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1. Why program?


2. Why R?


3. Data manipulation with dplyr


4. Data visualisation with ggvis



Why 
program?



http://www.flickr.com/photos/tonibduguid/2836161961/sizes/l/

Reproducibility

http://www.flickr.com/photos/tonibduguid/2836161961/sizes/l/


http://www.flickr.com/photos/tonibduguid/2836161961
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http://www.flickr.com/photos/tonibduguid/2836161961/sizes/l/


http://www.flickr.com/photos/altemark/337248947/sizes/l/

Communication

http://www.flickr.com/photos/quasimondo/98423379/sizes/o/


Why R?
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library(dplyr) 
logs <- readRDS("logs.rds") # http://cran-logs.rstudio.com/ 
!
print(logs) 
#> Source: local data frame [23,454,437 x 10] 
#> 
#>         date     time    size r_version r_arch        r_os   package 
#> 1  2013-01-01 00:18:22  551371    2.15.2 x86_64 darwin9.8.0     knitr 
#> 2  2013-01-01 00:43:47  220277    2.15.2 x86_64     mingw32 R.devices 
#> 3  2013-01-01 00:43:51 3505851    2.15.2 x86_64     mingw32     PSCBS 
#> 4  2013-01-01 00:43:53  761107    2.15.2 x86_64     mingw32      R.oo 
#> 5  2013-01-01 00:31:15  187381    2.15.2   i686   linux-gnu     akima 
#> 6  2013-01-01 00:59:46 2388932    2.15.2 x86_64     mingw32 spacetime 
#> 7  2013-01-01 00:31:31   34662    2.15.1 x86_64   linux-gnu    mnormt 
#> 8  2013-01-01 00:30:55  873639    2.15.2 x86_64     mingw32      MASS 
#> 9  2013-01-01 00:43:26  607000        NA     NA          NA     tsDyn 
#> 10 2013-01-01 00:19:25  402583    2.15.2 x86_64 darwin9.8.0   mvtnorm 
#>..        ...      ...     ...       ...    ...         ...       ... 
#> Variables not shown: version (chr), country (chr), ip_id (int) 
!
print(object.size(logs), units = "GB") 
#> 1.6 Gb

No, I don't want to 
see 10,000 rows!

Commas helpful

Not “big” data,  
but still big
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Key insight 
There are only a few data 
analysis verbs and they’re 

the same regardless of 
where your data lives 



Single table verbs

• select: subset variables

• filter: subset rows

• mutate: add new columns

• summarise: reduce to a single row

• arrange: re-order the rows

+ group by



# What packages are most downloaded 
packages <- group_by(logs, package) 
counts <- summarise(packages, n = n()) 
head(arrange(counts, desc(n)), 20) 
!
# Takes ~2s (mostly to build index)



# All functions are pure (no side-effects) -> easy to  
# reason about. But function composition is hard to read. 
# Solution: x %.% f(y) -> f(x, y) 
!
logs %.% 
  group_by(package) %.% 
  summarise(n = n()) %.% 
  arrange(desc(n)) %.% 
  head(20)



Multi-table verbs

• left join: all x + matching y

• inner join: matching x + y

• semi join: all x with match in y

• anti join: all x without match in y
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Local data frames
• High-performance C++. Avoid copies. 

Avoid R function call overhead with 
custom interpreter for simple R 
expressions.


• Thanks to Romain Francois

• (Currently working on automatic 

parallelisation)



Key insight 
Move the computation 

to the data



dplyr sources
• Local data frame

• Local data table

• Local data cube (experimental)

• RDMS: Postgres, MySQL, SQLite, 

Oracle, MS SQL

• BigQuery



Translate R to SQL
High-level data manip verbs correspond 
to high-level component of SQL 
grammar.

Automatically translate small 
expressions from R to SQL.

Translation can’t be perfect; aiming for 
semantic equivalency.



hflights <- hflights_postgres("hflights") 
hflights <- hflights_postgres() %.% tbl("hflights") 
ranked <- hflights %.% 
  group_by(TailNum) %.% 
  mutate(Rank = rank(desc(ArrDelay))) %.% 
  select(TailNum, ArrDelay, Rank) 
!
ranked$query 
# SELECT  
#   *,  
#   RANK() OVER (PARTITION BY "TailNum" 
#     ORDER BY "ArrDelay" DESC) AS "rank" 
#  FROM "hflights"



worst <- hflights %.% 
  group_by(TailNum) %.% 
  filter(ArrDelay == max(ArrDelay)) %.% 
  select(TailNum, ArrDelay) 
!
worst$query 
# SELECT "TailNum", "ArrDelay" 
# FROM ( 
#   SELECT "TailNum", "ArrDelay", max("ArrDelay")  
#      OVER (PARTITION BY "TailNum") AS "_W5" 
#   FROM "hflights" 
# ) AS "_W6" 
# WHERE "ArrDelay" = "_W5"



Google for 
“dplyr”



ggvis
with Winston Chang
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Goals

Describe visualisations declaratively 
(à la ggplot2).


Graphics not just on the web,  
but of the web.


Built out of reactive components 
(interactive and dynamic). 
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Demo



Google for 
“ggvis”



Conclusions



Bottlenecks
Biggest bottleneck in exploration is 
cognitive.

Need tools that help you define the 
problem and express solutions 
programmatically.

R makes it easy to create DSLs for parts 
of the data analysis process.



Office hour 
Thursday 1:40pm • Table A 

Google for 
“dplyr”,“ggvis”
http://bit.ly/expressive-da2

http://bit.ly/expressive-da

