate* to create new solutions
- Some amount of *local* search takes place
- Selection occurs

Moving on to a larger problem – Orange Juice

• Astringency

Input Data

•	Home Layout	Tables	Charts Sma	rtArt For	mulas Dat	a Review	Develope	iii 🗍		~ *
	A1 : 0	O - fx	Varietal			1			1	
1		6	C	D.	E	L IE	6	11		1. Bell
1	Varietal	Region	Available (1,000 Gallons)	Brix / Acid Ratio	Acid (%)	Astringency Color (1-10 (1-10 Scale) Scale)		Price (per 1K Gallons)	Shipping	
2	Hamlin	Brazil	672	10.5	0.60%	3	3	\$ 500.00	5	100.00
3	Mosambi	India	400	6.5	1.40%	7	1	\$ 310.00	5	150.00
4	Valencia	Florida	1200	13	0.95%	3	3	\$ 750.00	5	10000
5	Hamlin	California	168	11	1.00%	3	5	\$ 600.00	\$	60.00
б	Gardner	Arizona	84	12	0.70%	1	5	\$ 600.00	s	75.00
7	Sunstar	Texas	210	10	0.70%	1	5	\$ 625.00	5	50.00
8	Jincheng	China	588	ş	1.35%	7	3	\$ 440.00	5	120.00
9	Berna	Spain	168	15	1.10%	4	8	\$ 600.00	5	110.00
10	Verna	Mexico	300	1	1.30%	8	3	\$ 300.00	5	90.00
11	Biondo Commune	Egypt	210	19	1.30%	3	5	\$ 460.00	5	130.00
12	Belladonna	Italy	180	14	0.50%	3	9	\$ 505.00	5	115.00

- Objective:
 - -Minimize Cost of Juice Procurement for 3 Months
- Decisions:
 - -How much to order of what in which month
- Constraints:
 - -Availability
 - -Demand: [600, 600, 700]
 - -Valencia: 40% for a tax break
 - -BAR: 11.5 12.5
 - -Acid: .0075 .0100
 - -Astringency: 0 4
 - -Color: 4.5 5.5

- •You can only buy from 4 suppliers
- So you need to flick a switch each time you purchase any amount and then total up how many switches got flicked