
How Twitter Monitors
Millions of Time-series

Yann Ramin
Observability at Twitter
Strata Santa Clara - 2014

@theatrus
yann@twitter.com

Monitoring for all of Twitter
Services and Infrastructure

Time series data
Generating, Collection, Storing, Querying

Alerting
For when you’re not watching

Tracing
Distributed systems call tracing

Concerns

Time series data

Data from services
Not just hosts

Contrast:
The “Nagios model”

The website is slow

“Nagios says it can’t connect
to my webserver”

Why?

ssh me@host uptime
ssh me@host top
ssh me@host tail /var/log

Now do that for more n > 5
servers

Logs are unstructured

“Log parsing” is a stop-gap
Why deploy log parsing rules with applications?

Move beyond logging
structured statistics

Provide rich and detailed
instrumentation

Make it cheap
and easy

First tier aggregations and
sampling are in the application

Incrementing atomic counter = cheap
Writing to disk, sending packet, etc = expensive

Lets look at Finagle-based
services

http://twitter.github.io/finagle/
!

Lots of great default
instrumentation

For network, JVM, etc

Easy to add more

case class StatsFilter(
 name: String,
 statsReceiver: StatsReceiver = NullStatsReceiver
) extends SimpleFilter[Things, Unit] {
!

 private[this] val stats = statsReceiver.scope(name)
 private[this] val all = stats.counter("all")
!

 def apply(set: Things, service: Service[Things, Unit]):
Future[Unit] = {
 all.incr(set.length)
 stats.counter(set.service).incr(set.metrics.length)
 service(set)
 }
}

case class StatsFilter(
 name: String,
 statsReceiver: StatsReceiver = NullStatsReceiver
) extends SimpleFilter[Things, Unit] {
!

 private[this] val stats = statsReceiver.scope(name)
 private[this] val all = stats.counter("all")
!

 def apply(set: Things, service: Service[Things, Unit]):
Future[Unit] = {
 all.incr(set.length)
 stats.counter(set.service).incr(set.metrics.length)
 service(set)
 }
}

Get a StatsReceiver

Make a scoped receiver

Create a counter named all

Increment the counter

Get a counter named by variable, increment by length

Easy to get out

http://server:port/
admin/metrics.json

 {...
 "srv/http/request_latency_ms.avg": 45,
 "srv/http/request_latency_ms.count": 181094,
 "srv/http/request_latency_ms.max": 5333,
 "srv/http/request_latency_ms.min": 0,
 "srv/http/request_latency_ms.p50": 37,
 "srv/http/request_latency_ms.p90": 72,
 "srv/http/request_latency_ms.p95": 157,
 "srv/http/request_latency_ms.p99": 308,
 "srv/http/request_latency_ms.p9990": 820,
 "srv/http/request_latency_ms.p9999": 820,
 "srv/http/request_latency_ms.sum": 8149509,
 "srv/http/requests": 18109445,
!

Great support for approximate
histograms

com.twitter.common.stats.ApproximateHistogram
used as stats.stat(“timing”).add(datapoint)

Also, counters & gauges

Twitter-Server
A simple way to make a Finagle server	

Sets things up the right way	

!

https://github.com/twitter/twitter-server

What about everything else?
Very simple HTTP+JSON protocols means this is easy to add to other

persistent servers

We support ephemeral tasks
Rolls up into a persistent server

Now we’ve replaced ssh with curl
and this is where Observability comes in

Collection

Distributed Scala service

Find endpoints:
!

Zookeeper
Asset database
other sources

Fetch/sample data
HTTP GET (via Finagle)

Filter, cleanup, etc
Hygiene for incoming data

Route to storage layers!
Time series database, memory pools, queues and

HDFS aggregators

Metrics are added by default
Need instrumentation? Just add it!
Shows up “instantly” in the system

This is good

Easy to use
No management overhead

“Can you add a rrd-file for us?”

This is bad
“Metric name on .toString”

[I@579b7698

Remove barriers
Be defensive

Pick both

Time series storage

Distributed Scala front-end
service

Databases, caches, data conversion, querying, etc.

220 million time series
Updated every minute

!

When this talk was proposed: 160 million time series

Cassandra
For real time storage

(Now replaced with an internal
database)

Similar enough to Cassandra

Uses KV storage
For the most part

Multiple clusters per DC
For different access patterns

We namespace metrics

Service = group
Source = where
Metric = what

Row key:
(service, source, metric)

Columns:
timestamp = value

Range scan for time series

Tweaks: Optimizations for
time series
We never modify old data

We time-bound old data writes

Informed heuristics to reduce
SSTables scanned

Easy expiry - drop the whole
SSTable

Cassandra Counters

Write time aggregations

“Services as a whole”
Why read every “source” all the time?

Write them all into an aggregate

Don’t scale with cluster size

Limited aggregations
Sum, Count

Non-idempotent writes

Bad failure modes
Over counting? Undercounting? Who knows!

Friends don’t let friends use
counters

http://aphyr.com/posts/294-call-me-maybe-cassandra

Expanding storage tiers
Memcache
HDFS Logs

On-demand high resolution samplers

Name indexing

What metrics exist?
What instances? Hosts?

Services?

Used in language tools (globs, etc)
and discovery tools (here is what you

have)

Index is temporal

“All metrics matching
http/*, from Oct 1-10”

Maintained as a log of operations
on a set

t = 0, add metric r
t = 2, remove metric q

Snapshot to avoid long scans

Getting data

Ad-hoc queries

Dashboards

Specialized Visualizations: Storm

Everything is built on our query
language

CQL
Not the Cassandra one

Functional/declarative language

On-demand
Don’t need to pre-register queries

Aggregate, correlate and explore

and many more (cross-
DC federation, etc)

Support matchers and drill down
from index

i.e., Explore by regex: http*latency.p9999

Ratio of GC activity to requests served

Get and combine two
time series

We didn’t create a stat :(

Get and combine two
time series

But, we can query it!

Get and combine two
time series

ts(cuckoo, members(role.cuckoo_frontend),
jvm_gc_msec) /

ts(cuckoo, members(role.cuckoo_frontend),
api/query_count)

Get and combine two
time series

Queries work with
“interactive”
performance

When something is wrong, you need data yesterday
p50 = 2 milliseconds

p9999 = 2 seconds

Support individual time series
and aggregates

Common to aggregate
100-10,000 time

series
Over a week	

Still respond within 5 seconds, cold cache

Aggregate partial
caching

max(rate(ts({10,000 time series match }))

Cache this
result!

Time limiting out-of-order arrivals makes this a safe operation

Caching via
Memcache

Time-windowed immutable results	

e.g.1-minute, 5-minute, 30-minute, 3-hour immutable spans	

!

Replacing with an internal time series optimized cache

Read federations
Tiered storage:

High temporal resolution, caches, long retention
!

Different data centers and storage clusters

Read federations
Decomposes query, runs fragments next to storage

On-demand secondly resolution
sampling

Launch sampler in Apache Mesos
Discovery for read federation is automatic

Query system uses a
term rewriter

structure
Multi-pass optimizations

Data source lookups
Cache modeling

Costing and very large query avoidance
Inspired by Stratego/XT

Alerting

Paging and e-mails

Uses CQL
Adds predicates for conditions

See, unified access is a good thing!

Widespread
Watches all key services at Twitter

Distributed Tracing

Zipkin
https://github.com/twitter/zipkin	

!

Based on the Dapper paper

Sampled traces of services calling
services

Hash of the trace ID mapped to sampling ratio

Annotations on traces
Request parameters, internal timing, servers, clients, etc.

Finagle “upgrades” the Thrift
protocol

Calls test method, if present adds random trace ID and span ID to future
messages on the connection

Also for HTTP

Force debug capability
Now with Firefox plugin!

https://blog.twitter.com/2013/zippy-traces-zipkin-your-
browser

Requires services to support
tracing

Limited support outside Finagle
Contributions welcome!

Thanks!
Yann Ramin

Observability @ Twitter
!

@theatrus
yann@twitter.com

