
®© 2015 MapR Technologies

®

© 2015 MapR Technologies

@kingmesal #StrataHadoop

Jim Scott – Director, Enterprise Strategy & Architecture

®© 2015 MapR Technologies

The Landscape
•  Stream Processing is Fundamentally Simple

–  Inputs -> Outputs
–  But it is WAY more complicated than this…

•  Optimization can be complicated

•  This space is very confused
–  Performance of different options is dependent upon source

•  Lots of misinformation
–  e.g. performance comparisons that are not apples-to-apples

®© 2015 MapR Technologies

Semantics
•  There are three general categories of delivery patterns:

–  At-most-once: messages may be lost. This is usually the least desirable
outcome.

–  At-least-once: messages may be redelivered (no loss, but duplicates).
This is good enough for many use cases.

–  Exactly-once: each message is delivered once and only once (no loss,
no duplicates). This is a desirable feature although difficult to
guarantee in all cases.

®© 2015 MapR Technologies

Today’s Options – Apache Style
•  Samza
•  Storm
•  Spark Streaming

®© 2015 MapR Technologies © 2015 MapR Technologies
®

Apache Samza

®© 2015 MapR Technologies

Apache Samza
•  Originally developed in LinkedIn (Chris Riccomini/Jay Kreps),

now ASF top-level project
•  Distributed stream processing framework (YARN/Kafka)

http://samza.apache.org/

®© 2015 MapR Technologies

Concepts

•  Streams & Partitions

•  Jobs & Tasks

•  Dataflow Graphs

•  Containers

samza.apache.org/learn/documentation/latest/introduction/concepts.html

®© 2015 MapR Technologies

Streams & Partitions

•  Stream: immutable messages

•  Each stream comprises one
or more partitions

•  Partition: totally ordered
sequence of messages

®© 2015 MapR Technologies

Jobs & Tasks

•  Job: logical unit of stream
processing, a collection of tasks

•  Task: unit of parallelism

–  in the context of a job, each task
consumes data from one
partition

–  processes messages from each
of its input partitions sequentially

®© 2015 MapR Technologies

Dataflow Graphs

•  Dataflow graph: logical, directed
graph of jobs

•  Jobs in DG are decoupled

–  can be developed independently

–  don’t impact up/downstream jobs

•  DG can contain cycles

®© 2015 MapR Technologies

Samza Architecture

•  Processing layer à Samza API

•  Pluggable execution layer
(default: YARN)

•  Pluggable streaming layer
(default: Kafka)

samza.apache.org/learn/documentation/latest/introduction/architecture.html

®© 2015 MapR Technologies

Samza Execution: Containers

•  Partitions and tasks are both logical
units of parallelism

•  Containers are the unit of physical
parallelism, essentially a Unix process
(or Linux cgroup)

®© 2015 MapR Technologies

Samza Resources

•  http://www.jfokus.se/jfokus15/preso/ApacheSamza.pdf

•  http://www.berlinbuzzwords.de/session/samza-linkedin-taking-
stream-processing-next-level

•  http://www.infoq.com/articles/linkedin-samza

Kudos to Chris Riccomini and Martin Kleppmann
for their invaluable support concerning Samza!

®© 2015 MapR Technologies © 2015 MapR Technologies
®

Apache Storm

®© 2015 MapR Technologies

Apache Storm
•  Originally developed by Nathan Marz at Backtype/Twitter, now

ASF top-level project
•  Distributed, fault-tolerant stream-processing platform

http://storm.apache.org/

®© 2015 MapR Technologies

Concepts

•  Tuples and Streams

•  Spouts, Bolts, Topologies

•  Tasks and Workers

•  Stream Grouping

storm.apache.org/documentation/Tutorial.html

®© 2015 MapR Technologies

Tuples and Streams
•  Tuple: ordered list of elements
•  Stream: unbounded sequence of tuples

(b20ea50, nathan@nathanmarz.com) (0f663d2, derekd@yahoo-inc.com) (064874b, andy.feng@gmail.com)

stream

tuple

®© 2015 MapR Technologies

Spouts
•  The sources of streams

•  Can talk with
–  Queues (Kafka, Kestrel, etc.)
–  Web logs
–  API calls
–  Filesystem (MapR-FS / HDFS)
–  Etc.

S

®© 2015 MapR Technologies

Bolts
•  Process tuples and create new streams

•  Implement business logic via …
–  Transform
–  Filter
–  Aggregate
–  Join
–  Access datastores & DBs
–  Access APIs (e.g., geo location look-up)

B

®© 2015 MapR Technologies

Topologies
•  Directed graph of spouts and bolts

S2

B1

B2

S1

B3

B4

B3

®© 2015 MapR Technologies

Stream Grouping
•  Shuffle grouping: tuples are randomly

distributed across all of the tasks
running the bolt

•  Fields grouping: groups tuples by

specific name field and routes to the
same task

®© 2015 MapR Technologies

Tasks and Workers
•  Task: each spout/bolt executes as many threads of execution

across the cluster

•  Worker: a physical JVM that executes a subset of all the tasks for
the topology

®© 2015 MapR Technologies

Trident—the ‘Cascading’ of Storm
•  High-level abstraction processing library on top of Storm
•  Rich API with joins, aggregations, grouping, etc.
•  Provides stateful, exactly-once processing primitives

storm.apache.org/documentation/Trident-tutorial.html

compiled into

Trident topology Storm topology

®© 2015 MapR Technologies

Execution

master node worker node

Nimbus Supervisor

Worker

Worker

Worker

Zk

0MQ/Netty

®© 2015 MapR Technologies

Storm Resources

•  https://www.udacity.com/course/ud381

•  http://www.manning.com/sallen/

•  https://github.com/tdunning/storm-counts

®© 2015 MapR Technologies © 2015 MapR Technologies
®

Apache Spark

®© 2015 MapR Technologies

Apache Spark

Continued innovation bringing new functionality, such as:

•  Tachyon (Shared RDDs, off-heap solution)
•  BlinkDB (approximate queries)
•  SparkR (R wrapper for Spark)

Spark SQL
(SQL/HQL)

Spark Streaming
(stream processing)

MLlib
(machine learning)

Spark (core execution engine—RDDs)

GraphX
(graph processing)

Mesos

file system (local, MapR-FS, HDFS, S3) or data store (HBase, Elasticsearch, etc.)

YARN Standalone

http://spark.apache.org/

®© 2015 MapR Technologies

Sweet spot …

•  Iterative Algorithms
–  machine learning
–  graph processing beyond DAG

•  Interactive Data Mining

•  Streaming Applications

®© 2015 MapR Technologies

Interfacing to permanent storage

•  Local Files
–  file:///opt/httpd/logs/access_log

•  Object Stores (e.g. Amazon S3)

•  MapR-FS, HDFS
–  text files, sequence files, any other Hadoop InputFormat

•  Key-Value datastores (e.g. Apache HBase)

•  Elasticsearch

®© 2015 MapR Technologies

Cluster Managers

YARN

Standalone

®© 2015 MapR Technologies

Resilient Distributed Datasets (RDD)

•  RDD: core abstraction of Spark execution engine

•  Collections of elements that can be operated on in parallel

•  Persistent in memory between operations

www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf

®© 2015 MapR Technologies

RDD Operations

•  Lazy evaluation is key to Spark

•  Transformations
–  Creation of a new dataset from an existing:

map, filter, distinct, union, sample, groupByKey, join, etc.

•  Actions
–  Return a value after running a computation:

collect, count, first, takeSample, foreach, etc.

®© 2015 MapR Technologies

Spark Streaming

•  High-level language operators for streaming data

•  Fault-tolerant semantics

•  Support for merging streaming data with historical data

spark.apache.org/docs/latest/streaming-programming-guide.html

®© 2015 MapR Technologies

Spark Streaming

Run a streaming computation as a series of small, deterministic
batch jobs.

•  Chop up live stream into batches of X
seconds (DStream)

•  Spark treats each batch of data as RDDs
and processes them using RDD ops

•  Finally, processed results of the RDD
operations are returned in batches

Spark	

Spark	

Streaming	

batches	
 of	
 X	
 seconds	

live	
 data	
 stream	

processed	
 results	

®© 2015 MapR Technologies

Spark Streaming

Run a streaming computation as a series of small, deterministic
batch jobs.

•  Batch sizes as low as ½ second,
latency of about 1 second

•  Potential for combining batch processing
and streaming processing in the same
system

Spark	

Spark	

Streaming	

batches	
 of	
 X	
 seconds	

live	
 data	
 stream	

processed	
 results	

®© 2015 MapR Technologies

Spark Streaming: Transformations

•  Stateless transformations

•  Stateful transformations
–  checkpointing
–  windowed transformations

•  window duration
•  sliding duration

spark.apache.org/docs/latest/streaming-programming-guide.html#transformations-on-dstreams

®© 2015 MapR Technologies

Spark Streaming: Execution

®© 2015 MapR Technologies

Spark Resources

•  http://shop.oreilly.com/product/0636920028512.do

•  http://databricks.com/spark-training-resources

•  http://oreilly.com/go/sparkcert

•  http://spark-stack.org

•  https://www.mapr.com/blog/getting-started-spark-mapr-sandbox

®© 2015 MapR Technologies © 2015 MapR Technologies
®

Comparison

®© 2015 MapR Technologies

Samza vs Storm vs Spark

Samza Storm Spark Streaming

Stream Source Consumers Spouts Receivers

Stream Primitive Message Tuple DStream

Stream Computation Tasks Bolts Transformations

®© 2015 MapR Technologies

Samza vs Storm vs Spark
Samza Storm Spark Streaming

processing model one record at a time one record at a time micro-batch
latency milliseconds milliseconds seconds

throughput 100k+ records per node per
second

10k+ records per node per
second

100k+ records per node
per second

processing guarantees at-least-once delivery;
support for exactly-once
planned

at-least-once / exactly once
(with Trident)

exactly once

stateful operations yes no / yes (with Trident) yes
language support + +++ ++

community size/
committer & user base + +++ ++

special agile, state management,
Kappa-native

distributed RPC unified processing (batch,
SQL, etc.)

®© 2015 MapR Technologies

When to use what?

use case Samza Storm Spark Streaming
filtering ✓ ✓ ✓

counting
(incl. aggregations)

✓ ✓
joins ✓

distributed RPC ✓
re-processing

(aka Kappa architecture)
✓ ✓

materialized view maintenance
(cache invalidation)

✓ ✓

®© 2015 MapR Technologies

Spark vs Storm: Throughput
•  Spark Streaming: 670k records/sec/node
•  Storm: 115k records/sec/node
•  Commercial systems: 100-500k records/sec/node

0	

10	

20	

30	

100	
 1000	

Th
ro
ug
hp

ut
	
 p
er
	
 n
od

e	

(M

B/
s)
	

Record	
 Size	
 (bytes)	

WordCount	

Spark	

Storm	

0	

20	

40	

60	

100	
 1000	

Th
ro
ug
hp

ut
	
 p
er
	
 n
od

e	

(M

B/
s)
	

Record	
 Size	
 (bytes)	

Grep	

Spark	

Storm	

®© 2015 MapR Technologies

Comparison Resources

•  http://www.zdatainc.com/2014/09/apache-storm-apache-spark/

•  http://www.slideshare.net/ChicagoHUG/yahoo-compares-storm-and-spark

•  http://www.slideshare.net/ptgoetz/apache-storm-vs-spark-streaming

•  http://xinhstechblog.blogspot.ie/2014/06/storm-vs-spark-streaming-side-by-side.html

•  http://samza.apache.org/learn/documentation/0.8/comparisons/storm.html

•  http://samza.apache.org/learn/documentation/0.8/comparisons/spark-streaming.html

•  https://www.mapr.com/blog/spark-streaming-vs-storm-trident-whiteboard-walkthrough

®© 2015 MapR Technologies

$50M $50M
in Free Training

®© 2015 MapR Technologies

jscott@mapr.com

Engage with us!

@MapR maprtech

+MaprTechnologies

maprtech

MapR Technologies

Q & A

