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THE PROBLEM
‣ Interactive visualizations for exploratory analytics 
‣ Low latency queries and data ingestion 
‣ Scalable: 500k+ events/sec, 50PB+ raw data, ~150 queries/second 
‣ These problems exist in many industries 

• Online advertising 
• System/application metrics 
• Network traffic monitoring 
• Activity stream analysis 
• Finance



DEMO

IN CASE THE INTERNET DIDN’T WORK 
PRETEND YOU SAW SOMETHING COOL
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THE DATA
‣ Transactional/event data 
‣ Immutable 
‣ (Mostly) append only 
‣ OLAP
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THE QUERIES
‣ Business intelligence queries 
‣ Roll-up, drill down, slice and dice, pivot 
‣ Examples 

• Revenue over time broken down by demographic 
• Top publishers by clicks over the last month 
• Number of unique visitors broken down by any dimension 
‣ Aggregating a set of metrics for a filtered view of a data set
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THE DATABASE
‣ Relational databases 
‣ Key/value stores 
‣ Other commercial companies
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RDBMS
‣ Common solution in data warehousing 
‣ Many open source and commercial solutions 
‣ Row stores 
‣ Results 

• Scan speed: 5.5M rows/sec/core 
• 1 query over 1 week of data: 5 seconds 
• 20 queries over 1 week of data: minutes
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KEY/VALUE STORES
‣ Pre-computation

ts gender age revenue
1 M 18 $0.15

1 F 25 $1.03

1 F 18 $0.01

Key Value
1 revenue=$1.19

1,M revenue=$0.15

1,F revenue=$1.04

1,18 revenue=$0.16

1,25 revenue=$1.03

1,M,18 revenue=$0.15

1,F,18 revenue=$0.01

1,F,25 revenue=$1.03
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KEY/VALUE STORES
‣ Results 

• Queries are fast (lookups into maps) 
• Inflexible (not pre-computed, not available) 
• Data ingestion is slow 
• Pre-computation time is slow! 

• Limit total set of queries on ~500k events 
• With 11 dimensions: 4.5 hours on a 15-node Hadoop cluster 
• With 14 dimensions: 9 hours on a 25 node Hadoop cluster
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DRUID
‣ Open sourced in Oct. 2012 
‣ Growing Community 

• 52+ contributors from many different organizations 
• Many production deployments at large technology companies 
‣ Designed for low latency ingestion and aggregation 

• Optimized to power dashboards and answer BI queries 
‣ License: Apache 2.0, working on community governance
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DRUID
‣ Inspired by search architecture 
‣ Combine computation and storage 
‣ Create immutable data structures that are highly optimized for 

fast aggregates and filters
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DRUID - BUZZWORDS
‣ Distributed, column oriented, shared nothing architecture 
‣ HA, no single point of failure 
‣ Low latency data ingestion and exploration 
‣ Approximate and exact calculations 
‣ Integrates with Kafka, Samza, Storm, and Hadoop
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RAW DATA
    timestamp             publisher          advertiser  gender  country click  price
    2011-01-01T01:01:35Z  bieberfever.com    google.com  Male    USA     0      0.65
    2011-01-01T01:03:63Z  bieberfever.com    google.com  Male    USA     0      0.62
    2011-01-01T01:04:51Z  bieberfever.com    google.com  Male    USA     1      0.45
    ...
    2011-01-01T01:00:00Z  ultratrimfast.com  google.com  Female  UK      0      0.87
    2011-01-01T02:00:00Z  ultratrimfast.com  google.com  Female  UK      0      0.99
    2011-01-01T02:00:00Z  ultratrimfast.com  google.com  Female  UK      1      1.53
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PARTITION DATA
timestamp             page             language  city     country  ...   added  deleted

2011-01-01T00:01:35Z  Justin Bieber    en        SF       USA            10     65
2011-01-01T00:03:63Z  Justin Bieber    en        SF       USA            15     62
2011-01-01T00:04:51Z  Justin Bieber    en        SF       USA            32     45

2011-01-01T01:00:00Z  Ke$ha            en        Calgary  CA             17     87

2011-01-01T02:00:00Z  Ke$ha            en        Calgary  CA             43     99
2011-01-01T02:00:00Z  Ke$ha            en        Calgary  CA             12     53

‣ Shard data by time 
‣ Immutable chunks of data called “segments”

Segment 2011-01-01T02/2011-01-01T03

Segment 2011-01-01T01/2011-01-01T02

Segment 2011-01-01T00/2011-01-01T01
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IMMUTABLE SEGMENTS
‣ Data stored in column orientation 
‣ Read consistency 
‣ One thread scans one segment 
‣ Multiple threads can access same underlying data
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INDEXES
‣ Builds search indexes (inverted indexes/bitmap indexes and not 

B-trees) 
‣ Scan/load exactly what you need for a query
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DRUID GAVE US
‣ Fast queries 
‣ Arbitrarily data exploration 
‣ Immediate insight into data 
‣ Scalability
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REMAINING PROBLEMS
‣ Druid’s query language is JSON over HTTP 
‣ Query language fairly low level 
‣ Each query is designed to run very quickly 
‣ Complex operations may require many queries 
‣ Building meaningful visualizations can be a complex operation



FACET.JS
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THE PROBLEM
‣ Datastores are designed to answer specific queries, not drive 

visualizations 
‣ Lack of high-level operations needed for certain visualizations 
‣ No good way of writing UI unit tests 
‣ Druid specific: 

• Druid API is structured around Druid internal architecture 
• Low level queries
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THE PROBLEM

For the top four countries (by revenue), what are the top three venues?

You can not answer this question with a single query.
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THE PROBLEM

USA

UK

France

Time



2015

Data
Store
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? Data
Store

WHAT IS NEEDED?

A higher layer of abstraction.



SPLIT-APPLY-COMBINE



2015

Hadley Wickham popularized a concept called  
split-apply-combine  

as a way of thinking about data querying.

http://www.jstatsoft.org/v40/i01/paper

http://www.jstatsoft.org/v40/i01/paper

http://www.jstatsoft.org/v40/i01/paper
http://www.jstatsoft.org/v40/i01/paper
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SPLIT-APPLY-COMBINE
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SPLIT-APPLY-COMBINE
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S-A-C IN DATA QUERIES

SELECT 
  `country` AS "Country", 
  SUM(`revenue`) AS "Sum Revenue" -- Apply: sum Revenue 
FROM `myDataTable` 
GROUP BY `country`                -- Split by country 
ORDER BY `Sum Revenue` DESC       -- Combine by sorting on 
LIMIT 4;                          -- Sum Revenue and limiting
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S-A-C IN VISUALIZATION
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NESTED S-A-C IN VISUALIZATION
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FACET.JS
‣ A high level query language 

built on split-apply-combine 
‣ Has query planners for Druid 

and MySQL 
‣ Can compute queries natively 
‣ Opened sourced today under 

the Apache 2.0 license
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EXAMPLE (NESTED) QUERY
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DRUID + FACET

facet.js
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UNIT TESTING

Data as
JSONfacet.js
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CONCLUSION
‣ Building data applications is hard 
‣ Getting a flexible, scalable, fault tolerant system that can return 

results in milliseconds is difficult. 
‣ Building a UI on top of that is painful without a good level of 

abstraction. 
‣ Our solutions make it easier
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