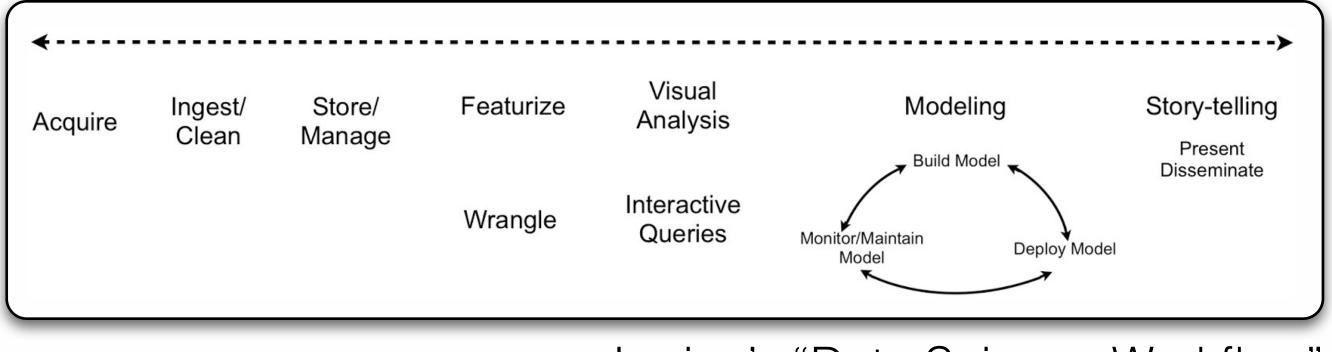
Overcoming the Barriers to Production-Ready Machine Learning Workflows


Josh Bloom Henrik Brink

@profjsb @brinkar @wiseio

University of California, Berkeley

Lorica's "Data Science Workflow"

Real-World Data Science = Optimization over this full Workflow

(
	*							
	Acquire	Ingest/ Clean	Store/ Manage	Featurize	Visual Analysis	Mode	ling	S
			Ŭ	Wrangle	Interactive Queries	Monitor/Maintain Model	Deploy Model	
6								

Lorica's "Data Science Workflow"

tory-telling Present Disseminate

Data Science Optimization Space

Interpretability

Implementability

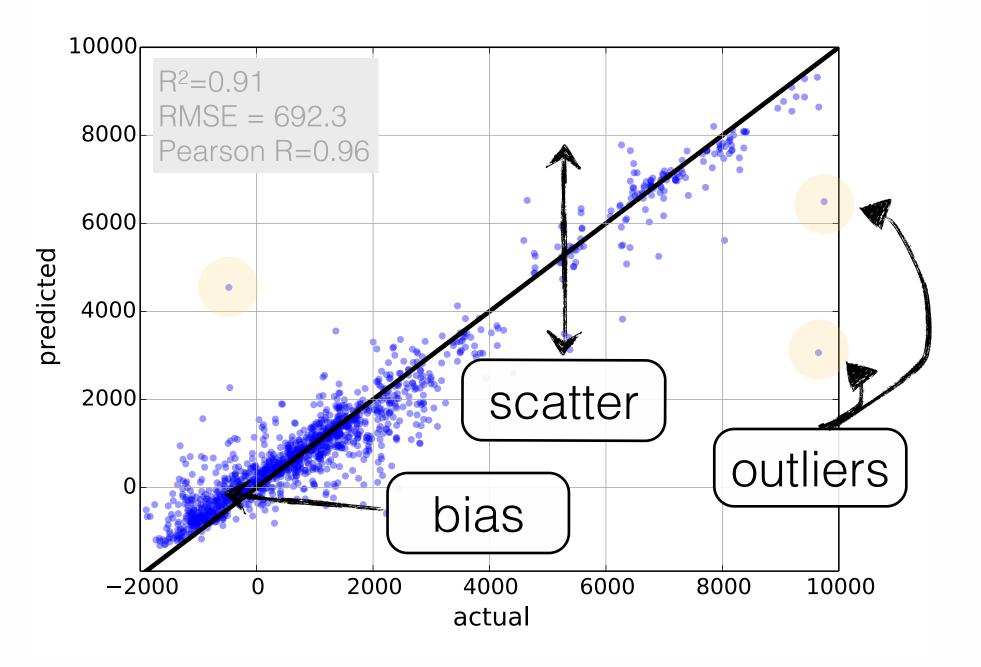
Dimensionality 3 large + ~8 compact

Our Background ... "Data-Driven Scientists"

- Built & Deployed Real-time ML framework, discovering >10,000 events in > 10 TB of imaging
 - → 50+ journal articles
- Built Probabilistic Event classification catalogs with innovative active learning
- Collective over 350 refereed journal articles including ML & timeseries analysis

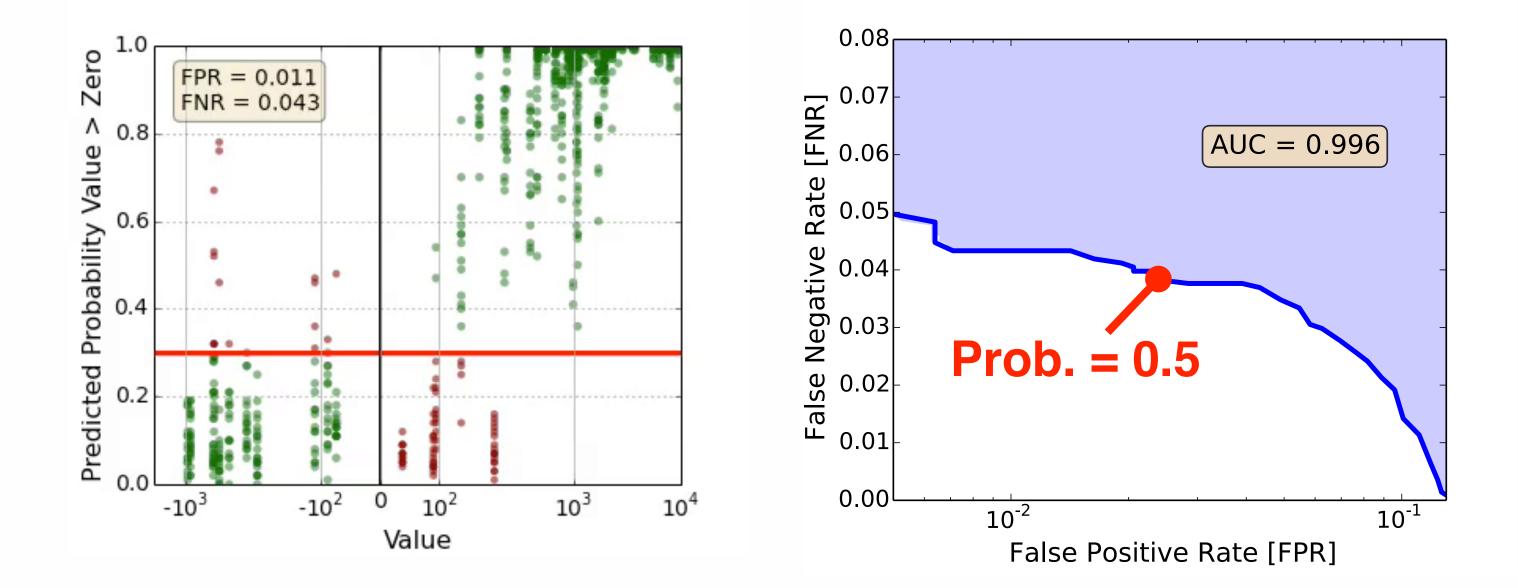
Our ML framework found the Nearest Supernova in 3 Decades ...

SN 2011fe

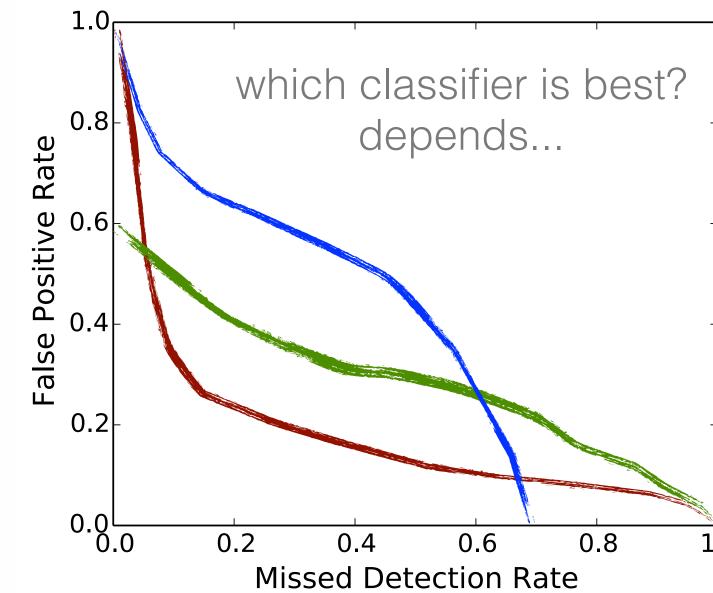


Evaluation Metric: What's the essence of what I care about?

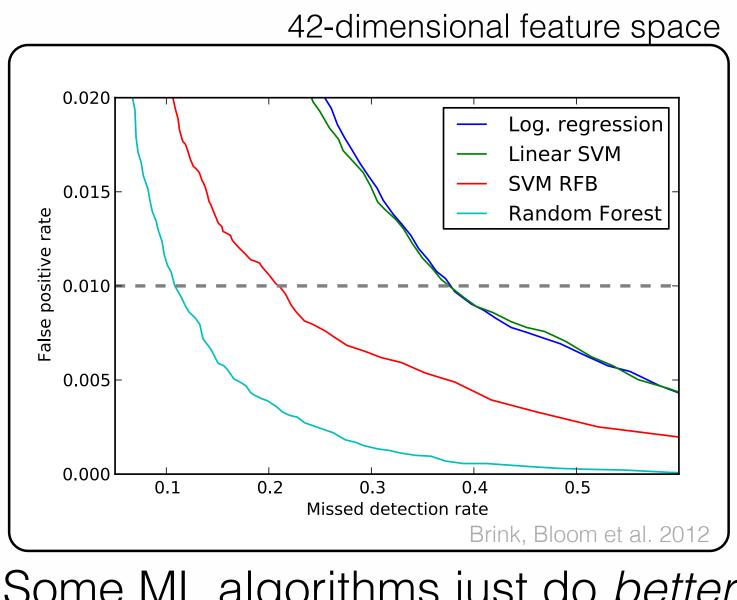
Scalar proxies

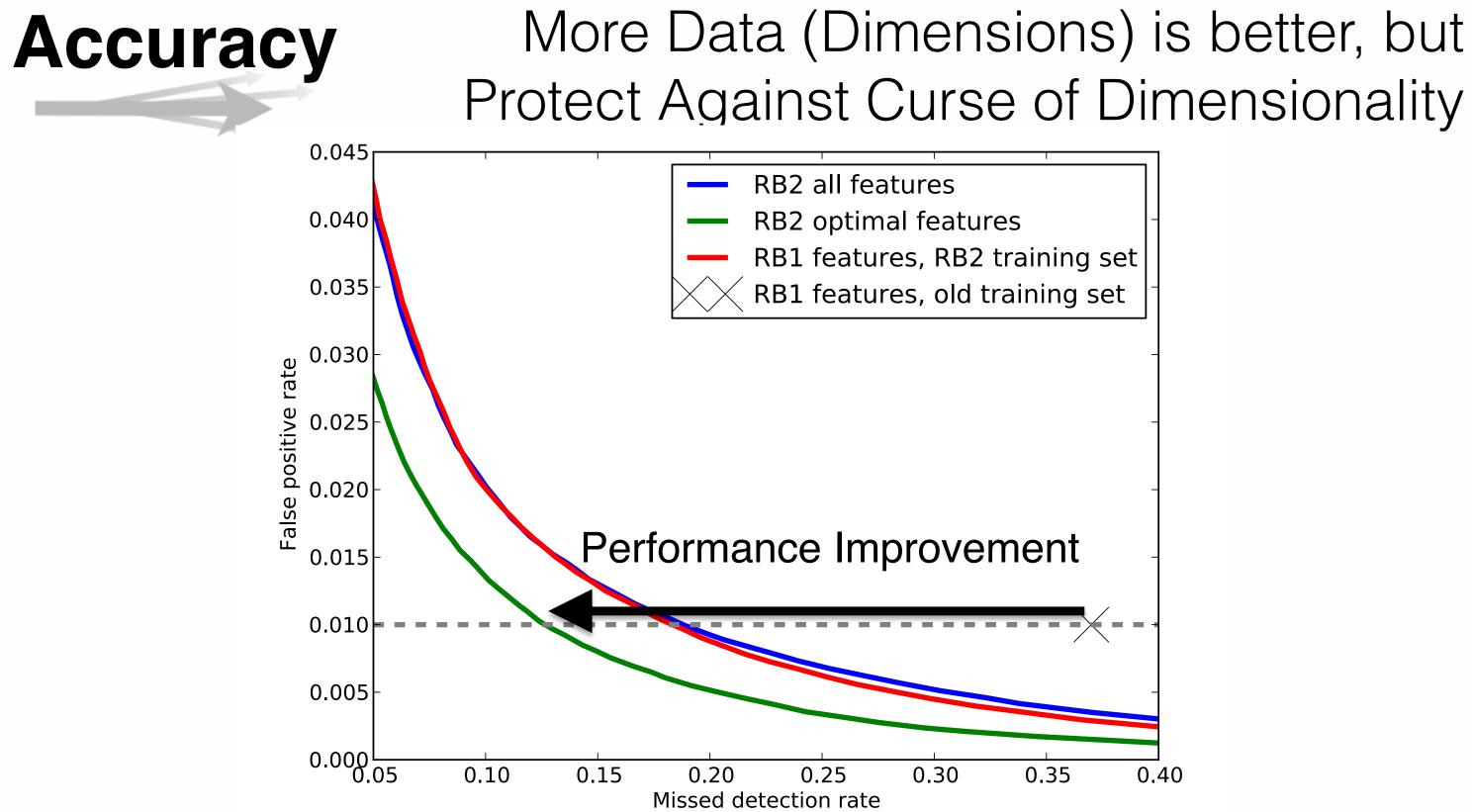

- RMSE
- RMSLE
- [adjusted] R²

cf. sklearn.metrics

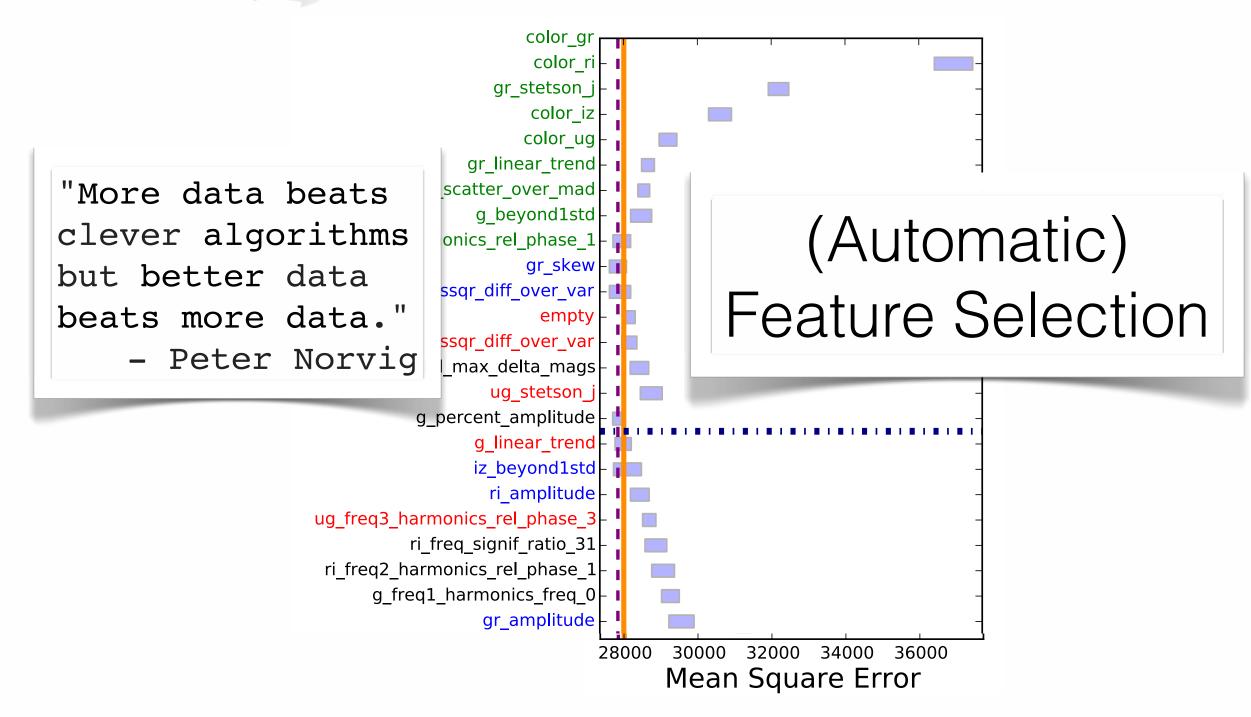


Evaluation Metric: What's the essence of what I care about?


Evaluation Metric: What's the essence of what I care about?

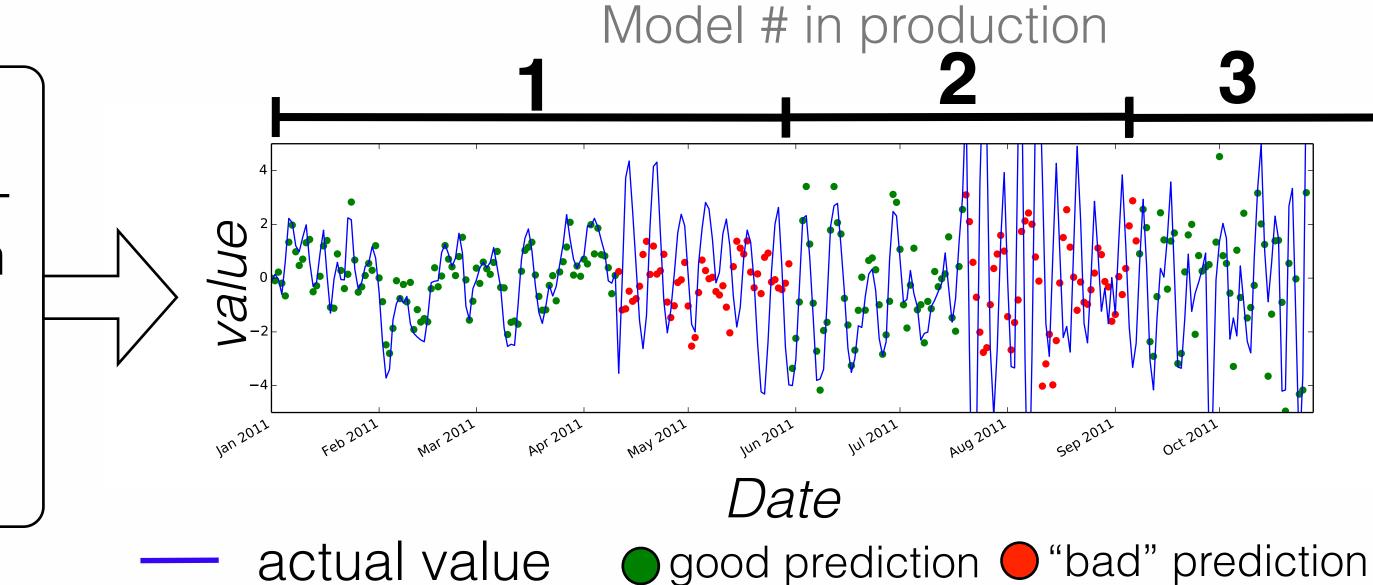


Evaluation Metric: What's the essence of what I care about?



Some ML algorithms just do *better*

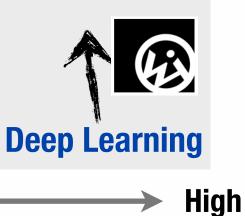
Accuracy


More Data (Dimensions) is better, but Protect Against Curse of Dimensionality

Testing Set & Continuous (Streaming)

model 1 building + validation ON historical data

Testing & Model Updates


ML Algorithmic Trade-Off

High Lasso Linear/Logistic Regression Interpretability **Decision Trees** Bagging Naive Bayes **Splines** Nearest Boosting Warning Unscientific & opinionated! **Neighbors** Gaussian/ Dirichlet Processes **SVMs Neural Nets** Low Low Accuracy

Copyright 2014, wise.io inc.

* on real-world data sets

Interpretability

Interpretability

<u>How</u> does the model work?

Consider a nonlinear system of equations:

$$\begin{cases} 3x_1 - \cos(x_2x_3) - \frac{3}{2} = 0\\ 4x_1^2 - 625x_2^2 + 2x_2 - 1 = 0\\ \exp(-x_1x_2) + 20x_3 + \frac{10\pi - 3}{3} \end{cases}$$

suppose we have the function

$$G(\mathbf{x}) = \begin{bmatrix} 3x_1 - \cos(x_2x_3) \\ 4x_1^2 - 625x_2^2 + 2x_1 \\ \exp(-x_1x_2) + 20x_3 \end{bmatrix}$$

where

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

and the objective function

$$F(\mathbf{x}) = \frac{1}{2}G^{\mathrm{T}}(\mathbf{x})G(\mathbf{x}) = \frac{1}{2}((3x_1 - \cos(x_2x_3) - \frac{3}{2})^2)$$

With initial guess

$$\mathbf{x}^{(0)} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

We know that

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} - \gamma_0 \nabla F(x^{(0)})$$

where

$$\nabla F(\mathbf{x}^{(0)}) = J_G(\mathbf{x}^{(0)})^{\mathrm{T}} G(\mathbf{x}^{(0)})$$

The Jacobian matrix
$$J_G(\mathbf{x}^{(0)})$$

 $J_G = \begin{bmatrix} 3 & \sin(x_2x_3)x_3 & \sin(x_2x_3)x_2\\ 8x_1 & -1250x_2 + 2 & 0\\ -x_2 \exp(-x_1x_2) & -x_1\exp(-x_1x_2) & 20 \end{bmatrix}$
Then evaluating these terms at $\mathbf{x}^{(0)}$
 $J_G(\mathbf{x}^{(0)}) = \begin{bmatrix} 3 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 20 \end{bmatrix}$
and
 $G(\mathbf{x}^{(0)}) = \begin{bmatrix} -2.5\\ -1\\ 10.472 \end{bmatrix}$
So that
 $\mathbf{x}^{(1)} = 0 = \infty \begin{bmatrix} -7.5\\ -2 \end{bmatrix}$

The

$$J_{G} = \begin{bmatrix} 3 & \sin(x_{2}x_{3})x_{3} & \sin(x_{2}x_{3})x_{2} \\ 8x_{1} & -1250x_{2} + 2 & 0 \\ -x_{2}\exp(-x_{1}x_{2}) & -x_{1}\exp(-x_{1}x_{2}) & 20 \end{bmatrix}$$

en evaluating these terms at $\mathbf{x}^{(0)}$
$$J_{G}\left(\mathbf{x}^{(0)}\right) = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 20 \end{bmatrix}$$

d
$$G(\mathbf{x}^{(0)}) = \begin{bmatrix} -2.5 \\ -1 \\ 10.472 \end{bmatrix}$$

that
$$\mathbf{x}^{(1)} = 0 - \gamma_{0} \begin{bmatrix} -7.5 \\ -2 \end{bmatrix}.$$

anc

$$g = \begin{bmatrix} 3 & \sin(x_2x_3)x_3 & \sin(x_2x_3)x_2 \\ 8x_1 & -1250x_2 + 2 & 0 \\ -x_2 \exp(-x_1x_2) & -x_1\exp(-x_1x_2) & 20 \end{bmatrix}$$

evaluating these terms at $\mathbf{x}^{(0)}$
 $g \left(\mathbf{x}^{(0)}\right) = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 20 \end{bmatrix}$
 $(\mathbf{x}^{(0)}) = \begin{bmatrix} -2.5 \\ -1 \\ 10.472 \end{bmatrix}$
t
 $\mathbf{x}^{(1)} = 0 = \infty \begin{bmatrix} -7.5 \\ -2 \end{bmatrix}$

So

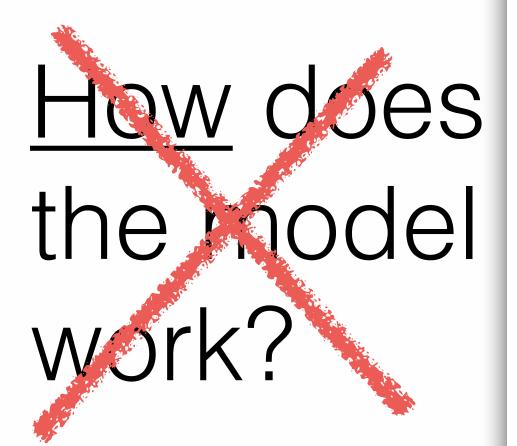
$$^{(1)} = 0 - \gamma_0 \begin{bmatrix} -7.5 \\ -2 \\ 209.44 \end{bmatrix}$$

and

$$F\left(\mathbf{x}^{(0)}\right) = 0.5(($$

$$\mathbf{x}^{(1)} = \begin{bmatrix} 0.0075\\ 0.002\\ -0.2094 \end{bmatrix}$$

evaluating at this value,


$$F\left(\mathbf{x}^{(1)}\right) = 0.5(($$

$$-2.5)^{2} + (-1)^{2} + (10.472)^{2} = 58.456$$

Now a suitable γ_0 must be found such that $F(\mathbf{x}^{(1)}) \leq F(\mathbf{x}^{(0)})$. This can be done with algorithms. One might also simply guess $\gamma_0=0.001$ which gives

$$(-2.48)^2 + (-1.00)^2 + (6.28)^2) = 23.306$$

Consider a nonlinear system of equations:

$$\begin{cases} 3x_1 - \cos(x_2x_3) - \frac{3}{2} = 0\\ 4x_1^2 - 625x_2^2 + 2x_2 - 1 = 0\\ \exp(-x_1x_2) + 20x_3 + \frac{10\pi - 3}{3} \end{cases}$$

suppose we have the function

$$G(\mathbf{x}) = \begin{bmatrix} 3x_1 - \cos(x_2x_3) \\ 4x_1^2 - 625x_2^2 + 2z \\ \exp(-x_1x_2) + 20x_3 \end{bmatrix}$$

where

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

and the objective function

$$F(\mathbf{x}) = \frac{1}{2}G^{\mathrm{T}}(\mathbf{x})G(\mathbf{x}) = \frac{1}{2}((3x_1 - \cos(x_2x_3) - \frac{3}{2})^2)$$

With initial guess

$$\mathbf{x}^{(0)} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

We know that

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} - \gamma_0 \nabla F(x^{(0)})$$

where

$$\nabla F(\mathbf{x}^{(0)}) = J_G(\mathbf{x}^{(0)})^{\mathrm{T}} G(\mathbf{x}^{(0)})$$

The Jacobian matrix
$$J_G(\mathbf{x}^{(0)})$$

 $J_G = \begin{bmatrix} 3 & \sin(x_2x_3)x_3 & \sin(x_2x_3)x_2\\ 8x_1 & -1250x_2 + 2 & 0\\ -x_2 \exp(-x_1x_2) & -x_1\exp(-x_1x_2) & 20 \end{bmatrix}$
Then evaluating these terms at $\mathbf{x}^{(0)}$
 $J_G(\mathbf{x}^{(0)}) = \begin{bmatrix} 3 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 20 \end{bmatrix}$
and
 $G(\mathbf{x}^{(0)}) = \begin{bmatrix} -2.5\\ -1\\ 10.472 \end{bmatrix}$
So that
 $\mathbf{x}^{(1)} = 0 = \infty \begin{bmatrix} -7.5\\ -2 \end{bmatrix}$

The

$$J_{G} = \begin{bmatrix} 3 & \sin(x_{2}x_{3})x_{3} & \sin(x_{2}x_{3})x_{2} \\ 8x_{1} & -1250x_{2} + 2 & 0 \\ -x_{2}\exp(-x_{1}x_{2}) & -x_{1}\exp(-x_{1}x_{2}) & 20 \end{bmatrix}$$

en evaluating these terms at $\mathbf{x}^{(0)}$
$$J_{G}\left(\mathbf{x}^{(0)}\right) = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 20 \end{bmatrix}$$

d
$$G(\mathbf{x}^{(0)}) = \begin{bmatrix} -2.5 \\ -1 \\ 10.472 \end{bmatrix}$$

that
$$\mathbf{x}^{(1)} = 0 - \gamma_{0} \begin{bmatrix} -7.5 \\ -2 \end{bmatrix}.$$

and

$$g = \begin{bmatrix} 3 & \sin(x_2x_3)x_3 & \sin(x_2x_3)x_2 \\ 8x_1 & -1250x_2 + 2 & 0 \\ -x_2 \exp(-x_1x_2) & -x_1\exp(-x_1x_2) & 20 \end{bmatrix}$$

evaluating these terms at $\mathbf{x}^{(0)}$
 $g \left(\mathbf{x}^{(0)}\right) = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 20 \end{bmatrix}$
 $(\mathbf{x}^{(0)}) = \begin{bmatrix} -2.5 \\ -1 \\ 10.472 \end{bmatrix}$
it
$$\mathbf{x}^{(1)} = 0 = \infty \begin{bmatrix} -7.5 \\ -2 \end{bmatrix}$$

So

$$x^{(1)} = 0 - \gamma_0 \begin{bmatrix} -7.5 \\ -2 \\ 209.44 \end{bmatrix}$$

and

$$F\left(\mathbf{x}^{(0)}\right) = 0.5(($$

$$\mathbf{x}^{(1)} = \begin{bmatrix} 0.0075\\ 0.002\\ -0.2094 \end{bmatrix}$$

evaluating at this value,

$$F\left(\mathbf{x}^{(1)}\right) = 0.5(($$

$$-2.5)^{2} + (-1)^{2} + (10.472)^{2} = 58.456$$

Now a suitable γ_0 must be found such that $F(\mathbf{x}^{(1)}) \leq F(\mathbf{x}^{(0)})$. This can be done with algorithms. One might also simply guess $\gamma_0=0.001$ which gives

$$(-2.48)^2 + (-1.00)^2 + (6.28)^2) = 23.306$$

Why do I get these answers?

e.g., Credit score

Sample FICO[®] Scoring Model

Category	Characteristic	Attributes	Points
Payment History	Number of months since the most recent derogatory public record	No public record 0 – 5 6 – 11 12 – 23 24+	75 10 15 25 55
Outstanding Debt	Average balance on revolving trades	No revolving trades 0 1 – 99 100 – 499 500 – 749 750 – 999 1000 or more	30 55 65 50 40 25 15
Credit History Length	Number of months in file	Below 12 12 – 23 24 – 47 48 or more	12 35 60 75
Pursuit of New Credit	Number of inquiries in last 6 mos.	0 1 2 3 4+	70 60 45 25 20
Credit Mix	Number of bankcard trade lines	0 1 2 3 4+	15 25 50 60 50

Peering Inside the Black Box

Feature	Importance
over_draft :'no checking'	
over_draft :'<0'	
credit_usage	
current_balance	
cc_age	
Average_Credit_Balance :'<100'	
credit_history :'critical/other existing credit'	

Random Forest[®] model-level feature importance

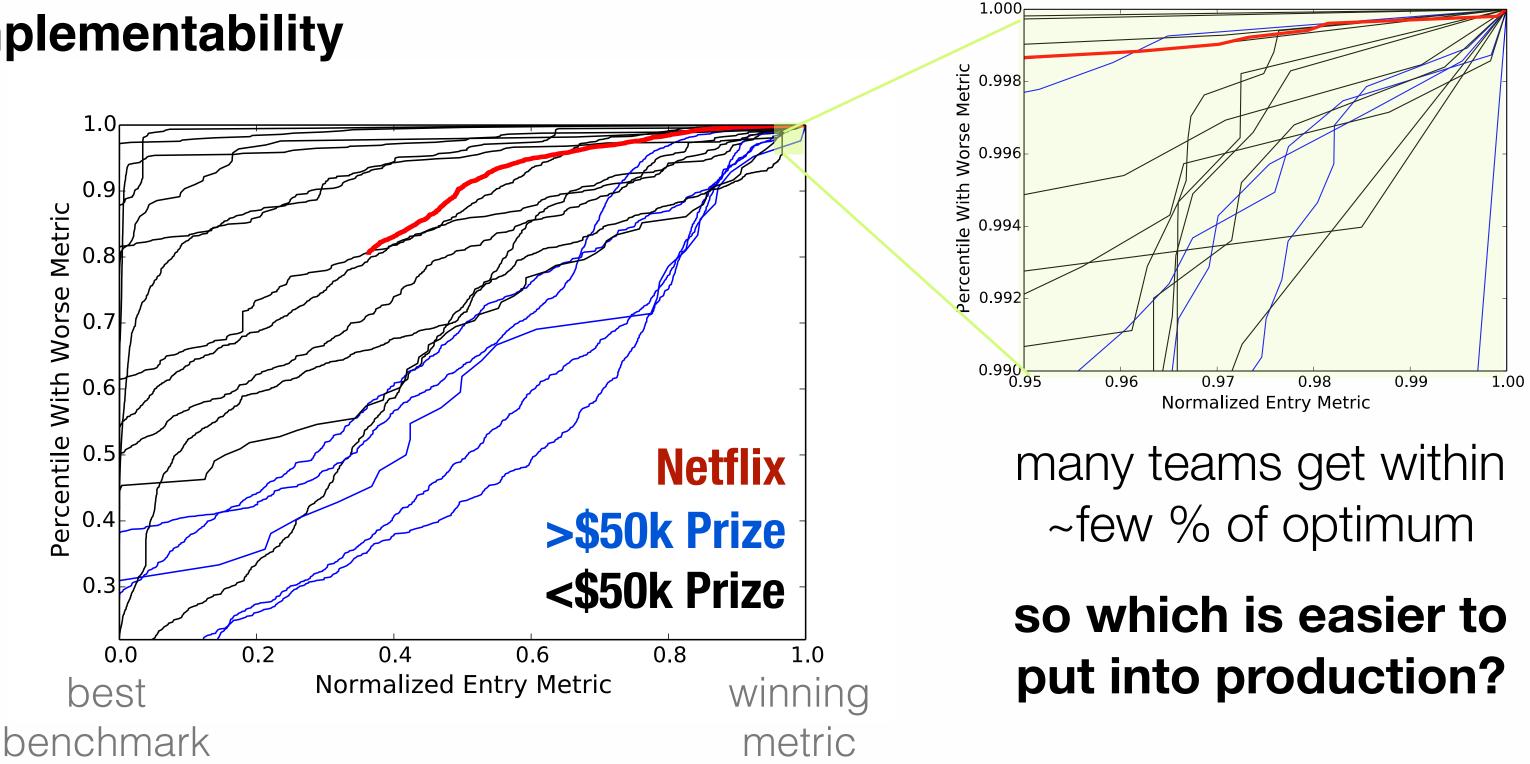
Random Forest is a trademark of Salford Systems, Inc.

Individual-level prediction feature importance

Credit history: 10 months

☆ Outstanding debt: \$1200

3 Inquiries in 6 months: 2


Peering Inside the Black Box

Probability of Default in 1 year: 76% [deny loan]

Driving factors

- 14%
- 5%
- 1%
- e.g. microcredit application scorecard

How long does it take to put the model into production? At what cost?

Leaderboard data from Kaggle & Netflix

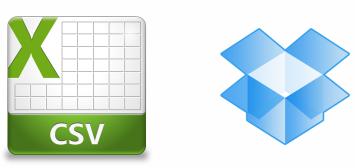
On the **NETFLIX** Prize

"We evaluated some of the new methods offline but the additional accuracy gains that we measured **did not seem to justify** the engineering effort needed to bring them into a production environment."

Xavier Amatriain and Justin Basilico (April 2012)

between

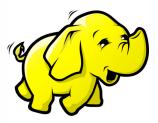
The divide data science & production


Treat Machine Learning **Deployment** as you would Software

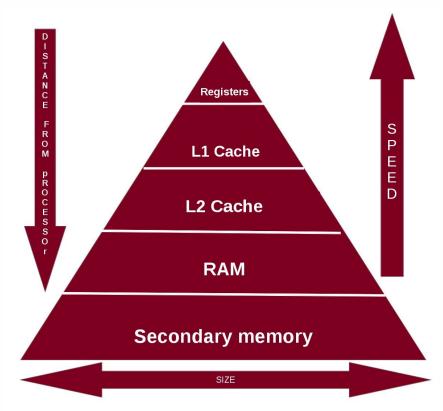
- RESTful API
- Language bindings
- Security
- ► SLA

Continuous Deployment

Integration


Connect data

Consume predictions

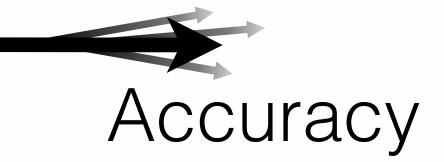


Scalability & Speed

Micro-scaling

Fast, efficient use of memory hierarchy

Horizontally scalable data processing



Machine-Learning, **Data Science** Workflow is an Optimization in many dimensions

Implementability

Interpretability

We are Hiring!

- Full-stack developers
 - Javascript, Python, Spark/Shark
- Front end developers
- DevOps engineers
- C++ engineers
 - ► C++ template metaprogramming
- Data scientists
 - Python, Deep NN, ML expertise

jobs@wise.io

http://wise.io/jobs/

Copyright 2014, wise.io inc.