How Twitter Monitors
Millions of Time-series

. 4

Yann Ramin
Observability at Twitter
Strata Santa Clara - 2014

@theatrus
yann@twitter.com

Monitoring for all of Twitter
Services and Infrastructure

Concerns

Time series data

Generating, Collection, Storing, Querying

Alerting

For when you’re not watching

Tracing

Distributed systems call tracing

Time series data

Host OS

Service B

Metrics
Library

Metrics
Library

Metncs
Library

Metrics
Library

Monitoring

Collector

Storage APl

Query Engine

Dashboards

g[S ON

Service A

Service B

Service C

Service D

Metrics
Library

Metrics
Library

Metnics
Library

Metrics
Library

N\ wev |

s P~ N - *
{_‘ /(f\'\k\(}'j(‘\‘ (']

Ad HOC L.’ Ueres

Data from services

Not just hosts

Contrast:
The “Nagios model”

The website is slow

“Nagios says it can’t connect
to my webserver”

ssh me@host uptime
ssh me@host top
ssh me@host tail /var/log

Now do that for moren > 5
servers

Logs are unstructured

“Log parsing” is a stop-gap

Why deploy log parsing rules with applications?

Move beyond logging

structured statistics

Provide rich and detailed
Instrumentation

Make it cheap

and easy

First tier aggregations and
sampling are in the application

Incrementing atomic counter = cheap
Writing to disk, sending packet, etc = expensive

Lets look at Finagle-based
services

http://twitter.github.io/finagle/

Lots of great default
Instrumentation

For network, JVM, etc

Easy to add more

case class StatsFilter(

name: String,

statsReceiver: StatsReceiver = NullStatsReceiver
) extends SimpleFilter[Things, Unit] {

private[this] val stats = statsReceiver.scope(name)
private[this] val all = stats.counter("all")

def apply(set: Things, service: Service[Things, Unit]):
Future[Unit] = {
all.incr(set.length)
stats.counter(set.service).incr(set.metrics.length)
service(set)

¥
¥

case class StatsFilter(

name: String,

statsReceiver: StatsReceiver
) extends SimpleFilter[Things, Unit| {

Get a StatsReceiver

Make a scoped receiver — statsReceiver. scope (name)

Create a counter named all stats. counter'("all”)

def apply(set: Things, service: Service[Things, Unit]):
Future[Unit] = {
all.incr(set.length)

stats.counter(set.service).incr(set.metrics.length)
ser\

Increment the counter

Get a counter named by variable, increment by length

Easy to get out

http://server:port/
admin/metrics.json

(...

"srv/http/request latency ms.
"srv/http/request latency ms.
"srv/http/request latency ms.
"srv/http/request latency ms.

"srv/http/request latency ms

"srv/http/request latency ms.

"srv/http/requests”: 18109445,

aveg
count

max' :
min

poo" :
po95":
p99 " :

p9990" :
p9999":

sum' :

" 45,
": 181094,

5333,

"0,
.p50" :
"srv/http/request latency ms.
"srv/http/request latency ms.
"srv/http/request latency ms.
"srv/http/request latency ms.
"srv/http/request latency ms.

37,

72,

157,
308,
820,
820,

. 8149509,

Great support for approximate
histograms

com.twitter.common.stats.ApproximateHistogram
used as stats.stat(“timing”).add(datapoint)

Also, counters & gauges

Twitter-Server

A simple way to make a Finagle server
Sets things up the right way

https://github.com/twitter/twitter-server

What about everything else¢

Very simple HTTP+JSON protocols means this is easy to add to other
persistent servers

We support ephemeral tasks

Rolls up into a persistent server

Now we’ve replaced ssh with curl

and this is where Observability comes in

Distributed Scala service

Find endpoints:

Zookeeper
Asset database
other sources

Fetch/sample data

HTTP GET (via Finagle)

Filter, cleanup, etc

Hygiene for incoming data

Route to storage layers!

Time series database, memory pools, queues and
HDFS aggregators

Metrics are added by default

Need instrumentation? Just add it!
Shows up “instantly” in the system

This is good

Easy to use
No management overhead

“Can you add a rrd-file for us¢”

This is bad

“Metric name on .toString”
[l@579b7698

Remove barriers
Be defensive

Pick both

Storage AP -

Query Engine

Distributed Scala front-end
service

Databases, caches, data conversion, querying, etc.

220 million time series

Updated every minute

When this talk was proposed: 160 million time series

Cassandra

For real time storage

(Now replaced with an internal
database)

Similar enough to Cassandra

Uses KV storage

For the most part

Multiple clusters per DC

For different access patterns

We namespace metrics

Service = group
Source = where
Metric = what

Row key:
(service, source, metric)

Columns:
timestamp = value

Range scan for time series

Tweaks: Optimizations for
time series

We never modify old data
We time-bound old data writes

Informed heuristics to reduce
SSTables scanned

Easy expiry - drop the whole
SSTable

Cassandra Counters

Write time aggregations

“Services as a whole”

Why read every “source” all the time¢
Write them all into an aggregate

Don’t scale with cluster size

Limited aggregations

Sum, Count

Non-idempotent writes

Bad failure modes

Over counting¢ Undercountinge Who knows!

Friends don’t let friends use
counters

http://aphyr.com/posts/294-call-me-maybe-cassandra

Expanding storage tiers

Memcache
HDFS Logs
On-demand high resolution samplers

What metrics exist?
What instances? Hosts?¢
Services?

Used in language tools (globs, etc)
and discovery tools (here is what you
have)

Index is temporal

“All metrics matching
http/*, from Oct 1-10”

Maintained as a log of operations
on a set

t = 0, add metricr
t = 2, remove metric q

Snapshot to avoid long scans

_onta

ner B

Monitoring

Database

Storage API

Query Engine

Dashboards

Ad-hoc queries

SAMPLES GATHERED | BACK

EEEERNSCLIoEICE 2h 6h 12h 1d 1w | minute hour day | o/ A W

i5m

10m

5m
0 17:00 18:00 19:00 20:00 21:00 22:00
Aug 29 Aug 29 Aug 29 Aug 29 Aug 29 Aug 29
(00:00, UTC) (01:00, UTCO) (02:00, UTO) {03:00. UTC) (04:00, UTC) (05:00, UTC)
Total: 20572350.05
22:13:00, Aug 29 (05:13:00, Aug 30 - UTC)
QUERIES
Metrics Stored: bst-26-sr3: 1490249
Metrics Stored: 3-37-sr1:
+ Add Query e
Metrics Stored: bku-34-srl: 1344333
Metrics Stored:)gb-19-sr1l: 1342189
Metrics Stored 1 'CS(Sb Metrics Stored: ym-11-sr2: 1321988
s o - 2 e d r)
| . co Metrics ; -03-5 1319853 prod") ;
[E]q Hide ﬂ : ro Metrics : su-11-sr1 1185674

Metrics ed: kv-11-sr3: 1146142
Metrics : va-03-sr2: 1127008

Dashboards

READ: Connections

HTTP connections HTTP requests

1/:30
Oc: 16
00:302

Cassandra Write Queue High Watermark = © Cassandra Write Queue Unavailable Permits

PEEANV AN WX X/ VTN /G S AN/ AAAAT v
A R A A AN TRARE

il Jaion oo et w aathebl

, .‘. -"f

|."" % §:

«"1\

"j

o“) A

0 l' A".

¥y ™S .'

lo’ f~

3" rm ‘ﬁ‘ i ji“bk | ww M m,;«..,fsw\ f\ “‘f ‘Q

"-o)\,‘.‘.‘“".“ ‘“*)’ .y .\

- QUERIES

5 Execute Queries < Add Query

X nh A~ v ' Duplicate

| movingavg(l0, rate(ts(sum, system.network, members(nuthatch), if/eth0/rx bytes)))

.

tX index A~ - A ' Duplicate

movingavg(1l0, rate(ts(sum, system.network, members(db.index), if/eth0/tx bytes)))

.

rX index A~ - v ' Duplicate

movingavg(1l0, rate(ts(sum, system.network, members(db.index), if/eth0/rx bytes)))

tx nh A~ v i Duplicate

| movingavg(1l0, rate(ts(sum, system.network, members nuthatch), if/eth0/tx bytes)))

Storm Visualizer

Feedback? observability-team@twitter.com

- v +mfirehose-topology ~ Sankey @ DAG Force Directed 10 Min Avg | 5 Min Avg Live Data
spout3 spout5 b-24 b-19 Mousover graph components for
details
b-17 b-25
— dl spout4 b-11
b-22 b-6-stream-parus-sco...
b-4

b-15-firehose-strarf). ..

_ b-2
b-12-firehose-streari3. b-14
spout0 N\
4 b-20-stream-static-f...
b-8-str -parus-sco...
e Saily T
b-21-stiéam-save-aut...
. b-18-stream-réflies-...
b-26
b-16

Specialized Visualizations: Storm

L

Everything is built on our query
language

CQL

Not the Cassandra one

Functional/declarative language

On-demand

Don’t need to pre-register queries

Aggregate, correlate and explore

Metric Aggregate Functions

Aggregate functions compute the aggregate at each step over a set of timeseries,

Function Description

sum(ts sum of all time series datapoints into a new timeseries.
avg(ts average of all time series datapoints into a new timeserig
min(ts minimum datapoint from all timeseries (see also: perce;
max(ts maximum datapoint from all timeseries (see also: perce
count(ts) count of non-null values.

percentile(ptile ptile percentage of the timeseries set. ptile's valid ra
, ts) the median value can be returned via percentile(50,

stddev(ts) The standard deviation of the set of timeseries. Returns

Timeseries Grouping Functions (groupby)
In combination with metric aggregate functions, it is possible to compute aggregates

The principal function is groupby(dimension, aggregation, input)

Non-aggregate Functions

Non-aggregate functions operate on each timeseries in a set independently, re

and many more (cross-
DC federation, etc)

Function

rate(ts)

default(default , ts)

or(primary , fallback)

Description

Positive rate of change (derivative) witha s
Rate can never be negative - it is designed f
resets or roll-overs which derive would not
smooth windows allow for glitchy counters tc

Replaces null values with default . Note

Returns primary unless it is an empty set of

Support matchers and drill down
from index

i.e., Explore by regex: http*latency.p9999

Get and combine two
time series

Ratio of GC activity to requests served

Get and combine two
time series

We didn’t create a stat :(

Get and combine two
time series

But, we can query it!

Get and combine two
time series

ts(cuckoo, members(role.cuckoo frontend),
jvm gc msec) /

ts(cuckoo, members(role.cuckoo frontend),
api/query count)

Queries work with
“Interactive”
performance

When something is wrong, you need data yesterday
p50 = 2 milliseconds
p9999 = 2 seconds

Support individual time series
and aggregates

Common to aggregate
100-10,000 time
series

Over a week
Still respond within 5 seconds, cold cache

Aggregate partial
caching

Cache this
result!

max(rate(ts({10,000 time series match }))

Time limiting out-of-order arrivals makes this a safe operation

Caching via
Memcache

Time-windowed immutable results
e.g.|-minute, 5-minute, 30-minute, 3-hour immutable spans

Replacing with an internal time series optimized cache

Read federations

Tiered storage:
High temporal resolution, caches, long retention

Different data centers and storage clusters

Read federations

Decomposes query, runs fragments next to storage

On-demand secondly resolution
sampling

Launch sampler in Apache Mesos
Discovery for read federation is automatic

Query system uses a
term rewriter
structure

Multi-pass optimizations
Data source lookups
Cache modeling
Costing and very large query avoidance
Inspired by Stratego/XT

onnn«-ii
» OBRONO
OO NO
-
o
-
%)
-
O
o o
@ o
0
- -
g >
g £
e
o)
)
- - 35
o Ry O R
k2, w | S| ol 2
- L% D B
= £ O |l & | =
o 2 2 8| 6| o | 2
(U Shasms
B 2l e al o %
© w T w @ ©
cE | odla|lC| 6|89
s € | @ | £ £ 5
» @ & 8 2 T & 3
@ 3] e | T T
g2 3 2o 8 3z 8 8
(4))
T 2 O & ¢ @ o
S
=
(40
o
& Q N
.n.n.ma (7)) r
2 42
o e | O
OV, WO
0
.ﬂw £ N O
O S N -
= =
O & = N /p

3 =
. & . : e »’7_4_' -
o 9 < Jeasl
BT
PR . . i
- - » &
B B b
‘. ‘- ﬂb -
~
.‘l
i
PO TR O TR RO T RO TR AT AR
< S e e e Fh I e

1 critical -

m aurora: Too much GC

Monitor smm-DSU-11-sr1

Snooze

You could add a runbook link to this rule - Learn more

Invalid Alert?

Paging and e-mails

Uses CQL

Adds predicates for conditions
See, unified access is a good thing!

Widespread

Watches all key services at Twitter

Zipkin
https://github.com/twitter/zipkin

Based on the Dapper paper

rview Timeline Dependencies Expand al

906.000 GET
3.000
728.000 serveV2
1.000

18.000

I?ODO mut_get mult partia

18.000
15.000

.-00 search

4.000

3.000
If‘ nAnn .
VoWV

6.000

6.000
70.000 r.
12.000 get2
10.000
15.000 get
9.000
26.000 get

11.000

4.000
27.000 ¢

10.00C

<

00
29.000 got2
26.000
9.000

2.

Sampled traces of services calling
services

Hash of the trace ID mapped to sampling ratio

Annotations on traces

Request parameters, internal timing, servers, clients, etc.

Finagle “upgrades” the Thrift
protocol

Calls test method, if present adds random trace ID and span ID to future
messages on the connection

Also forHTTP

Force debug capability

Now with Firefox plugin!

https://blog.twitter.com/20| 3/zippy-traces-zipkin-your-
browser

£ vome @ comect 1} Do 3, 1 %% B
N

Q The White House A~ W Follow

Yt WHITEHOUSE. GOV
RT to share how President Obama is taking
JSigy Gonnected: on patent trolls to protect American
@WHITEHOUSE innovation: at.wh.gov/l16dw,
pic.twitter.com/Mkn1utExkA
| & ooy 11 W Favorite **® More

DLETSMOVE PATENT TROLLS ARE A PROBLEM IN THE U.S.

vINA
T, . P
! 44
INNOVATOH
* ; (= - Console HTML CSS Script DOM Net Cookles Zipkin =
Time Trace ID Zipkin URL Request URL Referrer
o . .) . https://twitter.com/i/expanded /batch/342025526694780928acepile max«~64&) . e
6/13/13 - 9:50:20am PD 5740db644de96c000 nues ZIpKin twitter.com/traces /> /74go644de96c000 ? y gt ¢ J ' P ' https:/ /twitter.com/whitehouse /status /342025526694 780928
ncludeXSBXSD=social_proo
6/13/13 - 9:50:14am PDT 156acldl7165b800 https://zipkin wwitter.com/traces/156acld171656800 https://platform. twitter.com /widgets.js https./ /twitter.com/whitehouse /status /342025526694780928
. e - R - . Sy—— = AC AN https:/ fowitter.com/i/search/typeahead.json?count=500&prefetch=trued& . CCOEEOATRN
6/13/13 - 5.45.13am PD 36372caxas53d6400 hitps://zipkin witter.com/traces /36372¢aaa53d6400 P) ' ype 4 P https./ /twitter.com/whitehouse /status /342025526694780928
result_type~topics&dtopics_cache_age~ 16
- . = - " . 2Bl A T2 2D https:/ /twitter.com/i/search/typeahead.json?count=500&prefetch=true& : e =
6/13/13 - 9.49:12am PD 49¢662d45d344¢00 hutps://zipkin twittér.com/traces /49¢662d45d344c00 P) ype < . P https./ /twitter.com/whitehouse /status /342025526694780928
result_type«topics&topics_cache_age~ 16

N
n
o
D
§ N
~J
oo
L
N
~N
(s =)

6/13/13 - 9:48:43am PDT 40e¢1f51ela2bf800 https://zipkin er.com/traces/40e1fSlela? https:/ /twitter.com/i/jot https:/ /twitter.com/whitehouse /status /3420255

Requires services to support
tracing

Limited support outside Finagle
Contributions welcome!

Thanks!

Yann Ramin
Observability @ Twitter

@theatrus
yann@twitter.com

L

