
 © Cloudera, Inc. All rights reserved.

Lab #1 - VM setup
http://tiny.cloudera.com/StrataLab1

Lab #2 - Create a movies dataset
http://tiny.cloudera.com/StrataLab2

 © Cloudera, Inc. All rights reserved.

Strata+Hadoop World
San Jose 2015
Building an Apache Hadoop
Data Application

Ryan Blue, Joey Echeverria, Tom White

 © Cloudera, Inc. All rights reserved.

Content for today’s tutorial

●The Hadoop Ecosystem

●Storage on Hadoop

●Movie ratings app: Data ingest

●Movie ratings app: Data analysis

 © Cloudera, Inc. All rights reserved.

The Hadoop Ecosystem

 © Cloudera, Inc. All rights reserved.

A Hadoop Stack

 © Cloudera, Inc. All rights reserved.

Processing frameworks

●Code: MapReduce, Crunch, Spark, Tez

●SQL: Hive, Impala, Phoenix, Trafodian, Drill, Presto

●Tuples: Cascading, Pig

●Streaming: Spark streaming (micro-batch), Storm, Samza

 © Cloudera, Inc. All rights reserved.

Coding frameworks

●Crunch

● A layer around MR (or Spark) that simplifies writing pipelines

●Spark

● A completely new framework for processing pipelines

● Takes advantage of memory, runs a DAG without extra map phases

●Tez

● DAG-based, like Spark’s execution engine without user-level API

 © Cloudera, Inc. All rights reserved.

SQL on Hadoop

●Hive for batch processing

● Impala for low-latency queries

●Phoenix and Trafodion for transactional queries on HBase

 © Cloudera, Inc. All rights reserved.

Ingest tools

●Relational: Sqoop, Sqoop2

●Record channel: Kafka, Flume

●Files: NiFi

●Numerous commercial options

 © Cloudera, Inc. All rights reserved.

Ingest tools

●Relational: Sqoop, Sqoop2

●Record channel: Kafka, Flume

●Files: NiFi

Database

App

HDFS

Hadoop

FlumeFlume

 © Cloudera, Inc. All rights reserved.

Relational DB to Hadoop

●Sqoop

● CLI to run MR-based import jobs

●Sqoop2

● Fixes configuration problems with Sqoop with credentials service

● More flexible to run on non-MR frameworks

● New and under active development

 © Cloudera, Inc. All rights reserved.

Ingest tools

●Relational: Sqoop, Sqoop2

●Record channel: Kafka, Flume

●Files: NiFi

Database

App

HDFS

Hadoop

FlumeFlumeChannels

 © Cloudera, Inc. All rights reserved.

Record streams to Hadoop

●Flume - source, channel, sink architecture

● Well-established and integrated with other tools

● No order guarantee, duplicates are possible

●Kafka - pub-sub model for low latencies

● Partitioned, provides ordering guarantees, easier to eliminate duplicates

● More resilient to node failure with consumer groups

 © Cloudera, Inc. All rights reserved.

Files to Hadoop

●NiFi

● Web GUI for drag & drop configuration of a data flow

● Enterprise features: back-pressure, monitoring, provenance, etc.

● Integration to and from spool directory, HTTP, FTP, SFTP, and HDFS

● New to the Apache Incubator (but widely deployed privately)

● First Apache release in January

 © Cloudera, Inc. All rights reserved.

Data storage in Hadoop

 © Cloudera, Inc. All rights reserved.

data1.avro

...

HDFS Blocks

●Blocks

● Increase parallelism

● Balance work

● Replicated

●Configured by dfs.blocksize

● Client-side setting

data2.avro

 © Cloudera, Inc. All rights reserved.

Splittable File Formats

●Splittable: Able to process part of a file

● Process blocks in parallel

●Avro is splittable

●Gzipped content is not splittable

●CSV is effectively not splittable

 © Cloudera, Inc. All rights reserved.

File formats

●Existing formats: XML, JSON, Protobuf, Thrift

●Designed for Hadoop: SequenceFile, RCFile, ORC

●Makes me sad: Delimited text

●Recommended: Avro or Parquet

 © Cloudera, Inc. All rights reserved.

Avro

●Recommended row-oriented format

● Broken into blocks with sync markers for splitting

● Binary encoding with block-level compression

●Avro schema

● Required to read any binary-encoded data!

● Written in the file header

●Flexible object models

 © Cloudera, Inc. All rights reserved.

Avro in-memory object models

●generic

● Object model that can be used with any schema

●specific - compile schema to java object

● Generates type-safe runtime objects

●reflect - java object to schema

● Uses existing classes and objects

 © Cloudera, Inc. All rights reserved.

Lab #3 - Using avro-tools
http://tiny.cloudera.com/StrataLab3

 © Cloudera, Inc. All rights reserved.

Row- and column-oriented formats

●Able to reduce I/O when projecting columns

●Better encoding and compression
Images © Twitter, Inc.

https://blog.twitter.com/2013/dremel-made-simple-with-parquet

 © Cloudera, Inc. All rights reserved.

Parquet

●Recommended column-oriented format

● Splittable by organizing into row groups

● Efficient binary encoding, supports compression

●Uses other object models

● Record construction API rather than object model

● parquet-avro - Use Avro schemas with generic or specific records

● parquet-protobuf, parquet-thrift, parquet-hive, etc.

 © Cloudera, Inc. All rights reserved.

Parquet trade-offs

●Rows are buffered into groups that target a final size

●Row group size

● Memory consumption grows with row group size

● Larger groups get more I/O benefit and better encoding

●Memory consumption grows for each open file

 © Cloudera, Inc. All rights reserved.

Lab #4 - Using parquet-tools
http://tiny.cloudera.com/StrataLab4

 © Cloudera, Inc. All rights reserved.

Partitioning

●Splittable file formats aren’t enough

●Not processing data is better than processing in parallel

●Organize data to avoid processing: Partitioning

●Use HDFS paths for a coarse index: data/y=2015/m=03/d=14/

 © Cloudera, Inc. All rights reserved.

Partitioning Caution

●Partitioning in HDFS is the primary index to data

● Should reflect the most common access pattern

● Test partition strategies for multiple workloads

●Should balance file size with workload

● Lots of small files are bad for HDFS - partitioning should be more coarse

● Larger files take longer to find data - partitioning should be more specific

 © Cloudera, Inc. All rights reserved.

Implementing partitioning

●Build your own - not recommended

●Hive and Impala managed

● Partitions are treated as data columns

● Insert statements must include partition calculations

●Kite managed

● Partition strategy configuration file

● Compatible with Hive and Impala

 © Cloudera, Inc. All rights reserved.

Kite

●High-level data API for Hadoop

● Built around datasets, not files

● Tasks like partitioning are done internally

●Tools built around the data API

● Command-line

● Integration in Flume, Sqoop, NiFi, etc.

 © Cloudera, Inc. All rights reserved.

Lab #5 - Create a partitioned
dataset
http://tiny.cloudera.com/StrataLab5

 © Cloudera, Inc. All rights reserved.

Movie ratings app:
Data ingest pipeline

 © Cloudera, Inc. All rights reserved.

Movie ratings scenario

●Your company runs a web application where users can rate movies

●You want to use Hadoop to analyze ratings over time

● Avoid scraping the production database for changes

● Instead, you want to log every rating submitted
Database

Ratings App

 © Cloudera, Inc. All rights reserved.

Movie ratings app

●Log ratings to Flume

●Otherwise unchanged

Database

Ratings App
 HDFSRatings

dataset

Hadoop

FlumeFlumeFlume

 © Cloudera, Inc. All rights reserved.

Lab #6 - Create a Flume pipeline
http://tiny.cloudera.com/StrataLab6

 © Cloudera, Inc. All rights reserved.

Movie ratings app:
Analyzing ratings data

 © Cloudera, Inc. All rights reserved.

●Now you have several months of data

●You can query it in Hive and Impala for most cases

●Some questions are difficult to formulate as SQL

● Are there any movies that people either love or hate?

Movie ratings analysis

 © Cloudera, Inc. All rights reserved.

Analyzing ratings

●Map

● Extract key, movie_id, and value, rating

●Reduce:

● Reduce groups all of the ratings by movie_id

● Count the number of ratings for each movie

● If there are two peaks, output the movie_id and counts

● Peak detection: difference between counts goes from negative to positive

 © Cloudera, Inc. All rights reserved.

Crunch background

●Stack up functions until a group-by operation to make a map phase

●Similarly, stack up functions after a group-by to make a reduce phase

●Additional group-by operations set up more MR rounds automatically

PTable<Long, Double> table = collection

 .by(new GetMovieID(), Avros.longs())

 .mapValues(new GetRating(), Avros.ints())

 .groupByKey()

 .mapValues(new AverageRating(), Avros.doubles());

 © Cloudera, Inc. All rights reserved.

Lab #7 - Analyze ratings with Crunch
http://tiny.cloudera.com/StrataLab7

 © Cloudera, Inc. All rights reserved.

Thank you
blue@cloudera.com
joey@scalingdata.com
tom@cloudera.com

