AVAVAVESSS

Stream processing everywhere—
what to use?

Jim Scott — Director, Enterprise Strategy & Architecture

@kingmesal #StrataHadoop

LR

© 2015 MapR Technologies

The Landscape

« Stream Processing is Fundamentally Simple
— Inputs -> Outputs
— But it is WAY more complicated than this...

* Optimization can be complicated

« This space is very confused
— Performance of different options is dependent upon source

* Lots of misinformation
— e.g. performance comparisons that are not apples-to-apples

Ny
'((/,\ ©2015 MapR Technologies NVANP R,

Semantics

* There are three general categories of delivery patterns:

— At-most-once: messages may be lost. This is usually the least desirable
outcome.

— At-least-once: messages may be redelivered (no loss, but duplicates).
This is good enough for many use cases.

— Exactly-once: each message is delivered once and only once (no loss,
no duplicates). This is a desirable feature although difficult to
guarantee in all cases.

Ny
/((/\ ©2015 MapR Technologies NVANP R,

Today’s Options — Apache Style

e Samza
e Storm
* Spark Streaming

IoN

© 2015 MapR Technol

ogies

MAPPR

Apache Samza

Apache Samza

IoN

Originally developed in Linkedln (Chris Riccomini/Jay Kreps),
now ASF top-level project

Distributed stream processing framework (YARN/Kafka

« Getting Started

Hello Samza
Download

& Learn

Documentation
Configuration
Javadocs
Tutorials

FAQ

Wiki

Papers & Talks
Blog

®, Community
Mailing Lists
IRC

Bugs

Powered by
Ecosystem
Committers

</> Contribute

Rules

Coding Guide
Projects

Design Documents
Code.

What is Samza?

Apache Samza is a distributed stream processing framework. It uses Apache Kafka for messaging,
and Apache Hadoop YARN to provide fault tolerance, processor isolation, security, and resource
management.

Simple API: Unlike most low-level messaging system APls, Samza provides a very simple
callback-based “process message” APl comparable to MapReduce.

Managed state: Samza manages snapshotting and restoration of a stream processor’s state.

When the processor is restarted, Samza restores its state to a consistent snapshot. Samza is
built to handle large amounts of state (many gigabytes per partition).

Fault tolerance: Whenever a machine in the cluster fails, Samza works with YARN to
transparently migrate your tasks to another machine.

Durability: Samza uses Kafka to guarantee that messages are processed in the order they
were written to a partition, and that no messages are ever lost.

Scalability: Samza is partitioned and distributed at every level. Kafka provides ordered,
partitioned, replayable, fault-tolerant streams. YARN provides a distributed environment for
Samza containers to run in.

Pluggable: Though Samza works out of the box with Kafka and YARN, Samza provides a
pluggable API that lets you run Samza with other messaging systems and execution
environments.

Processor isolation: Samza works with Apache YARN, which supports Hadoop’s security
model, and resource isolation through Linux CGroups.

Check out Hello Samza to try Samza. Read the Background page to learn more about Samza.

Apache Software Foundation

Apache Samza is a top level project of the Apache Software Foundation.

N g

http://samza.apache.orqg/

© 2015 MapR Technologies MAPR

Concepts

« Streams & Partitions
« Jobs & Tasks
« Dataflow Graphs

« Containers

samza.apache.org/learn/documentation/latest/introduction/concepts.html

Ny
'((/,\ ©2015 MapR Technologies NVANP R,

Streams & Partitions

IoN

Stream: immutable messages

Each stream comprises one
or more partitions

Partition: totally ordered
sequence of messages

A Partitioned Stream

partition O

partition 1

partition 2

012345672829

next append

0123465678

© 2015 MapR Technologies IV\APR

Jobs & Tasks

Job: logical unit of stream Samza Job

processing, a collection of tasks Input Input

Stream A Stream B

e Task: unit of parallelism

— in the context of a job, each task
consumes data from one
partition

— processes messages from each Output
ey " : Stream C
of its input partitions sequentially

Ny
/((A ©2015 MapR Technologies NVANP R,

Dataflow Graphs

« Dataflow graph: logical, directed

graph of jobs

« Jobs in DG are decoupled € wi | (€ w2 |
— can be developed independently o
— don’t impact up/downstream jobs , -
@ Job 3
* DG can contain cycles -

Ny
’(&\ ©2015 MapR Technologies NVANP R,

Samza Architecture

* Processing layer > Samza API

* Pluggable execution layer
(default: YARN) Samza API

« Pluggable streaming layer YARN Kafka
(default: Kafka)

samza.apache.org/learn/documentation/latest/introduction/architecture.html

Ny
/((/\ ©2015 MapR Technologies NVANP R,

Samza Execution: Containers

IoN

Partitions and tasks are both logical
units of parallelism

Containers are the unit of physical
parallelism, essentially a Unix process

(or Linux cgroup)

Samza
YARN
Client

RM

 —

NM

NM

v

v

Samza
AM

i

Samza
Task
Runner

© 2015 MapR Technologies IV\APR

Samza Resources

* http://lwww.|fokus.se/[fokus15/preso/ApacheSamza.pdf

* hitp://www.berlinbuzzwords.de/session/samza-linkedin-taking-

stream-processing-next-level

« http://www.infog.com/articles/linkedin-samza

Kudos to Chris Riccomini and Martin Kleppmann
for their invaluable support concerning Samza!

N
'((/\ ©2015 MapR Technologies NVANP R,

Apache Storm

Apache Storm

Originally developed by Nathan Marz at Backtype/Twitter, now
ASF top-level project

Distributed, fault-tolerant stream-processing platform

Storm

Distributed and fault-tolerant realtime computation about documentation blog downloads community

Apache Storm is a free and open source distributed realtime computation system. Storm makes it easy to reliably process
unbounded streams of data, doing for realtime processing what Hadoop did for batch processing. Storm is simple, can be
used with any programming language, and is a lot of fun to use!

Storm has many use cases: realtime analytics, online machine learning, continuous computation, distributed RPC, ETL, and
more. Storm is fast: a benchmark clocked it at over a million tuples processed per second per node. It is scalable,
fault-tolerant, guarantees your data will be processed, and is easy to set up and operate.

/>
=i 5D STORM

Storm integrates with the queueing and database technologies you already use. A Storm topology consumes streams of
data and processes those streams in arbitrarily complex ways, repartitioning the streams between each stage of the
computation however needed. Read more in the tutorial.

Companies & Projects Using Storm

B OMD €2 E¥raco- RyeID: http://storm.apache.org/

© 2015 MapR Technologies I\/\APR

Concepts

* Tuples and Streams
« Spouts, Bolts, Topologies
 Tasks and Workers

e Stream Grouping

storm.apache.org/documentation/Tutorial.html

Ny
/((/\ ©2015 MapR Technologies NVANP R,

Tuples and Streams

« Tuple: ordered list of elements
« Stream: unbounded sequence of tuples

tuple
)

(b20ea50, nathan@nathanmarz.com) (064874b, andy.feng@gmail.com) (0f663d2, derekd@yahoo-inc.com)

—

\ J
|
stream

N
'((/,\ ©2015 MapR Technologies NVANP R,

Spouts

e The sources of streams

« Can talk with
— Queues (Kafka, Kestrel, etc.) —
— Web logs
— APl calls
— Filesystem (MapR-FS / HDFS)
— Etc.

Ny
/(&\ ©2015 MapR Technologies NVANP R,

Bolts

* Process tuples and create new streams

* Implement business logic via ...

— Transform
Ciltor — ° —

— Aggregate

— Join

— Access datastores & DBs

— Access APls (e.g., geo location look-up)

Ny
/((A ©2015 MapR Technologies NVANP R,

Topologies

* Directed graph of spouts and bolts

\\,@
\

. \@I—@\\

—
d—o

\y
’(% ©2015 MapR Technologies NVANP R,

Stream Grouping

 Shuffle grouping: tuples are randomly T |
distributed across all of the tasks
running the bolt

@ Tuple with andy@example . com emitted to Instance #2
@ Another tuple with nathan@example . com emitted to Instance #3
@ Tuple with jacksonflexample . com emitted 10 Instance #1

. Another tuple with nathan@example . com emited to Instance #2

@ Another tuple with andy@example . com emitted 1o Instance #3

* Fields grouping: groups tuples by
specific name field and routes to the SR
same task

@ Another tuple with nathan@example . com emitted to Instance #1

@ Another tuple with andy@examp le . com emitted to Instance #3

Ny
/((/\ ©2015 MapR Technologies NVANP R,

Tasks and Workers

« Task: each spout/bolt executes as many threads of execution
across the cluster

« Worker: a physical JVM that executes a subset of all the tasks for
the topology

Worker Process JVM

Executor Executor
-

N
'((/,\ ©2015 MapR Technologies NVANP R,

Thread
Spout/
Bolt

Trident—the ‘Cascading’ of Storm

* High-level abstraction processing library on top of Storm
* Rich APl with joins, aggregations, grouping, etc.

* Provides stateful, exactly-once processing primitives
Trident topology Storm topology

TridentState

TridentState

state query

-
‘I compiled into

,(&\“5 storm.apache.org/documentation/Trident-tutorial.html ©2015 MapR Technologies NVAPR.

Execution

Supervisor

IoN

S

master node

Worker

Worker

Worker

worker node

© 2015 MapR Technologies IV\APR

Storm Resources

* https://www.udacity.com/course/ud381

* http://www.manning.com/sallen/

« https://github.com/tdunning/storm-counts

N
'((/\ ©2015 MapR Technologies NVANP R,

Apache Spark

Apache Spark

Spark SQL Spark Streaming MLIib GraphX

(SQL/HQL) (stream processing) (machine learning) (graph processing)

Spark (core execution engine—RDDs)

file system (local, MapR-FS, HDFS, S3) or data store (HBase, Elasticsearch, etc.)

Continued innovation bringing new functionality, such as: ‘%
« Tachyon (Shared RDDs, off-heap solution) Spor’(

« BlinkDB (approximate queries)
« SparkR (R wrapper for Spark) http://spark.apache.org/
,((/i\)j © 2015 MapR Technologies IV\APR

Sweet spot ...

* |terative Algorithms
— machine learning
— graph processing beyond DAG

* Interactive Data Mining

« Streaming Applications

Ny
/(&\ ©2015 MapR Technologies NVANP R,

Interfacing to permanent storage

Local Files
— file:///opt/nttpd/logs/access log

* Object Stores (e.g. Amazon S3)

. MapR-FS, HDFS

— text files, sequence files, any other Hadoop InputFormat

« Key-Value datastores (e.g. Apache HBase)

 Elasticsearch

Ny
'((/,\ ©2015 MapR Technologies NVANP R,

Cluster Managers

Spark Driver

Cluster Master
Mesos, YARN, or
Standalone

Cluster Worker

Cluster Worker

Cluster Worker

Executor

Executor

Executor

IoN

Standalone

YARN

<'amazon [EC2

© 2015 MapR Technologies MAPR

Resilient Distributed Datasets (RDD)

 RDD: core abstraction of Spark execution engine

* Collections of elements that can be operated on in parallel

* Persistent in memory between operations

|ifJ " |ifJ "

vV V V'Y

map filter

www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf

= RDD : = cached partition

Ny
'((/,\ ©2015 MapR Technologies NVANP R,

RDD Operations

* Lazy evaluation is key to Spark

e Transformations

— Creation of a new dataset from an existing:
map, filter, distinct, union, sample, groupByKey, join, etc.

 Actions

— Return a value after running a computation:
collect, count, first, takeSample, foreach, etc.

Ny
/((A ©2015 MapR Technologies NVANP R,

Spark Streaming

IoN

High-level language operators for streaming data

Fault-tolerant semantics

Support for merging streaming data with historical data

input data batches of batches of
stream Spark input data_ Spark processed data
| Streaming ' Engine LIl

spark.apache.org/docs/latest/streaming-programming-quide.html

© 2015 MapR Technologies IV\APR

Spark Streaming

Run a streaming computation as a series of small, deterministic
batch jobs.

» Chop up live stream into batches of X live data stream spark
seconds (DStream) Streaming
« Spark treats each batch of data as RDDs batches of X seconds

and processes them using RDD ops

* Finally, processed results of the RDD

¢ am e - Spark
operations are returned in batches processed results

xb
,(A\ © 2015 MapR Technologies MAPR

Spark Streaming

Run a streaming computation as a series of small, deterministic
batch jobs.

- Batch sizes as low as 2 second, live data stream Spark

latency of about 1 second >treaming
and streaming processing in the same
system

Y ¢ am e - Spark

processed results

\y
’(&\ ©2015 MapR Technologies NVANP R,

Spark Streaming: Transformations

Network Input Windowed Stream
window: 3

e Stateless transformations slide : 2

™

o Stateful transformations 2
— checkpointing
— windowed transformations

 window duration
 sliding duration

T3

T4

T5

T6

spark.apache.org/docs/latest/streaming-programming-quide.html#transformations-on-dstreams

Ny
'((/,\ ©2015 MapR Technologies NVANP R,

Spark Streaming: Execution

Driver Program

StreamingContext

Spark jobs to
process

received data

SparkContext

i

IoN

to process

received data

Worker Node

Executor

Task

input stream

x‘ Long Receiver

data replicated to
another worker node

Worker Node

Executor </

‘(Task Task

output results
in batches

N
] [1 [)
v

© 2015 MapR Technologies MAPR

Spark Resources

* http://shop.oreilly.com/product/0636920028512.do

* http://databricks.com/spark-training-resources

» http://oreilly.com/go/sparkcert

» http://spark-stack.org

* https://www.mapr.com/blog/getting-started-spark-mapr-sandbox

N
'((/,\ ©2015 MapR Technologies NVANP R,

Comparison

Samza vs Storm vs Spark

Stream Source Consumers Spouts Receivers

Stream Primitive Message Tuple DStream

Stream Computation Tasks Bolts Transformations

\y
’(% ©2015 MapR Technologies NVANP R,

Samza vs Storm vs Spark
Samza __IStorm ___________|SparkStreaming

olele=tS[alefnglefe[Z18 ONe record at a time one record at a time micro-batch

Eich[e8 milliseconds milliseconds seconds

iglgelife[glel¥i8 100k+ records per node per 10k+ records per node per 100k+ records per node
second second per second

olfelel=[ple Mo IEET =0 CIEE0 at-least-once delivery; at-least-once / exactly once exactly once
support for exactly-once (with Trident)
planned

stateful operations BYES no / yes (with Trident) yes

language support + +++ ++
lcommunity size/ N iy s
committer & user base
SN agile, state management, distributed RPC unified processing (batch,
Kappa-native SQL, etc.)

((x)
AN\ © 2015 MapR Technologies MAPR

When to use what?

use case

Samza________[Storm _____| Spark Streaming

v e v
counting V4 V4
(incl. aggregations)
L ionc R
distributed RPC V4
re-processing V4 V4
(aka Kappa architecture)
materialized view maintenance V4 V4

(cache invalidation)

Ny
/(&\ ©2015 MapR Technologies NVANP R,

Spark vs Storm: Throughput

Spark Streaming: 670k records/sec/node

Storm: 115k records/sec/node

Commercial systems: 100-500k records/sec/node

Throughput per node

(MB/s)

Grep

60

40

20

100 1000
Record Size (bytes)

M Spark

M Storm

Throughput per node

(MB/s)

WordCount
30
n
20 Spark
10 B Storm
0 —]
100 1000
Record Size (bytes)

IoN

© 2015 MapR Technologies MAPR

Comparison Resources

IoN

http://www.zdatainc.com/2014/09/apache-storm-apache-spark/

http://www.slideshare.net/ChicagoHUG/yahoo-compares-storm-and-spark

http://www.slideshare.net/ptgoetz/apache-storm-vs-spark-streaming

http://xinhstechblog.blogspot.ie/2014/06/storm-vs-spark-streaming-side-by-side.html

http://samza.apache.org/learn/documentation/0.8/comparisons/storm.html

http://samza.apache.org/learn/documentation/0.8/comparisons/spark-streaming.html

https://www.mapr.com/blog/spark-streaming-vs-storm-trident-whiteboard-walkthrough

© 2015 MapR Technologies MAPR

$50M

in Free Training __

Free on-demand Hadoop training
leading to certification

,,,,,,,,,,,

Start becoming an expert now
mapr.com/training

Q&A

Engage with us!

@MapR G n

MapR Technologies m r

: > You
|scott@mapr.com @

2

maprtech

+MaprTechnologies

maprtech

VAPPR

