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Neural network

• Learn a complicated function from data
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• Different weights compute different 
functions

The neuron
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F (x) = max(0, x)



• Different weights compute different 
functions

Neural networks
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Learning algorithm

• while not done!

• pick a random training case (x, y) !

• run neural network on input x 

• modify connections to make prediction 
closer to y 
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How to modify 
connections?

• Follow the gradient of the error w.r.t. the 
connections

Gradient tells us how to change the parameters



We can learn 10-layer 
networks

• We have a recipe of how to do it!

• Not much theory



What can neural nets 
compute?

• Theoretical results!

• Modest-sized neural networks with 2 
hidden layers can:!

• Sort N N-bit numbers!

• Multiply N binary numbers!

• Compute any analytic function to high 
precision



What can neural nets 
compute?

• Human perception is very fast (0.1 second)!

• Recognize objects  (“see”)!

• Recognize speech   (“hear”)!

• Recognize emotion!

• Instantly see how to solve some problems!

• And many more!



What can neural nets 
compute?

see!
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0.1 sec: 
neurons 
fire only 
10 times!!



What can neural nets 
compute?

• Anything humans can do in 0.1 seconds, 
a big 10-layer network can do, too



How big is big?

• Big != exponentially big!

• universal approximator = exponentially big!

• Number of training cases ~ number of 
trainable parameters!

• Feasible if one is motivated 



How to solve it

• Get a very fast neural network 
implementation!

• Fast implementation = big nets!

• Get enough training cases!

• Train the network for a long time



To summarize

• Human perception is very fast!

• Neurons have time to fire only 10 times 
during perception!

• Thus perception is solvable by some 10 
layer neural networks!

• So we just need to train these networks



It actually works!

• It is a speculative argument!

• Nonetheless, neural networks are 
unquestionably best at:!

• Speech Recognition!

• Visual Object Recognition



How to get good 
results?

• Collect a big training set!

• Train very big neural networks



Case study: speech 
recognition

• Pioneered by!

• Abdel-Rahman Mohamed (IBM research)!

• George Dahl (UToronto)!

• Navdeep Jaitly (Google/UToronto)!

• Geoff Hinton (Google/UToronto)!

• Developed further by IBM, Microsoft, Google



The problem
• Transcribe speech

“Hello how are you?”



determine the “phoneme” of every frame

“Hello how are you?”

very complicated search, 
alignment

Network goes here



A vanilla deep 
net processes 
every piece of 

speech to get its 
“phoneme”

phoneme id



Completely vanilla 
neural network

• Every neuron is connected to every other 
neuron!

• Thousands of neurons per layer, except 
output layer, which is larger!

• 8 layers!

• Train it on a lot of data



To conclude

• A neural network in an appropriate 
location greatly improves speech 
recognition!

• The rest of the speech pipeline does not 
use neural networks (yet)!

• A more developed neural network is used 
in Google’s speech recognition 



Case study: visual 
object recognition

• Task:  determine which object is in an image

“dog”



Just use a neural 
network?

• Problem:  images are very high-dimensional 
objects!

• Naive neural networks would have too 
many connections and parameters

image!
(256x256)

10K units
Billions of !

connections



Convolutional neural 
networks

• For images, we can vastly reduce the 
number of connections and parameters 
without hurting expressiveness !

• Key idea: the neural network should 
perform the same kind of local processing 
in every image region



Convolutional neural 
networks

Each neuron is connected to a local image patch!
with the same connections!

(First introduced by Yann LeCun, NYU/Facebook)

Result: vastly fewer connections and parameters, !
no loss in expressiveness



Convolutional neural 
networks

• Has many fewer connections and 
parameters, but (probably) similar 
expressiveness to a much larger fully 
connected network!

• This is always a good thing!

• Allows us to use neural networks with 
hundreds of thousands of neurons



A good architecture

• Originally developed by Alex Krizhevsky, 
Ilya Sutskever, and Geoff Hinton (Google)



Deployed in Photo 
Search

• An advanced version of this neural network 
is deployed in G+ photo search and 
elsewhere



Examples
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“hibiscus” “dahlia”

Examples: specific



Both recognized as a “meal”

Examples: broad



“snake” “dog”

Examples: errors



Examples: Google+
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Examples: Google+



What’s new since the 
80s?

• These neural networks were invented in 
the 80s!

• What’s different now?!

• Much more data!

• Much faster computers!

• That’s it!



Slow computers cannot 
succeed

• We want to solve really hard problems!

• Hard problems need big neural networks!

• Slow computers can only train small neural 
networks!

• Current neural networks use hundreds 
of millions FLOPs for a single recognition



Small training sets 
cannot succeed

• Big neural networks cannot be successfully 
trained on small datasets!

• Need more examples than parameters!

• Tens of millions of parameters or more!



Importance of depth

• Until recently, researchers didn’t appreciate 
the connection between neural network 
depth and computation!

• Now we know:  deep neural networks are 
essential for hard perception tasks



The guarantee

• Given any problem that:!

• Humans can solve very quickly!

• Has very many labelled training examples!

• Then a big 10-layer neural network is likely 
to get excellent performance when trained 
on enough examples



Words as vectors

• Words are discrete objects!

• Machine learning algorithms are good with 
vectors!

• So it is useful to represent words with 
vectors for other applications



word2vec

• A neural network that learns useful vector 
representations of words!

• Objective: find vectors so that words that 
tend to appear together have similar 
vectors!

• Learning is very fast (and mysterious)!

• Developed by Tomas Mikolov et al.



Words as vectors

• The vectors have interesting properties!

• Similar words have similar vectors!

• vec(King) - vec(Man) + vec(Woman) is 
close to vec(Queen)!

• vec(China) + vec(Currency) is close to 
vec(Yuan)



Words as vectors



Structure is similar 
across languages

−0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

cat

dog

cow

horse

pig

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

one

two

three

four

five

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

gato (cat)

perro (dog)
vaca (cow)

caballo (horse)

cerdo (pig)

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

uno (one)

dos (two)

tres (three)

cuatro (four)

cinco (five)



Will neural networks 
help you?

• If you have:!

• a fair bit of labelled data?!

• a decent implementation?!

• Then you too could improve the accuracy 
of your classifiers with a neural network!!

• (but average it with your old classifier, 
don’t throw it away!)



They have potential

• Supervised learning has obvious limits!

• New ideas are needed to make progress!

• Unsupervised learning!

• Reinforcement learning!

• Much more powerful models



Thank you!


