

MARKET LEADER IN DATA & ANALYTICS

sas 23%

Industry Average

16%

Revenue Reinvested in R&D

3,400 SAS® Visual Analytics

Customer Sites

SAS® Cloud Analytics Revenue Growth

SAS[®] - Hadoop visualization and analytics solutions

PREDICTIVE ANALYTICS
ADVANCED ANALYTICS
As Ranked by IDC

SAS customers represent 90% of Fortune Global 500° companies

SAS Background

Millions of analytical procedures running at **65,000 sites**

Analytics applied to thousands of business issues

41,000 customers in 135 countries

Three-plus decades of experience

\$650 million annually in advanced analytics revenue

Total Yearly Revenues \$2.8B

IDC ranks SAS No. 1 in advanced analytics with a market share of 36.2%

SAS Core Technologies

SAS Advanced Analytics

- Statistics
- Predictive Modeling
- Data Mining
- Text analytics
- Forecasting & Econometrics
- Quality Improvement
- Operations Research
- Data Visualization
- Model Management and Deployment

SAS and the Analytic Lifecycle

Solution Lines

- Analytics
- Business Intelligence
- Customer Intelligence
- · Financial Intelligence
- Foundation Tools
- · Fraud & Security Intelligence
- · Governance, Risk & Compliance
- High-Performance Analytics
- Information Management
- IT & CIO Enablement
- OnDemand Solutions
- Performance Management
- Risk Management
- Supply Chain Intelligence
- Sustainability Management

Industries

KICKOFF 2015 THE NEW ANALYTICS EXPERIENCE

- SAS is uniquely positioned to :
 - Enable and Empower the new Analytics Culture;
 - BRIDGE the gaps between **Decision Design**, **Decision Engineering**, and the **Data**.

THE NEW ANALYTICS **EXPERIENCE**

KICKOFF 2015 THE NEW ANALYTICS EXPERIENCE

The " Art "

The "Process "

DECISION DESIGN	DECISION ENGINEERING	
Data is a Raw Material	Data is a finished product	
Flexible, ad hoc	Established, documented process	
Prototyping	Governance (over data, process, technology)	
Data Scientists, Analysts, Smart Creatives	Engineers, DBA, IT	
Open Source, "whatever works"	Approved architecture	
Departmental, personal	Enterprise	
Innovative, Experimental, Groundbreaking	Productionized, Scalable, Repeatable	
DATA		
No amount or complexity is unsurmountable		

ANALYTICS TEXT ANALYTICS Finding treasures in unstructured data like social media or survey tools **FORECASTING** AISUALIZATION. that could uncover insights about consumer sentiment Leveraging historical data to drive better insight into decision-making for the future **INFORMATION MANAGEMENT** REPORTING **OPTIMIZATION** Analyze massive **DATA MINING** amounts of data in order to accurately Mine transaction databases identify areas likely to for data of spending patterns produce the most that indicate a stolen card profitable results **STATISTICS** Sas FORWER TO KNOW.

SAS CRITICAL SAS COMPONENTS FOR HADOOP

ARCHITECTURE REVIEW

SAS SOFTWARE WITH HADOOP

Yarn is effecting:

- SAS Hive and Impala calls
- SAS EP (Mapreduce)
 No yarn effect on

HDMD since that goes directly to HDFS

SAS AND HADOOP SAS ON HADOOP

Yarn is effecting:

- SAS Hive calls
- SAS EP (mapreduce)
- SAS In-memory
 - To start TKGrid process, we will work with YARN

No yarn effect on HDMD since that goes directly to HDFS

SAS AND YARN

WHERE DOES SAS FIT IN?

*Picture Created by Arun Murthy - Hortonworks

http://blogs.sas.com/content/datamanagement/2014/08/20/sas-high-performance-capabilities-with-hadoop-yarn/

SAS MODEL SAS HPDM EXAMPLE

YARN VIEW

SHARED SAS AND HADOOP ENVIRONMENT

YARN VIEW SAS VS OTHER WORK

YARN VIEW

SMALL SAS APPLICATION WITH BACKGROUND

Memory Usage

Number of Container

Compress data ~31 GB (20,000,000 observations, 50 variables)

YARN VIEW

LARGER SAS APPLICATION WITH BACKGROUND

YARN VIEW SIMPLE SAS MODEL WITH BACKGROUND

YARN VIEW SAS APPLICATION LOADING HIVE WITH BACKGROUND

CLIENT ISSUES LESSON LEARNS

- Minimum container memory size can product wasted memory resources
 - MapReduce application does not use all memory
 - Smaller applications pushed into large containers (application master to simple applications)
- MapReduce tuning
- Dependency jobs require queue to help
 - SAS In-memory using SAS EP to lift data into memory
- Queue happy craves up cluster too much
- Monitor real resource usage vs containers
 - Focus on application tuning
- SAS YARN workshop

Free Software Trial!

Leading provider for:

- Data Preparation
- Data Visualization
- Data Analysis

cloudera^a

© 2015 SAS Institute Inc. All rights reserved.

Enter for a chance to win a GoPro HERO4!

© 2015 SAS Institute Inc. All rights reserved.

QUESTIONS

YARN TUNING BASIC YARN SETTINGS

Property Name	Description
yarn.nodemanager.resource.memory-mb	Amount of physical memory, in MiB, that can be allocated for containers.
yarn.scheduler.minimum-allocation-mb	The minimum allocation for every container request at the RM, in MBs. Memory requests lower than this won't take effect, and the specified value will get allocated at minimum.
yarn.scheduler.maximum-allocation-mb	Largest Container allowed. A Multiple of the minimum-allocation-mb above
	Depending on your setup you may want to allow the entire node for MR, or restrict it to smaller then a node to prevent potential malicious actions.
yarn.nodemanager.resource.cpu-vcores	Number of virtual CPU cores that can be allocated for containers. This value covers all applications and their containers running on this node and or physical system.
yarn.scheduler.minimum-allocation-vcores	The smallest number of virtual CPU cores that can be requested per container.
yarn.scheduler.maximum-allocation-vcores	The largest number of virtual CPU cores that can be requested per container.
yarn.resourcemanager.scheduler.class	The class used for resource manager (note Hortonworks and Cloudera used different defaults and today, they do prompt writing custom classes)

YARN TUNING MAPREDUCE SETTINGS

Property Name	Description
mapreduce.map.memory.mb	The size of the container for the Mapper task
mapreduce.map.java.opts	The java opts for the Mapper JVM, make sure that the max heap is less then the size of the container.
mapreduce.reduce.memory.mb	The size of the container for the Reducer task
mapreduce.reduce.java.opts	The java opts for the Reducer JVM, make sure that the max heap is less then the size of the container.
mapreduce.job.reduce.slowstart.completedmaps	Fraction of the number of maps in the job which should be complete before reduces are scheduled for the job.

YARN TUNING

QUEUES

- Scheduler queuing
 - · FairScheduler -
 - CapacityScheduler queues
- Cloudera queuing
 - Dynamic Pools