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Real-World Data Science =

Optimization over
this full Workflow
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Data Science Interpretability

Optimization
Space

. Accuracy
Implementability

Dimensionality
3 large + ~8 compact



Our Background ...

“Data-Driven Scientists”
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Bullt & Deployed Real-time
ML framework, discovering
>10,000 events in > 10 TB
of Imaging

— 50+ journal articles

Built Probabilistic Event
classification catalogs with
iInnovative active learning

Collective over 350 refereed
journal articles including ML
& timeseries analysis

.Our ML framéwork found the
Nearest Supernova in 3 Decades ..
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Accuracy Evaluation Metric: What's the
essence of what | care about?
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Accuracy cvaluation Metric: Whats the
essence of what | care about?
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Evaluation Metric: Whats the

Accuracy
essence of what | care about?
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which classifier is best?
depends... ‘
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Accuracy cvaluation Metric: Whats the
essence of what | care about?

42-dimensional feature space
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Some ML algorithms just do better




Accuracy More Data (Dimensions) is better, but
Protect Against Curse of Dimensionality
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Accuracy More Data (Dimensions) is better, but
Protect Against Curse of Dimensionality
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Accuracy Testing Set & Continuous (Streaming)
Testing & Model Updates

Model # in production
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ML Algorithmic Trade-Off

High
9 * on real-world data sets
Lasso
Linear/Logistic
— Regression
= /
m— Decision Trees y
= | N
(4] Naive Bayes Bagging 7 ®
ned Random Forest
-
i
. S Nearest Boosting
dh,) . Neighbors
e wm‘m“g Gaussian/
= Lontific & Difichlet
UnscC! " Processes p ﬁ
. e SVM 3
OP‘mO“M Neural Nets > T 24
Low Deep Learning
Low High

Accuracy

Random Forest is a trademark of Salford Systems, Inc.
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Interpretability



The Jacobian matrix JG(X(O))

Consider a nonlinear system of equations: B 3 SiH(CEQCEQ,)CCg Sin($2$3)$2-
.y (321 — cos(zax3) — 2 =0 Jo = 82 — 1250z + 2 0
Interp I‘etabl I Ity { 422 — 62522 + 225 — 1 =10 | —T3 exp (—z129) —xqexp(—x123) 20 ]
\ exp( —Ilil.‘-g) + 20x3 + 107;_3 Then evaluating these terms at 4 (0)
suppose we have the function -3 0 0 |
32y — cos(zpzs)  Ja (x”) =02 0
G(x)=| 422 — 62522 + 0 0 20
exp(—x173) + 2023  and
where I —-2.5 ]
HOoW does ™ . oo = |
—_— x = |z 10.472
| T3 ] So that
t h e m O d e ‘ and the objective function i 7.5 ]
F(x) = 1G" (x)G(x) xW=0-9| -2 |.
2
= 1((3z1—cos(zox3)—2)*4 209.44

K f? With initial guess and
WO r . 1 [0 F (x) = 0.5((=2.5)* 4 (1) 4 (10.472)*) = 58.456

x = xo| = |0 Now a suitable 7o must be found such that F(X(l)) < F(X(O) ) This can be done with-
| T3 _O_ algorithms. One might also simply guess ~y5 = ().001 which gives
We know that I 0.0075 ]
x® = xO _ A v F(z©) xM =1 0.002
where | —0.20944

VF(X(O)) — JG(X(O))TG(X(O)] evaluating at this value,

T — F (x(l)) = 0.5((—2.48)%* + (—1.00)* + (6.28)%) = 23.306
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Interpretability

Why do |
get these
answers?

e.g.,, Credit score

Sample FICO® Scoring Model

Category

Payment History

Outstanding Debt

Credit History Length

Pursuit of New Credit

Credit Mix

Characteristic Attributes Points
No public record 75
Number of months since the most 5:151 12
recent derogatory public record 12— 23 25
24+ 55
No revolving trades 30
0 58
1-99 65
on revoning irades 100400 %
g 500 - 749 40
750 — 999 25
1000 or more 15
Below 12 12
.o 12 - 23 35
Number of months in file 24 _ A7 60
48 or more 75
0 70
Number of inquiries ; gg
in last 6 mos. 3 25
4+ 20
0 15
1 25
Number of bankcard 2 50
trade lines 8 60
4+ 50




Interpretability Peering Inside the Black Box

Feature Importance

over_draft :'no checking’

over_draft :'<0’

Random Forest®
model-leve]
feature importance

credit_usage

current_balance

cc_age

Average_Credit_Balance

:'<100°

credit_history :'critical/other
existing credit’

Random Forest is a trademark of Salford Systems, Inc.



Interpretability Peering Inside the Black Box

Probability of Default in 1 year:
76% [deny loan]

Individual-level Driving factors
orediction ¥t Credit history: 10 months

feature importance It Outstanding debt: $1200

It Inquiries in 6 months: 2

e.g. microcredit application scorecard



Implementabillity

How long does it take to put
the model into production?
At what cost?



1.000

Implementability
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0.994+
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Netflix - many teams get within

Percentile With Worse Metric

>$50k Prize ~few % of optimum
. , , <$50k, Prize so which is easier to
0.0 0.2 0.4.1 0.6 | 0.8 1.0 t = t d t. 9
best Normalized Entry Metric winning put INTo proauction:
benchmark metric

Leaderboard data from Kaggle & Netflix



Implementability

On the BIHSRENP S Prize

“We evaluated some of the new methods
offline but the additional accuracy gains
that we measured did not seem to justify
the engineering effort needed to bring them
into a production environment.”

Xavier Amatriain and Justin Basilico (April 2012)
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Implementability

The divide
2 betweer]
data science

NET & production




Implementability

Treat Machine
Learning
Deployment as
you would
Software

» Continuous Deployment
» RESTful AP

» Language bindings

> Security

» SLA




Integration

wa % ¥ @
v

Connect data

Microsoft

Consume predictions & java net a

-
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Scalability & Speed

Implementability

Micro-scaling J\Z Horizontally
Spark scalable
, data
WEBEEP  processing

Fast, efficient
use of memory

hierarchy

o




Machine-Learning,
Data Science
Workflow Is an
Optimization
In many dimensions

Interpretability

Accuracy

o\

7

WISE.10 Implementability



We are Hiring!

Full-stack developers
» Javascript, Python, Spark/Shark

Front end developers /& Wi Se. io

DevOps engineers
obs@wise.Io

C++ engineers

» C++ template metaprogramming nttp://wise.io/jobs/

Data scientists
» Python, Deep NN, ML expertise
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