
BUILDING INTERACTIVE APPLICATIONS AT
SCALE

DRUID · FACETJS
FANGJIN YANG · VADIM OGEIVETSKY

SOFTWARE ENGINEERS @ METAMARKETS

 PROBLEM DEALING WITH EVENT DATA
 EXPLORATORY ANALYTICS THE STORY OF DRUID
 INTERACTIVE VISUALS THE STORY OF FACETJS
 NEXT STEPS TRY IT OUT FOR YOURSELF

OVERVIEW

THE PROBLEM

2015

THE PROBLEM
‣ Interactive visualizations for exploratory analytics
‣ Low latency queries and data ingestion
‣ Scalable: 500k+ events/sec, 50PB+ raw data, ~150 queries/second
‣ These problems exist in many industries

• Online advertising
• System/application metrics
• Network traffic monitoring
• Activity stream analysis
• Finance

DEMO

IN CASE THE INTERNET DIDN’T WORK
PRETEND YOU SAW SOMETHING COOL

2015

THE DATA
‣ Transactional/event data
‣ Immutable
‣ (Mostly) append only
‣ OLAP

2015

THE QUERIES
‣ Business intelligence queries
‣ Roll-up, drill down, slice and dice, pivot
‣ Examples

• Revenue over time broken down by demographic
• Top publishers by clicks over the last month
• Number of unique visitors broken down by any dimension
‣ Aggregating a set of metrics for a filtered view of a data set

2015

THE DATABASE
‣ Relational databases
‣ Key/value stores
‣ Other commercial companies

2015

RDBMS
‣ Common solution in data warehousing
‣ Many open source and commercial solutions
‣ Row stores
‣ Results

• Scan speed: 5.5M rows/sec/core
• 1 query over 1 week of data: 5 seconds
• 20 queries over 1 week of data: minutes

2015

KEY/VALUE STORES
‣ Pre-computation

ts gender age revenue
1 M 18 $0.15

1 F 25 $1.03

1 F 18 $0.01

Key Value
1 revenue=$1.19

1,M revenue=$0.15

1,F revenue=$1.04

1,18 revenue=$0.16

1,25 revenue=$1.03

1,M,18 revenue=$0.15

1,F,18 revenue=$0.01

1,F,25 revenue=$1.03

2015

KEY/VALUE STORES
‣ Results

• Queries are fast (lookups into maps)
• Inflexible (not pre-computed, not available)
• Data ingestion is slow
• Pre-computation time is slow!

• Limit total set of queries on ~500k events
• With 11 dimensions: 4.5 hours on a 15-node Hadoop cluster
• With 14 dimensions: 9 hours on a 25 node Hadoop cluster

2015

DRUID
‣ Open sourced in Oct. 2012
‣ Growing Community

• 52+ contributors from many different organizations
• Many production deployments at large technology companies
‣ Designed for low latency ingestion and aggregation

• Optimized to power dashboards and answer BI queries
‣ License: Apache 2.0, working on community governance

2015

DRUID
‣ Inspired by search architecture
‣ Combine computation and storage
‣ Create immutable data structures that are highly optimized for

fast aggregates and filters

2015

DRUID - BUZZWORDS
‣ Distributed, column oriented, shared nothing architecture
‣ HA, no single point of failure
‣ Low latency data ingestion and exploration
‣ Approximate and exact calculations
‣ Integrates with Kafka, Samza, Storm, and Hadoop

2015

RAW DATA
 timestamp publisher advertiser gender country click price
 2011-01-01T01:01:35Z bieberfever.com google.com Male USA 0 0.65
 2011-01-01T01:03:63Z bieberfever.com google.com Male USA 0 0.62
 2011-01-01T01:04:51Z bieberfever.com google.com Male USA 1 0.45
 ...
 2011-01-01T01:00:00Z ultratrimfast.com google.com Female UK 0 0.87
 2011-01-01T02:00:00Z ultratrimfast.com google.com Female UK 0 0.99
 2011-01-01T02:00:00Z ultratrimfast.com google.com Female UK 1 1.53

2013

PARTITION DATA
timestamp page language city country ... added deleted

2011-01-01T00:01:35Z Justin Bieber en SF USA 10 65
2011-01-01T00:03:63Z Justin Bieber en SF USA 15 62
2011-01-01T00:04:51Z Justin Bieber en SF USA 32 45

2011-01-01T01:00:00Z Ke$ha en Calgary CA 17 87

2011-01-01T02:00:00Z Ke$ha en Calgary CA 43 99
2011-01-01T02:00:00Z Ke$ha en Calgary CA 12 53

‣ Shard data by time
‣ Immutable chunks of data called “segments”

Segment 2011-01-01T02/2011-01-01T03

Segment 2011-01-01T01/2011-01-01T02

Segment 2011-01-01T00/2011-01-01T01

2015

IMMUTABLE SEGMENTS
‣ Data stored in column orientation
‣ Read consistency
‣ One thread scans one segment
‣ Multiple threads can access same underlying data

2015

INDEXES
‣ Builds search indexes (inverted indexes/bitmap indexes and not

B-trees)
‣ Scan/load exactly what you need for a query

2015

DRUID GAVE US
‣ Fast queries
‣ Arbitrarily data exploration
‣ Immediate insight into data
‣ Scalability

2015

REMAINING PROBLEMS
‣ Druid’s query language is JSON over HTTP
‣ Query language fairly low level
‣ Each query is designed to run very quickly
‣ Complex operations may require many queries
‣ Building meaningful visualizations can be a complex operation

FACET.JS

2015

THE PROBLEM
‣ Datastores are designed to answer specific queries, not drive

visualizations
‣ Lack of high-level operations needed for certain visualizations
‣ No good way of writing UI unit tests
‣ Druid specific:

• Druid API is structured around Druid internal architecture
• Low level queries

2015

THE PROBLEM

For the top four countries (by revenue), what are the top three venues?

You can not answer this question with a single query.

2015

THE PROBLEM

USA

UK

France

Time

2015

Data
Store

2015

? Data
Store

WHAT IS NEEDED?

A higher layer of abstraction.

SPLIT-APPLY-COMBINE

2015

Hadley Wickham popularized a concept called
split-apply-combine

as a way of thinking about data querying.

http://www.jstatsoft.org/v40/i01/paper

http://www.jstatsoft.org/v40/i01/paper

http://www.jstatsoft.org/v40/i01/paper
http://www.jstatsoft.org/v40/i01/paper

2015

SPLIT-APPLY-COMBINE

2015

SPLIT-APPLY-COMBINE

2015

S-A-C IN DATA QUERIES

SELECT
 `country` AS "Country",
 SUM(`revenue`) AS "Sum Revenue" -- Apply: sum Revenue
FROM `myDataTable`
GROUP BY `country` -- Split by country
ORDER BY `Sum Revenue` DESC -- Combine by sorting on
LIMIT 4; -- Sum Revenue and limiting

2015

S-A-C IN VISUALIZATION

2015

NESTED S-A-C IN VISUALIZATION

2015

FACET.JS
‣ A high level query language

built on split-apply-combine
‣ Has query planners for Druid

and MySQL
‣ Can compute queries natively
‣ Opened sourced today under

the Apache 2.0 license

2015

EXAMPLE (NESTED) QUERY

2015

DRUID + FACET

facet.js

2015

UNIT TESTING

Data as
JSONfacet.js

2015

CONCLUSION
‣ Building data applications is hard
‣ Getting a flexible, scalable, fault tolerant system that can return

results in milliseconds is difficult.
‣ Building a UI on top of that is painful without a good level of

abstraction.
‣ Our solutions make it easier

THANK YOU
@DRUIDIO

@METAMARKETS

@FACETJS

