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What Matters: Apps. Data. Analytics.

Apps power businesses, and APPS

those apps generate data
Analytic insights from that data
/ drive new app functionality,
which in-turn drives new data SPEED

The faster you can move ANALYTICS DATA

/ around that cycle, the faster

you learn, innovate & pull \_/
away from the competition
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Pivotal’s Opportunity Spring
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The Connected Car Drives Innovation
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Possible Data Science Use-Cases

* Predictive Car Maintenance
— More accurately predict part failure
- Optimize part repair and replacement schedule

Leveraging Driving Behavior
- Useful to differentiate insurance pricing based on driving style
—  Optimize car design

Improving GPS Systems
— Establish baseline for traffic congestion
— Gain a detailed view on traffic
— Create more meaningful metrics for routing

Predictive Power for Assistance Systems
- Optimize fuel efficiency

— Predict the future state of a car in the next 2 minutes
(starts, stops, emergency braking)

Traffic Light Assistance
— Signal timing of traffic lights
- Crowd sourcing of traffic signals

@noellesio, @gopivotal Pivotal
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How fast are vehicles moving?
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How fast are vehicles moving?

ity
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When do disruptions happen?
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When will the light change?
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Taking Lessons From Other Disciplines

Change-Point Detection can
be used to uncover regimes in
wind-turbine data.

Soores

It can also be applied to uncover
regimes in traffic light
switching patterns.

5 /\ Statistical Testing

| scoms Scores

@noellesio, @gopivotal Pivotal
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Taking Lessons From Other Disciplines
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Understanding Traffic Flow

A dynamic, more detailed
understanding of traffic is now possible.
Can we answer both ‘What velocity?’
and ‘Why?’

Context

e Current GPS systems are based on
average velocity over street segments

e Real-time traffic information (e.g. Waze)
does not deliver detailed view nor T
prediction E—

[ \
I
1

i

H*\WMAM‘ [

@akagoshima, @gopivotal Pivotal

© Copyright 2014 Pivotal. All rights reserved.

15



Our Approach — Multi-step algorithm

From our experience, real-world data often requires multi-step procedures

Step 1: Answer ‘What velocity?’ Step 2: Answer ‘Why?’

First find distinct velocity Find influencing effects
groups E—

@akagoshima, @gopivotal Pivotal
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Find Velocity Groups

Velocity distributions can be fit well
with Gaussians

ndar = - -
Doviation ~49 30 20 10 +1o +20

An ‘overlay’ of multiple Gaussians is
called Gaussian Mixture Model

GMM fitting of the velocity
distribution is done by Expectation- -
Maximization algorithm

g8888
33333
B888S
EEEE]
33

Shapes and positions of Gaussians
determine velocity groups

@akagoshima, @gopivotal Pivotal
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Gaussian Mixture Model
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Predict Gaussians

e The second step seeks to explain/predict ﬂ
which Gaussian a data point belongs to °
» Classification task!

e Features for classification: l(,///
A

— Time of day, day of week

( 1
- Weather _— " ‘\ T ( o
— Direction M:« \;’\1{:\'; * ' * ONI,LY ONLY Or;LY B

— Special Events

@akagoshima, @gopivotal Pivotal
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White and Black Boxes

* Analyze correlations between features of a data point and its
assignment to a Gaussian

* From a Machine Learning point of view, this is classification

/’
e Generate an interpretable model < Can capture more complex
description correlations

» Explanation of behavior » Prediction of Gaussian assignment

@akagoshima, @gopivotal Pivotal
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Putting it all together...
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Better Travel Time Prediction

 Traffic profiles emerged from data

— Without using metadata, we uncovered road
segment traffic patterns

* |dentified Bias Effects

— Inferring the impact of turns and day of week on velocity
— Able to predict rush hour by day and time by road segment

* Traffic Light Patterns

— Infer public transportation effects on traffic
— Automatically determine different switching patterns

@akagoshima, @gopivotal Pivotal
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London Road Traffic
Disruptions

Can we predict when
o unexpected incidents will end?

Publicly available data:

..‘ * Transport for London traffic feed
w= (refreshed every 5 minutes)

Photo by James Blunt Photography on
Flickr (CC BY-ND 2.0)

-~ @ianhuston, @gopivotal Pivotal
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Models 1o ' ' ' '

Linear Regression 08l
» Disruption reports &
weather features
> 0.6f
Random Forests C
* Rounded categorical E 0al

* Regression : :
Linear Regression

- Rounded Random Forests
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Live Predictions

http://ds-demo-transport.cfapps.io
Using:

) Active Incidents and Predicted Durations
Pivotal

Green p I um: Data base Transport for London Data

Start Time Location of Incident # Streets

Affected

Type of
Incident

Predictions

Total Time

Thursday, 6 Feb 14 20:40 Greenwich )
. Mean Time [A10] Turkey Street (EN1) (Enfield) 2
‘ ' I I b Thursday, 6 Feb 14 21:00 Greenwich  [A40] Western Avenue (HA4 ,UB5) 2
Mean Time (Hilingdon)

Thursday, 6 Feb 14 20:44 Greenwich ~ [A406] North Circular Road (E12)

Mean Time (Newham)
P 1 t | C F‘M Thursday, 6 Feb 14 21:12 Greenwich [A205] Dulwich Common (SE22) 3
|VO a Mean Time (Southwark)

Flooding

Flooding

Fire

Collision

Duration Remaining

4.2 hours 2.7 hours

4.2 hours 3 hours

2.2 hours Up to 1 hour

Up to 30

1.1 hours minutes

Using 231209 reports about 9036 incidents since September 2013. Latest Update: Thursday, 6 Feb 14 21:50 Greenwich Mean Time

@ianhuston, @gopivotal

Pivotal.
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Summary

e Making use of a vibrant ecosystem of traffic data

* Innovative approaches needed to generate value
from abundant and complex sources

* Connecting predictive models to traffic in the
physical world is the future of smart cities

Pivotal
© Copyright 2014 Pivotal. All rights reserved.
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Thank You!

Check out more of our Data Science use-cases at
www.qoPivotal.com
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