
Hadley Wickham  
@hadleywickham
Chief Scientist, RStudio

Expressing
yourself in R

February 2014

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

Data analysis is the process
by which data becomes

understanding, knowledge
and insight

Data analysis is the process
by which data becomes

understanding, knowledge
and insight

Data analysis is the process
by which data becomes

understanding, knowledge
and insight

Data analysis is the process
by which data becomes

understanding, knowledge
and insight

1. Why program?

2. Why R?

3. Data manipulation with dplyr

4. Data visualisation with ggvis

Why
program?

http://www.flickr.com/photos/tonibduguid/2836161961/sizes/l/

Reproducibility

http://www.flickr.com/photos/tonibduguid/2836161961/sizes/l/

http://www.flickr.com/photos/tonibduguid/2836161961

Au
to

m
at

io
n

http://www.flickr.com/photos/tonibduguid/2836161961/sizes/l/

http://www.flickr.com/photos/altemark/337248947/sizes/l/

Communication

http://www.flickr.com/photos/quasimondo/98423379/sizes/o/

Why R?

Think it Do itDescribe it

Cognitive

Computational

(precisely)

Transform

Visualise

Model

Surprises, but doesn't scale

Scales, but doesn't (fundamentally) surprise

Tidy

dplyr

Transform

Visualise

Model

Surprises, but doesn't scale

Scales, but doesn't (fundamentally) surprise

Tidy

library(dplyr)
logs <- readRDS("logs.rds") # http://cran-logs.rstudio.com/
!
print(logs)
#> Source: local data frame [23,454,437 x 10]
#>
#> date time size r_version r_arch r_os package
#> 1 2013-01-01 00:18:22 551371 2.15.2 x86_64 darwin9.8.0 knitr
#> 2 2013-01-01 00:43:47 220277 2.15.2 x86_64 mingw32 R.devices
#> 3 2013-01-01 00:43:51 3505851 2.15.2 x86_64 mingw32 PSCBS
#> 4 2013-01-01 00:43:53 761107 2.15.2 x86_64 mingw32 R.oo
#> 5 2013-01-01 00:31:15 187381 2.15.2 i686 linux-gnu akima
#> 6 2013-01-01 00:59:46 2388932 2.15.2 x86_64 mingw32 spacetime
#> 7 2013-01-01 00:31:31 34662 2.15.1 x86_64 linux-gnu mnormt
#> 8 2013-01-01 00:30:55 873639 2.15.2 x86_64 mingw32 MASS
#> 9 2013-01-01 00:43:26 607000 NA NA NA tsDyn
#> 10 2013-01-01 00:19:25 402583 2.15.2 x86_64 darwin9.8.0 mvtnorm
#>..
#> Variables not shown: version (chr), country (chr), ip_id (int)
!
print(object.size(logs), units = "GB")
#> 1.6 Gb

No, I don't want to
see 10,000 rows!

Commas helpful

Not “big” data,  
but still big

Think it
Do it

Describe it

Cognitive

Computational

(precisely) Get it

Key insight
There are only a few data
analysis verbs and they’re

the same regardless of
where your data lives

Single table verbs

• select: subset variables

• filter: subset rows

• mutate: add new columns

• summarise: reduce to a single row

• arrange: re-order the rows

+ group by

What packages are most downloaded
packages <- group_by(logs, package)
counts <- summarise(packages, n = n())
head(arrange(counts, desc(n)), 20)
!
Takes ~2s (mostly to build index)

All functions are pure (no side-effects) -> easy to
reason about. But function composition is hard to read.
Solution: x %.% f(y) -> f(x, y)
!
logs %.%
 group_by(package) %.%
 summarise(n = n()) %.%
 arrange(desc(n)) %.%
 head(20)

Multi-table verbs

• left join: all x + matching y

• inner join: matching x + y

• semi join: all x with match in y

• anti join: all x without match in y

Think it
Do it

Describe it

Cognitive

Computational

(precisely) Get it

Local data frames
• High-performance C++. Avoid copies.

Avoid R function call overhead with
custom interpreter for simple R
expressions.

• Thanks to Romain Francois

• (Currently working on automatic

parallelisation)

Key insight
Move the computation

to the data

dplyr sources
• Local data frame

• Local data table

• Local data cube (experimental)

• RDMS: Postgres, MySQL, SQLite,

Oracle, MS SQL

• BigQuery

Translate R to SQL
High-level data manip verbs correspond
to high-level component of SQL
grammar.

Automatically translate small
expressions from R to SQL.

Translation can’t be perfect; aiming for
semantic equivalency.

hflights <- hflights_postgres("hflights")
hflights <- hflights_postgres() %.% tbl("hflights")
ranked <- hflights %.%
 group_by(TailNum) %.%
 mutate(Rank = rank(desc(ArrDelay))) %.%
 select(TailNum, ArrDelay, Rank)
!
ranked$query
SELECT
*,
RANK() OVER (PARTITION BY "TailNum"
ORDER BY "ArrDelay" DESC) AS "rank"
FROM "hflights"

worst <- hflights %.%
 group_by(TailNum) %.%
 filter(ArrDelay == max(ArrDelay)) %.%
 select(TailNum, ArrDelay)
!
worst$query
SELECT "TailNum", "ArrDelay"
FROM (
SELECT "TailNum", "ArrDelay", max("ArrDelay")
OVER (PARTITION BY "TailNum") AS "_W5"
FROM "hflights"
) AS "_W6"
WHERE "ArrDelay" = "_W5"

Google for
“dplyr”

ggvis
with Winston Chang

Transform

Visualise

Model

Surprises, but doesn't scale

Scales, but doesn't (fundamentally) surprise

Tidy

Goals

Describe visualisations declaratively 
(à la ggplot2).

Graphics not just on the web,  
but of the web.

Built out of reactive components 
(interactive and dynamic).

Think it
Do it

Describe it

Cognitive

Computational

(precisely) Get it

Demo

Google for
“ggvis”

Conclusions

Bottlenecks
Biggest bottleneck in exploration is
cognitive.

Need tools that help you define the
problem and express solutions
programmatically.

R makes it easy to create DSLs for parts
of the data analysis process.

Office hour 
Thursday 1:40pm • Table A

Google for 
“dplyr”,“ggvis”
http://bit.ly/expressive-da2

http://bit.ly/expressive-da

