

## Machine Learning with Scikit-Learn

Andreas Mueller (NYU Center for Data Science, scikit-learn)

http://bit.ly/sklstrata

## Me













Classification Regression Clustering Semi-Supervised Learning **Feature Selection Feature Extraction** Manifold Learning **Dimensionality Reduction Kernel Approximation** Hyperparameter Optimization **Evaluation Metrics** Out-of-core learning





agramfort





AlexanderFabisch Alexander Fabisch



alextp Alexandre Passos



amueller Andreas Mueller



arjoly Arnaud Joly



bdholt1 Brian Holt



bthirion bthirion



chrisfilo Chris Filo Gorgole...



cournape David Cournapeau



duchesnay Duchesnay



David Warde-Farley



fabianp Fabian Pedregosa





GaelVaroquaux Gael Varoquaux



glouppe Gilles Louppe



jakevdp Jake Vanderplas



jaquesgrobler Jaques Grobler



jnothman



kastnerkyle Kyle Kastner



kuantkid Wei LI



larsmans Lars



lucidfrontier45 Shiqiao Du



mblondel Mathieu Blondel



MechCoder Manoj Kumar



ndawe Noel Dawe



NelleV Varoquaux



ogrisel Olivier Grisel



paolo-losi Paolo Losi



pprett Peter Prettenhofer



robertlayton Robert Layton



ronw Ron Weiss



Satrajit Ghosh



sklearn-ci



Vlad Niculae





vmichel Vincent Michel



yarikoptic Yaroslav Halchenko

### Get the notebooks!



http://bit.ly/sklstrata

#### Hi Andy,

I just received an email from the first tutorial speaker, presenting right before you, saying he's ill and won't be able to make it.

I know you have already committed yourself to two presentations, but is there anyway you could increase your tutorial time slot, maybe just offer time to try out what you've taught? Otherwise I have to do some kind of modern dance interpretation of Python in data :-)
-Leah

#### Hi Andreas,

I am very interested in your Machine Learning background. I work for X Recruiting who have been engaged by Z, a worldwide leading supplier of Y. We are expanding the core engineering team and we are looking for really passionate engineers who want to create their own story and help millions of people.

Can we find a time for a call to chat for a few minutes about this?

#### Hi Andy,

I just received an email fraction first tutorial speaker, presenting the sill and won't be fricks from the sill and won't be from the sill and won't be fricks from the sill and won't be from the sill and won't be fricks from the sill and won't

I know you have a support of two presentations could increase you maybe just offer time to try out what you've taught? Otherwise I have to do some kind of modern dance interpretation of Python in data :-)
-Leah

#### Hi Andreas,

I am very interested in your Machine Learning background. I work for X Recruiting who have been engaged by Z, a worldwide leading supplier of Y. We are expanding the core engineering team and we are looking for really passionate engineers who help millions of

Can we find a ti minutes about t for a few









clf = RandomForestClassifier()

clf.fit(X\_train, y\_train)

y\_pred = clf.predict(X\_test)

Training Data

Training Data

Prediction

clf = RandomForestClassifier() Training Data clf.fit(X\_train, y\_train) Model Training Labels y\_pred = clf.predict(X\_test) Test Data Prediction clf.score(X\_test, y\_test) Test Labels **Evaluation** 

### IPython Notebook: Chapter 1 - Introduction to Scikit-learn





## **Unsupervised Transformations**

```
pca = PCA()
pca.fit(X_train)
                                         Training Data
                                                           Model
X_new = pca.transform(X_test)
                                                        Transformation
                                          Test Data
```

### IPython Notebook: Chapter 2 – Unsupervised Transformers

| All Data      |           |  |  |
|---------------|-----------|--|--|
| Training data | Test data |  |  |

All Data

Training data

Test data

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5





|         | All Data      |        |        |        |           |  |
|---------|---------------|--------|--------|--------|-----------|--|
|         | Training data |        |        |        | Test data |  |
|         |               |        |        |        |           |  |
|         | Fold 1        | Fold 2 | Fold 3 | Fold 4 | Fold 5    |  |
| Split 1 | Fold 1        | Fold 2 | Fold 3 | Fold 4 | Fold 5    |  |
| Split 2 | Fold 1        | Fold 2 | Fold 3 | Fold 4 | Fold 5    |  |
| Split 3 | Fold 1        | Fold 2 | Fold 3 | Fold 4 | Fold 5    |  |
| Split 4 | Fold 1        | Fold 2 | Fold 3 | Fold 4 | Fold 5    |  |
| Split 5 | Fold 1        | Fold 2 | Fold 3 | Fold 4 | Fold 5    |  |

### IPython Notebook: Chapter 3 - Cross-validation

```
In [2]: clf = SVC()
  clf.fit(X_train, y_train)
  y_pred = clf.predict(X_test)
```

| All Data      |           |  |  |
|---------------|-----------|--|--|
| Training data | Test data |  |  |

#### All Data

#### Training data

Test data

|         | Fold 1 | Fold 2 | Fold 3 | Fold 4 | Fold 5 |
|---------|--------|--------|--------|--------|--------|
|         |        |        |        |        |        |
| Split 1 | Fold 1 | Fold 2 | Fold 3 | Fold 4 | Fold 5 |
|         |        |        |        |        |        |
| Split 2 | Fold 1 | Fold 2 | Fold 3 | Fold 4 | Fold 5 |
|         |        |        |        |        |        |
| Split 3 | Fold 1 | Fold 2 | Fold 3 | Fold 4 | Fold 5 |
|         |        |        |        |        |        |
| Split 4 | Fold 1 | Fold 2 | Fold 3 | Fold 4 | Fold 5 |
|         |        |        |        |        |        |
| Split 5 | Fold 1 | Fold 2 | Fold 3 | Fold 4 | Fold 5 |

Test data



SVC(C=0.001, gamma=0.001)

SVC(C=0.001, SVC(C=0.01, SVC(C=0.1, SVC(C=1, SVC(C=10, gamma=0.001) gamma=0.001) gamma=0.001) gamma=0.001)

| SVC(C=0.001, | SVC(C=0.01,  | SVC(C=0.1,   | SVC(C=1,     | SVC(C=10,    |
|--------------|--------------|--------------|--------------|--------------|
| gamma=0.001) | gamma=0.001) | gamma=0.001) | gamma=0.001) | gamma=0.001) |
| SVC(C=0.001, | SVC(C=0.01,  | SVC(C=0.1,   | SVC(C=1,     | SVC(C=10,    |
| gamma=0.01)  | gamma=0.01)  | gamma=0.01)  | gamma=0.01)  | gamma=0.01)  |

| SVC(C=0.001,<br>gamma=0.001) | SVC(C=0.01,<br>gamma=0.001) | SVC(C=0.1,<br>gamma=0.001) | SVC(C=1,<br>gamma=0.001) | SVC(C=10,<br>gamma=0.001) |
|------------------------------|-----------------------------|----------------------------|--------------------------|---------------------------|
| SVC(C=0.001, gamma=0.01)     | SVC(C=0.01,<br>gamma=0.01)  | SVC(C=0.1,<br>gamma=0.01)  | SVC(C=1,<br>gamma=0.01)  | SVC(C=10,<br>gamma=0.01)  |
| SVC(C=0.001, gamma=0.1)      | SVC(C=0.01,<br>gamma=0.1)   | SVC(C=0.1,<br>gamma=0.1)   | SVC(C=1,<br>gamma=0.1)   | SVC(C=10,<br>gamma=0.1)   |

| SVC(C=0.001,          | SVC(C=0.01,  | SVC(C=0.1,   | SVC(C=1,     | SVC(C=10,    |
|-----------------------|--------------|--------------|--------------|--------------|
| gamma=0.001)          | gamma=0.001) | gamma=0.001) | gamma=0.001) | gamma=0.001) |
| SVC(C=0.001,          | SVC(C=0.01,  | SVC(C=0.1,   | SVC(C=1,     | SVC(C=10,    |
| gamma=0.01)           | gamma=0.01)  | gamma=0.01)  | gamma=0.01)  | gamma=0.01)  |
| SVC(C=0.001,          | SVC(C=0.01,  | SVC(C=0.1,   | SVC(C=1,     | SVC(C=10,    |
| gamma=0.1)            | gamma=0.1)   | gamma=0.1)   | gamma=0.1)   | gamma=0.1)   |
| SVC(C=0.001, gamma=1) | SVC(C=0.01,  | SVC(C=0.1,   | SVC(C=1,     | SVC(C=10,    |
|                       | gamma=1)     | gamma=1)     | gamma=1)     | gamma=1)     |
| SVC(C=0.001,          | SVC(C=0.01,  | SVC(C=0.1,   | SVC(C=1,     | SVC(C=10,    |
| gamma=10)             | gamma=10)    | gamma=10)    | gamma=10)    | gamma=10)    |

### IPython Notebook: Chapter 4 – Grid Searches















### IPython Notebook: Chapter 5 - Preprocessing and Pipelines

Do cross-validation over all steps jointly. Keep a separate test set until the very end.

CountVectorizer / TfidfVectorizer

CountVectorizer / TfidfVectorizer

"You better call Kenny Loggins"

CountVectorizer / TfidfVectorizer

```
"You better call Kenny Loggins"

tokenizer

['you', 'better', 'call', 'kenny', 'loggins']
```

CountVectorizer / TfidfVectorizer

"You better call Kenny Loggins"

tokenizer

['you', 'better', 'call', 'kenny', 'loggins']

Sparse matrix encoding

aardvak better call you zyxst

[0, ..., 0, 1, 0, ..., 0, 1, 0, ..., 0]

# Application: Insult detection

## Application: Insult detection

i really don't understand your point. It seems that you are mixing apples and oranges.

## Application: Insult detection

i really don't understand your point. It seems that you are mixing apples and oranges.

Clearly you're a fucktard.

### IPython Notebook: Chapter 6 - Working With Text Data

# Overfitting and Underfitting



Model complexity

## Overfitting and Underfitting



Model complexity

# Overfitting and Underfitting



Model complexity

### Linear SVM

$$\hat{y} = \operatorname{sign}(w_0 + \sum_i w_i x_i)$$

### Linear SVM

$$\hat{y} = \operatorname{sign}(w_0 + \sum_i w_i x_i)$$







$$\hat{y} = \operatorname{sign}(\alpha_0 + \sum_j \alpha_j y_j k(\mathbf{x}^{(\mathbf{j})}, \mathbf{x}))$$

$$\hat{y} = \operatorname{sign}(\alpha_0 + \sum_j \alpha_j y_j k(\mathbf{x}^{(j)}, \mathbf{x}))$$
$$k(\mathbf{x}, \mathbf{x}') = \exp(-\gamma ||\mathbf{x} - \mathbf{x}'||^2)$$

$$\hat{y} = \operatorname{sign}(\alpha_0 + \sum_j \alpha_j y_j k(\mathbf{x}^{(j)}, \mathbf{x}))$$
$$k(\mathbf{x}, \mathbf{x}') = \exp(-\gamma ||\mathbf{x} - \mathbf{x}'||^2)$$









$$\hat{y} = \operatorname{sign}(\alpha_0 + \sum_j \alpha_j y_j k(\mathbf{x}^{(j)}, \mathbf{x}))$$
$$k(\mathbf{x}, \mathbf{x}') = \exp(-\gamma ||\mathbf{x} - \mathbf{x}'||^2)$$































### Random Forests



### Random Forests







### Random Forests





Installation

Documentation \*

**Examples** 

#### Documentation of scikit-learn 0.16-git

#### **Quick Start**

A very short introduction into machine learning problems and how to solve them using scikit-learn. Introduced basic concepts and conventions.

learn

#### User Guide

The main documentation. This contains an in-depth description of all algorithms and how to apply them.

#### Tutorials

Useful tutorials for developing a feel for some of scikit-learn's applications in the machine learning field.

#### API

The exact API of all functions and classes, as given by the docstrings. The API documents expected types and allowed features for all functions, and all parameters available for the algorithms.

#### Other Versions

- scikit-learn 0.15 (stable)
- scikit-learn 0.16 (development)
- scikit-learn 0.14
- scikit-learn 0.13
- scikit-learn 0.12
- Older versions

#### **Additional Resources**

Talks given, slide-sets and other information relevant to scikit-learn.

#### Contributing

Information on how to contribute. This also contains useful information for advanced users, for example how to build their own estimators.

#### Flow Chart

A graphical overview of basic areas of machine learning, and guidance which kind of algorithms to use in a given situation.

#### FAQ

Frequently asked questions about the project and contributing.

#### Thank you for your attention.



@t3kcit



@amueller



importamueller@gmail.com