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About me. You can find this presentation and others on Big Data and Scala at polyglotprogramming.com.
Programming Scala, 2nd Edition is forthcoming.

photo: Dusk at 30,000 ft above the Central Plains of the U.S. on a Winter’s Day.
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Spark

Spark is a fast and general engine for large-scale
data processing built in Scala

*The Spark logo is the property of the Apache foundation.

SCROLL DOWN TO LEARN MORE
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Typesafe now offers commercial support for development teams using Spark. We have production support options coming soon. This page provides more information, as well as blog posts and webinars
about the world of Spark.
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Spark

Spark is a fast and general engine for large-scale
data processing built in Scala

*The Spark logo is the property of the Apache foundation.
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Typesafe now offers commercial support for development teams using Spark. We have production support options coming soon. This page provides more information, as well as blog posts and webinars
about the world of Spark.
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Hadoop v2.X Cluster

Node Mgr Node Mgr Node Mgr
Data Node Data Node Data Node
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Schematic view of a Hadoop 2 cluster. For a more precise definition of the services and what they do, see e.g., http://hadoop.apache.org/docs/r2.3.0/hadoop- -yarn-site/YARN.html We aren’t
interested in great details at this point, but we’ll call out a few useful things to know.




Resource and Node Managers

Hadoop v2.X Cluster

Resource Mgr
- | Name Node |

Node Mgr
Data Node
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Hadoop 2 uses YARN to manage resources via the master Resource Manager, which includes a pluggable job scheduler and an Applications Manager. It coordinates with the Node Manager on each node
to schedule jobs and provide resources. Other services involved, including application-specific Containers and Application Masters are not shown.




Name Node and Data Nodes

Hadoop v2.X Cluster
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Hadoop 2 clusters federate the Name node services that manage the file system, HDFS. They provide horizontal scalability of file-system operations and resiliency when service instances fail. The data
node services manage individual blocks for files.




MapReduce

The classic compute model
for Hadoop
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Hadoop 2 clusters federate the Name node services that manage the file system, HDFS. They provide horizontal scalability of file-system operations and resiliency when service instances fail. The data
node services manage individual blocks for files.




MapReduce

1 map step + 1 reduce step
wash, rinse, repeat

Tuesday, February 17, 15

You get 1 map step (although there is limited support for chaining mappers) and 1 reduce step. If you can’t implement an algorithm in these two steps, you can chain jobs together, but you’ll pay a tax of
flushing the entire data set to disk between these jobs.




MapReduce

Example:
Inverted Index




Web Craw Map Phase

wikipedia.org/hadoop
Hadoop provides
MapReduce and HDFS

Map Task

wikipedia.org/hbase
Map Task

HBase stores data in HDFS

Map Task
wikipedia.org/hive

Hive queries HDFS files and
HBase tables with SQL
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Before running MapReduce, crawl teh interwebs, find all the pages, and build a data set of URLs -> doc contents, written to flat files in HDFS or one of the more “sophisticated” formats.



Map Phase Reduce Phase

Reduce Task

wikipedia.org/hadoop | Hadoop provides...

Reduce Task

Map Task

r—

Reduce Task

wikipedia.org/hive

Map Task

Reduce Task
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Now we’re running MapReduce. In the map step, a task (JVM process) per file *block* (64MB or larger) reads the rows, tokenizes the text and outputs key-value pairs
(“tuples”)...




(hadoop,(wikipedia.org/hadoop,1))
(provides,(wikipedia.org/hadoop,1))
(mapreduce,(wikipedia.org/hadoop, 1))
(and,(wikipedia.org/hadoop,1))
(hdfsy(wikipedia.org/hadoop, 1))
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... the keys are each word found and the values are themselves tuples, each URL and the count of the word. In our simplified example, there are typically only single occurrences of each work in each
document. The real occurrences are interesting because if a word is mentioned a lot in a document, the chances are higher that you would want to find that document in a search for that word.




index

wikipedia.org/hadoop | Hadoop provides...

r—
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Map Phase Reduce Phase

Reduce Task

Reduce Task

Map Task

Reduce Task

Map Task

Reduce Task



Map Phase Reduce Phase

Reduce Task

Reduce Task

Map Task

Reduce Task

Map Task

— Reduce Task
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The output tuples are sorted by key locally in each map task, then “shuffled” over the cluster network to reduce tasks (each a JVM process, too), where we want all occurrences of
a given key to land on the same reduce task.




Reduce Phase

B ek P PR
(hadoop.)
‘ m (.../hbase, 1),(.../hive,1)

Reduce Task

Reduce Task

Reduce Task
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Finally, each reducer just aggregates all the values it receives for each key, then writes out new files to HDFS with the words and a list of (URL-count) tuples
(pairs).



Web Crawl

wikipedia.org/hadoop

wikipedia.org/hbase

HBase stores data in HDFS

wikipedia.org/hive
Hive queries HDFS files and
HBase tables with SQL
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Altogether...

Reduce Phase

Map Phase

iz

Reduce Task

Reduce Task

Fleduoe Task

Reduce Task

(../hbase, 1), (.../hive, 1)
hdfs | (../hadoop,1),(.../nbase,1),(...nive,1)

N
jand  |(/hadoop.t)(mivet) |
R

Finally, each reducer just aggregates all the values it receives for each key, then writes out new files to HDFS with the words and a list of (URL-count) tuples (pairs).




So, what’s
not to like?
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This seems okay, right? What’s wrong with it?



Awkward

Most algorithms are
much harder to implement
In this restrictive
map-then-reduce model.




Awkward

Lack of flexibility
Inhibits optimizations, too.
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The inflexible compute model leads to complex code to improve performance where hacks are used to work around the limitations. Hence, optimizations are hard to implement. The Spark team has
commented on this, see http://databricks.com/blog/2014/03/26/Spark-SQL-manipulating-structured-data-using-Spark.htmi




Performance

Full dump to disk
between jobs.
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Sequencing jobs wouldn’t be so bad if the “system” was smart enough to cache data in memory. Instead, each job dumps everything to disk, then the next job reads it back in again. This makes iterative
algorithms particularly painful.
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http://spark.apache.org
http://spark.apache.org

Cluster Computing
Can berunin:
*YARN (Hadoop 2
«Mesos (Cluster management
EC2
Standalone mode
«Cassandra
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If you have a Hadoop cluster, you can run Spark as a seamless compute engine on YARN. (You can also use pre-YARN Hadoop v1 clusters, but there you have manually allocate resources to the
embedded Spark cluster vs Hadoop.) Mesos is a general-purpose cluster resource manager that can also be used to manage Hadoop resources. Scripts for running a Spark cluster in EC2 are available.

Standalone just means you run Spark’s built-in support for clustering (or run locally on a single box - e.g., for development). EC2 deployments are usually standalone... Finally, database vendors like
Datastax are integrating Spark.




Compute Model

Fine-grained operators
for composing algorithms.




ompute Model

RDDs:
Resilient,
Distributed
Datasets
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RDDs shard the data over a cluster, like a virtualized, distributed collection (analogous to HDFS). They support intelligent caching, which means no naive flushes of massive datasets to disk. This feature
alone allows Spark jobs to run 10-100x faster than comparable MapReduce jobs! The “resilient” part means they will reconstitute shards lost due to process/server crashes.




ompute Model

Cluster

RDD RDD RDD
Partition 1 Partition 2 Partition 3

RDD
Partition 4

Node Node Node Node

RDD
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RDDs shard the data over a cluster, like a virtualized, distributed collection (analogous to HDFS). They support intelligent caching, which means no naive flushes of massive datasets to disk. This feature
alone allows Spark jobs to run 10-100x faster than comparable MapReduce jobs! The “resilient” part means they will reconstitute shards lost due to process/server crashes.




Compute Model

Written in Scala,
with Java and Python APIs.
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Let’s see an an actual implementation of the inverted index. First, a Hadoop MapReduce (Java) version, adapted from https://developer.yahoo.com/hadoop/tutorial

module4.html#solution It’s about 90 lines of code, but | reformatted to fit better.
This is also a slightly simpler version that the one | diagrammed. It doesn’t record a count of each word in a document; it just writes (word,doc-title) pairs out of the
mappers and the final (word,list) output by the reducers just has a list of documentations, hence repeats. A second job would be necessary to count the repeats.




import java.l1o.IOException;
import java.util.x;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.10.*;
import org.apache.hadoop.mapred. *x;

public class LinelIndexer {

public static void main(String[] args) {
JobClient client = new JobClient();
JobConf conf =

new JobConf(LineIndexer.class);

conf.setJobName("LineIndexer") ;
conf.setOutputKeyClass(Text.class) ;
conf.setOutputValueClass(Text.class)
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I’ve shortened the original code a bit, e.g., using * import statements instead of separate imports for each class.

I’m not going to explain every line ... nor most lines.
Everything is in one outer class. We start with a main routine that sets up the job. Lotta boilerplate...
| used yellow for method calls, because methods do the real work!! But notice that the functions in this code don’t really do a whole lot...




JobConf conf =
new JobConf(LineIndexer.class);

conf.setJobName("LineIndexer");
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(Text.class);
FileInputFormat.addInputPath(conf,
new Path("input"));
FileOutputFormat.setOutputPath(conf,
new Path("output"));
conf.setMapperClass(
LineIndexMapper.class) ;
conf.setReducerClass(
LineIndexReducer.class) ;

client.setConf(conf) ;

try 1
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boilerplate...




conTtT.setkeducert Lass(
LineIndexReducer.class);

client.setConf (conf) ;

try {
JobClient.runJob(conf) ;

} catch (Exception e) {
e.printStackTrace() ;

;
¥

public static class LineIndexMapper
extends MapReduceBase
implements Mapper<LongWritable, Text,
Text, Text> {
private final static Text word =
new Text();

r~ =1 u . (] —— a -
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main ends with a try-catch clause to run the
job.




exiLtenadas lMapredaducebase
implements Mapper<LongWritable, Text,
Text, Text> {
private final static Text word =
new Text();
private final static Text location =
new Text();

public void map(

LongWritable key, Text val,
OutputCollector<Text, Text> output,
Reporter reporter) throws IOException {

FileSplit fileSplit =
(FileSplit)reporter.getInputSplit();

String fileName =
fileSplit.getPath().getName() ;

location.set(fileName) ;

Tuesday, February 17, 15

This is the LinelndexMapper class for the mapper. The map method does the real work of tokenization and writing the (word, document-name)
tuples.
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String fileName =

fileSplit.getPath() .getName();
location.set(fileName) ;

String line = val.toString();
StringTokenizer 1itr = new
StringTokenizer (line.toLowerCase());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken()) ;
output.collect(word, location);

¥
¥
i

public static class LineIndexReducer
extends MapReduceBase

implements Reducer<Text, Text,
Toavi Tavt+Ss S
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The rest of the LinelndexMapper class and map

method.
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public void reduce(Text key,
Tterator<Text> values,
OutputCollector<Text, Text> output,
Reporter reporter) throws IOException {
boolean first = true;
StringBuilder toReturn =
new StringBuilder();
while (values.hasNext()) {
if (!first)
toReturn.append(", ");
first=false;
toReturn.append
values.next().toString());
¥
output.collect(key,
new Text(toReturn.toString()));

¥

1
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The reducer class, LinelndexReducer, with the reduce method that is called for each key and a list of values for that key. The reducer is stupid; it just reformats the values
collection into a long string and writes the final (word,list-string) output.




if (!first)
toReturn.append(", ");
first=fTalse;
toReturn.append(
values.next().toString());

}

output.collect(key,
new Text(toReturn.toString()));

¥
}
:
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EOF




import java.io.IOException;
import java.util.sx;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.x;
import org.apache.hadoop.mapred.*;

public class LineIndexer {

public static void main(String[] args) {
JobClient client = new JobClient();
JobConf conf =

new JobConf(LineIndexer.class);

conf.setJobName("LineIndexer");
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(Text.class);
FileInputFormat.addInputPath(conf,
new Path("input"));
FileOutputFormat.setOutputPath(conf,
new Path("output"));
conf.setMapperClass(
LineIndexMapper.class);
conf.setReducerClass(
LineIndexReducer.class);

client.setConf (conf);

try {
JobClient.runJob(conf);
} catch (Exception e) {
e.printStackTrace();

}

i

public static class LineIndexMapper
extends MapReduceBase
implements Mapper<LongWritable, Text,
Text, Text> {
private final static Text word =
new Text();
private final static Text location =
new Text();

public void map(

LongWritable key, Text val,
OutputCollector<Text, Text> output,
Reporter reporter) throws IOException {

FileSplit fileSplit =
(FileSplit)reporter.getInputSplit();

String fileName =
fileSplit.getPath().getName();

location.set(fileName);

String line = val.toString();
StringTokenizer itr = new
StringTokenizer(line.toLowerCase());

while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
output.collect(word, location);

}

}

}

public static class LineIndexReducer
extends MapReduceBase
implements Reducer<Text, Text,
Text, Text> {
public void reduce(Text key,
Iterator<Text> values,
OutputCollector<Text, Text> output,
Reporter reporter) throws IOException {
boolean first = true;
StringBuilder toReturn =
new StringBuilder();
while (values.hasNext()) {
if (!first)
toReturn.append(", ");
first=false;
toReturn.append(
values.next().toString());
}
output.collect(key,
new Text(toReturn.toString()));
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The whole shebang (6pt. font)

Altogether
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This code is approximately 45 lines, but it does more than the previous Java example, it implements the original inverted index algorithm | diagrammed where word counts are
computed and included in the data.



import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._

object InvertedIndex {
def main(args: Array[String]) = {

val sc = new SparkContext(
"local", "Inverted Index")

sc.textFile("data/crawl")

.map { line =>
val array = line.split("\t", 2)
(array(0), array(l))

}

.flatMap {
case (path, text) =>
teXt.Sp-l_-it("""\w-l_""") map {

Tuesday, February 17, 15
The Invertedindex implemented in Spark. This time, we’ll also count the occurrences in each document (as | originally described the algorithm) and sort the (url,N) pairs descending by

N (count), and ascending by URL.




import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._

object InvertedIndex {
def main(args: Array[String]) = {

val sc = new SparkContext(
"local", "Inverted Index")

sc.textFile("data/crawl")

.map { line =>
val array = line.split("\t", 2)
(array(0), array(l))

}

.flatMap {
case (path, text) =>
teXt.Sp-l_-it("""\w-l_""") map {

Tuesday, February 17, 15

It starts with imports, then declares a singleton object (a first-class concept in Scala), with a main routine (as in Java).
The methods are colored yellow again. Note this time how dense with meaning they are this time.




def main(args: Array[String]) = {

val sc = new SparkContext(
"local", "Inverted Index")

sc.textFile("data/crawl")
.map { line =>
val array = line.split("\t", 2)
(array(0), array(l))
}
.flatMap {
case (path, text) =>
teXt.Sp-l.._it("""\W'l'""") map {
word => (word, path)

}
}

.map {
case (w, p) => ((w, p), 1)

Tuesday, February 17, 15

You being the workflow by declaring a SparkContext. We’re running in “local” mode, in this case, meaning on a single machine (and using a single core). Normally this argument would
be a command-line parameter, so you can develop locally, then submit to a cluster, where “local” would be replaced by the appropriate URI.




def main(args: Array[String]) = {

val sc = new SparkContext(
"local", "Inverted Index")

sc.textFile("data/crawl")
.map { line =>
val array = line.split("\t", 2)
(array(0), array(l))
i
.flatMap {
case (path, text) =>
text. Sp'L-it(llllll\W_l_llllll) map {
word => (word, path)

}
}

.map {
case (w, p) => ((w, p), 1)

Tuesday, February 17, 15

The rest of the program is a sequence of function calls, analogous to “pipes” we connect together to construct the data flow. Data will only start “flowing” when we ask for results.
We start by reading one or more text files from the directory “data/crawl!”. If running in Hadoop, if there are one or more Hadoop-style “part-NNNNN” files, Spark will process all of

them (they will be processed synchronously in “local” mode).




sc.textFile("data/crawl")
.map { line =>
val array = line.split("\t", 2)
(array(0), array(l))
¥
. flatMap {
case (path, text) =>
teXt.Sp-l_-it("""\w-l_""") map {
word => (word, path)

}
}
.map {
case (w, p) => ((w, p), 1)
}
. reduceByKey {
case (nl, n2) => nl + n2

¥

_.man {
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sc.textFile returns an RDD with a string for each line of input text. So, the first thing we do is map over these strings to extract the original document id (i.e., file name), followed by
the text in the document, all on one line. We assume tab is the separator. “(array(0), array(1))” returns a two-element “tuple”. Think of the output RDD has having a schema

“fileName: String, text: String”.




sc.textFile("data/crawl")
.map { line =>
val array = line.split("\t", 2)
(array(0), array(l))
}
.flatMap {
case (path, text) =>
teXt.Sp-l_-it("""\w-l_""") map {
word => (word, path)

}
}
.map {
case (w, p) => ((w, p), 1)
}
. reduceByKey {
case (nl, n2) => nl + n2

¥

_.man {
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flatMap maps over each of these 2-element tuples. We split the text into words on non-alphanumeric characters, then output collections of word (our ultimate, final “key”) and the
path. That is, each line (one thing) is converted to a collection of (word,path) pairs (0 to many things), but we don’t want an output collection of nested collections, so flatMap

concatenates nested collections into one long “flat” collection of (word,path) pairs.




J

.map {
case (w, p) => ((w, p), 1)

}

.reduceByKey { ((word1, path1), n1)
case (nl, n2) => nl + n2 ((word2, path2), n2)

-
.map 1
case ((w, p), n) => (w, (p, Nn))
i
.groupBy 1
case (w, (p, n)) => w
i
.map {
case (w, seq) =>
val seg2 = seq map {
case (_, (p, n)) => (p, n)
}

cnrt+R\v/ [
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Next, we map over these pairs and add a single “seed” count of 1. Note the structure of the returned tuple; it’s a two-tuple where the first element is itself a two-tuple holding (word,
path). The following special method, reduceByKey is like a groupBy, where it groups over those (word, path) “keys” and uses the function to sum the integers. The popup shows the

what the output data looks like.




J

.map {

case (w, p) => ((w, p), 1)
}
.reduceByKey {

case (nl, n2) => nl + n2

}
.map {
case ((w, p), n) => (w, (p, n))
}
.groupBy 1
o (wordl, (pathl, nl))
! sV, ) =V i (word2, (path2, n2))
.map {

case (w, seq) =>
val seq2 = seq map 1
case (_, (p, n)) => (p, n)
¥

cnrt+R\v/ [
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So, the input to the next map is now ((word, path), n), where nis now >= 1. We transform these tuples into the form we actually want, (word, (path, n)). | love how concise and

elegant this code is!




5

. groupBy 1

case (w, (p, n)) => w
} (word, seq((word;(pathl, nl)), (word, (path2, n2)), ...))
.map {

case (w, seq) =>
val seq2 = seq map A
case (_, (p, n)) => (p, n)

¥
.SortBy {

case (path, n) => (-n, path)
¥

(w, seg2.mkString(", "))

ks
.saveAsTextFile("/path/to/out")

sc.stop()
}

Tuesday, Fbruary 17,15
Now we do an explicit group by to bring all the same words together. The output will be (word, seq((word, (path1, n1)), (word, (path2, n2)), ...)).




s
. groupBy 1

case (w, (p, n)) => w
¥
.map {

case (w, seq) =>

val seq2 = seq map A
case (_, (p, n)) => (p, n)

¥
.SortBy {

case (path, n) => (-n, path)
}
(w, seg2.mkString(", "))
1 (word, “(path1, nl), (path2, n2), ...”)

.saveAsTextFile("/path/to/out")

sc.stop()
}

Tuesday, Fbruary 17,15

Now we do an explicit group by to bring all the same words together. The output will be (word, (word, (pathl, n1)), (word, (path2, n2)), ...).
The last map removes the redundant “word” values in the sequences of the previous output and sorts by count descending, path ascending. (Sorting by path is mostly useful for

reproducibility, e.g., in tests!) It outputs the sequence as a final string of comma-separated (path,n) pairs.
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case (_, (p, n)) => (p, n)

}
.SortBy {
case (path, n) => (-n, path)

}
(w, seg2.mkString(", "))

}

.saveAsTextFile("/path/to/out")

sc.stop()

}
}

Tuesday, February 17, 15
Finally, write back to the file system and stop the job.




import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._

object InvertedIndex {
def main(args: Array[String]l) = {

val sc = new SparkContext(
"local"™, "Inverted Index")

sc.textFile("data/crawl")

.map { line =>
val array = line.split("\t", 2)
(array(0), array(l))

}
.flatMap {

case (path, text) =>
text.split("""\W+""") map {
word => (word, path)
}
=
.map {

case (w, p) => ((w, p), 1) A[t t
} oge her
.reduceByKey {

case (nl, n2) => nl + n2

+
.map {
case ((w, p), n) => (w, (p, n))
I
.groupBy {
case (w, (p, n)) => w
+
.map {

case (w, seq) =>
val seq2 = seq map {
case (_, (p, n)) => (p, n)
}
(w, seq2.mkString(", "))

1]
.saveAsTextFile("/path/to/out")

sc.stop()
+
k
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The whole shebang (12pt. font, this time)




.map { line\:>
val array = line.split("\t", 2)
(array(0), array(l))

¥
flatMap {
case (path, text) =>
text.split("""\W+""") map {
word => (word, path)
1 :
) Concise
.map {
case (w, p) => ((w, p), 1) Opel’atOI’S’
¥

.reduceByKey {
case (nl, n2) => nl + n2

¥

.map {
case ((w. p). n) => (w. (b. n))
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Could you make this code more concise, yet expressive. It would be really, really hard, in any language!
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Another example of a beautiful and profound DSL, in this case from the world of Physics: Maxwell’s equations: http://upload.wikimedia.or
Maxwell'sEquations.svg




The Spark version took me
~30 minutes to write.
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Once you learn the core primitives | used, and a few tricks for manipulating the RDD tuples, you can very quickly build complex algorithms for data processing!

The Spark API allowed us to focus almost exclusively on the “domain” of data transformations, while the Java MapReduce version (which does less), forced tedious
attention to infrastructure mechanics.
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Spark SQL!

Mix SQL queries with
the RDD API.




Spark SQL!

Create, Read, and Delete
Hive Tables




Spark SQL!

Read JSON and
Infer the Schema




Spark SQL!

Read and write
Parquet files
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Parquet is a newer file format developed by Twitter and Cloudera that is becoming very popular. IT stores in column order, which is better than row order when you have lots of columns and your queries
only need a few of them. Also, columns of the same data types are easier to compress, which Parquet does for you. Finally, Parquet files carry the data schema.




SparkSQL

~10-100x
the performance
of Hive.
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Combine SparkSQL
with Machine Learning.
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We'll use the Spark “MLIib” in the example, then return to it in a moment.




CREATE TABLE Users(

userId INT, . :

— STRING, Equivalent HiveQL
emai L STRING, Schemas definitions:
age INT,

latitude DOUBLE,
longitude DOUBLE,
subscribed BOOLEAN) ;

CREATE TABLE Events(
userId INT,
action INT);

Tue dyFb ary 17,15
xample dptdf mthfllwgblgpt nci

Adapted here to use Spark’s own SQL, not the integration with Hive. Imagine we have a stream of events from users and the events that have occurred as they used a system.



val trainingbDataTable = sqgl ("""
SELECT e.action, u.age,
u.latitude, u.longitude
FROM Users u
JOIN Events e
ON u.userlId = e.userId""")

val trainingData =
trainingDataTable map { row =>
val features =
Array[Double] (row(1l), row(2), row(3))
LabeledPoint(row(0®), features)

)

val model =
new LogisticRegressionWithSGD()
.run(trainingData)

Tuesday, February 17, 15

Here is some Spark (Scala) code with an embedded SQL query that joins the Users and Events tables. The “””...””” string allows embedded line feeds.
The “sqgl” function returns an RDD. If we used the Hive integration and this was a query against a Hive table, we would use the hql(...) function instead.




val trainingbDataTable = sqgl ("""
SELECT e.action, u.age,
u.latitude, u.longitude
FROM Users u
JOIN Events e
ON u.userlId = e.userId""")

val trainingData =
trainingDataTable map { row =>
val features =
Array[Double] (row(1l), row(2), row(3))
LabeledPoint(row(0®), features)

)

val model =
new LogisticRegressionWithSGD()
.run(trainingData)
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We map over the RDD to create LabeledPoints, an object used in Spark’s MLlib (machine learning library) for a recommendation engine. The “label” is the kind of event and the user’s
age and lat/long coordinates are the “features” used for making recommendations. (E.g., if you’re 25 and near a certain location in the city, you might be interested a nightclub near

by...)




val model =
new LogisticRegressionWithSGD ()
.run(trainingData)

val allCandidates = sgl("""

SELECT userld, age, latitude, longitude
FROM Users

WHERE subscribed = FALSE""")

case class Score(
userId: Int, score: Double)
val scores = allCandidates map { row =>
val features =
Array[Double] (row(1), row(2), row(3))
Score(row(®), model.predict(features))

¥

// Thn—mamnryvs +ahlao
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Next we train the recommendation engine, using a “logistic regression” fit to the training data, where “stochastic gradient descent” (SGD) is used to train it. (This is a standard tool set
for recommendation engines; see for example: http://www.cs.cmu.edu/~wcohen '




val model =
new LogisticRegressionWithSGD ()
.run(trainingData)

val allCandidates = sgl("""

SELECT userld, age, latitude, longitude
FROM Users

WHERE subscribed = FALSE""")

case class Score(
userId: Int, score: Double)
val scores = allCandidates map { row =>
val features =
Array[Double] (row(1), row(2), row(3))
Score(row(®), model.predict(features))

¥

// Thn—mamnryvs +ahlao
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Now run a query against all users who aren’t already subscribed to notifications.




case class Score(
userId: Int, score: Double)
val scores = allCandidates map { row =>
val features =
Array[Double] (row(1l), row(2), row(3))
Score(row(0), model.predict(features))

¥

// In—-memory table
scores.registerTempTable("Scores")

val topCandidates = sgl("""
SELECT u.name, u.email
FROM Scores s
JOIN Users u ON s.userlId = u.userld
ORDER BY score DESC
LIMIT 100""")
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Declare a class to hold each user’s “score” as produced by the recommendation engine and map the “all” query results to Scores.




case class Score(
userId: Int, score: Double)
val scores = allCandidates map { row =>
val features =
Array[Double] (row(1l), row(2), row(3))
Score(row(0), model.predict(features))

¥

// In—-memory table
scores.registerTempTable("Scores")

val topCandidates = sgl("""
SELECT u.name, u.email
FROM Scores s
JOIN Users u ON s.userlId = u.userld
ORDER BY score DESC
LIMIT 100""")
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Then “register” the scores RDD as a “Scores” table in in memory. If you use the Hive binding instead, this would be a table in Hive’s metadata storage.




// In—-memory table
scores.registerTemplTable("Scores")

val topCandidates = sqgl("""

SELECT u.name, u.email

FROM Scores s

JOIN Users u ON s.userId = u.userld
ORDER BY score DESC

LIMIT 10Q""")
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Finally, run a new query to find the people with the highest scores that aren’t already subscribing to notifications. You might send them an email next recommending that they
subscribe...




val trainingDataTable = sql("""
SELECT e.action, u.age,
u.latitude, u.longitude
FROM Users u
JOIN Events e
ON u.userId = e.userId""")

val trainingData =
trainingDataTable map { row =>
val features =
Array[Double] (row(1), row(2), row(3))
LabeledPoint(row(0), features)
+

val model =
new LogisticRegressionWithSGD()
.run(trainingData)

val allCandidates = sql("""

SELECT userId, age, latitude, longitude
FROM Users

WHERE subscribed = FALSE""")

case class Score(

userId: Int, score: Double)
val scores = allCandidates map { row =>
val features =

Array[Double] (row(1l), row(2), row(3))
Score(row(0), model.predict(features))

}

// In-memory table
scores.registerTempTable("Scores")

val topCandidates = sql("""

SELECT u.name, u.email

FROM Scores s

JOIN Users u ON s.userId = u.userId
ORDER BY score DESC

LIMIT 100""")

Tuesday, February 17, 15
12 point font again.
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Spark Streaming

Use the same abstractions
for near real-time,
event streaming.




DStream (discretized stream)

, HHH EHHHH HHHH HHH I :

Time 1 RDD Time 2 RDD Time 3 RDD Time 4 RDD

Window of 3 RDD Batches #1

Window of 3 RDD Batches #2
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A DSTream (discretized stream) wraps the RDDs for each “batch” of events. You can specify the granularity, such as all events in 1 second batches, then your Spark job is passed each batch of data for
processing. You can also work with moving windows of batches.




Very similar code...




val sc
val ssc

new SparkContext(...)
new StreamingContext(
sc, Seconds(1l))

// A DStream that will listen to server:port
val lines =
ssc.socketTextStream(server, port)

// Word Count...
val words = lines flatMap {
line => Lline.split("""\w+""")

}

val pairs = words map (word => (word, 1))
val wordCounts =
pairs reduceByKey ((nl, n2) => nl + n2)

Tuesday, February 17, 15
This example adapted from the following page on the Spark website:

.0/streaming-programming-guide.html#a-quick-example




val sc
val ssc

new SparkContext(...)
new StreamingContext(
sc, Seconds(1l))

// A DStream that will listen to server:port
val lines =
ssc.socketTextStream(server, port)

// Word Count...
val words = lines flatMap {
line => Lline.split("""\w+""")

}

val pairs = words map (word => (word, 1))
val wordCounts =
pairs reduceByKey ((nl, n2) => nl + n2)
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We create a StreamingContext that wraps a SparkContext (there are alternative ways to construct it...). It will “clump” the events into 1-second intervals.




val sc
val ssc

new SparkContext(...)
new StreamingContext(
sc, Seconds(1l))

// A DStream that will listen to server:port
val lines =
ssc.socketTextStream(server, port)

// Word Count...
val words = lines flatMap {
line => Lline.split("""\w+""")

}

val pairs = words map (word => (word, 1))
val wordCounts =
pairs reduceByKey ((nl, n2) => nl + n2)
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Next we setup a socket to stream text to us from another server and port (one of several ways to ingest data).
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// Word Count...
val words = lines flatMap {
line => Lline.split("""\W+""")

}

val pairs = words map (word => (word, 1))
val wordCounts =
pairs reduceByKey ((nl, n2) => nl + n2)

wordCount.print() // print a few counts...

ssc.start()
ssc.awaitTermination()
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Now we “count words”. For each mini-batch (1 second’s worth of data), we split the input text into words (on whitespace, which is too crude).

Once we setup the flow, we start it and wait for it to terminate through some means, such as the server socket closing.
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// Word Count...
val words = lines flatMap {
line => Lline.split("""\W+""")

}

val pairs = words map (word => (word, 1))
val wordCounts =
pairs reduceByKey ((nl, n2) => nl + n2)

wordCount.print() // print a few counts...

ssc.start()
ssc.awaitTermination()

Tuesday, February 17, 15
We count these words just like we counted (word, path) pairs early.
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// Word Count...
val words = lines flatMap {
line => Lline.split("""\W+""")

}

val pairs = words map (word => (word, 1))
val wordCounts =
pairs reduceByKey ((nl, n2) => nl + n2)

wordCount.print() // print a few counts...

ssc.start()
ssc.awaitTermination()
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print is useful diagnostic tool that prints a header and the first 10 records to the console at each iteration.
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// Word Count...
val words = lines flatMap {
line => Lline.split("""\W+""")

}

val pairs = words map (word => (word, 1))
val wordCounts =
pairs reduceByKey ((nl, n2) => nl + n2)

wordCount.print() // print a few counts...

ssc.start()
ssc.awaitTermination()
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Now start the data flow and wait for it to terminate (possibly forever).
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So where will we be five years from now?




MapReduce

vs. Spark

Tuesday, February 17, 15
Spark just replaced MapReduce




YARN?

vs. Mesos 7 /
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What about YARN. It's somewhat specific to the MapReduce model (batch mode, finite-duration jobs, somewhat static allocation of resources for job life). It’s less “universal” and
efficient compared to Mesos. As Data environments grow more sophisticated, | believe YARN will reach a point where we need to replace it. Mesos is the most likely contender.



HDFS !
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As a distributed file system layered on top of a native filesystem, HDFS is not nearly as efficient as it could be. It’s resiliency features are a hack. It fairs poorly with small or
incrementally-updated files. A distributed file system with better performance, resiliency, and efficiency for a wider variety of scenarios will become essential. Possible
replacements are MapR-FS, Ceph, Gluster, and others(?).
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‘ Dean Wampler

@deanwampler

Functional Programming: | came for the

concurrency, but | stayed for the data science.
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Why is Spark so good (and Java MapReduce so bad)? Because fundamentally, data analytics is Mathematics and programming tools inspired by Mathematics - like Functional Programming - are ideal
tools for working with data. This is why Spark code is so concise, yet powerful. This is why it is a great platform for performance optimizations. This is why Spark is a great platform for higher-level tools,
like SQL, graphs, etc.

Interest in FP started growing ~10 years ago as a tool to attack concurrency. | believe that data is now driving FP adoption even faster. | know many Java shops that switched to Scala when they adopted
tools like Spark and Scalding (https://github.com/twitter/scalding).



Spark

Atlexible, scalable“drstributéd compute
platform with concise, powerful ARIS
and higher-order tools.

spark.apache.org



http://spark.apache.org
http://spark.apache.org

Why Spark Is the Next
Ompute) Mode
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