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WHY ARE

WE HERE?
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BANDIT 
ALGORITHMS

(AN OVERVIEW)
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TAKE ACTION 
AUTOMATICALLY
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SELECT ADS

RECOMMEND NEWS STORIES

CHOOSE BETWEEN ALGORITHMS

ETC.

Tuesday, 12 November 2013



#1

Maximise reward over 
time
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#2

Best arm identification
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#3

Personalisation 
(Use structure in the 

problem)
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#4

Brief overview of other 
areas
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WHY ARE

WE HERE?
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WHAT DO

DATA SCIENTISTS 
DO?
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Metric
(sign-ups, revenue, etc)
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Make this happen
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HOW?

EFFECTIVE ACTION
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Build

MeasureLearn
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FASTER IS BETTER

Tuesday, 12 November 2013



THE BANDIT PROBLEM
(EST 1952 ... OR 1933)
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k arms (or variants)
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Select a variant
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Receive a reward

Tuesday, 12 November 2013



REPEAT
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MAXIMISE TOTAL 
REWARD
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HOW?
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DISPLAY VARIANT WITH 

HIGHEST AVERAGE 
REWARD
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Good Variant Bad Variant
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Good Variant Bad Variant

Views: 1
Reward: 0
Average: 0

Tuesday, 12 November 2013



Good Variant Bad Variant

Views: 1
Reward: 0
Average: 0

Views: 1
Reward: 1
Average: 1
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OOPS!
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Good Variant Bad Variant

Views: 1
Reward: 0
Average: 0

Views: 1
Reward: 1
Average: 1

WILL NEVER TRY THE 

GOOD VARIANT AGAIN!
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BALANCE EXPLOIT 

AND EXPLORE
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EXPLOIT
TRY THE VARIANT THAT 
HAS WORKED BEST IN 

THE PAST
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EXPLORE
 TRY OTHER VARIANTS 

TO SEE IF THEY’RE 
BETTER
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E-GREEDY
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10% EXPLORE 

90% EXPLOIT
Don’t like 10% and 90%? Change it.
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THOMPSON 
SAMPLING
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BAYESIAN APPROACH 
USING 

PROBABILITY 
MATCHING
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Select arm in proportion 
to probability it will 
receive the highest 

reward
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P (armi) ∝ P (ri > r1, . . . , rj))

ri is the reward of armi
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Binary reward: Beta 
Prior

Gnarly integration: 
Monte Carlo
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THOMPSON SAMPLING

∀i, pi ∼ Beta(θi)

choose armi with pi > pj , ∀j �= i

Tuesday, 12 November 2013



ONE SAMPLE IS 

ENOUGH!
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OTHER 
ALGORITHMS E.G. 

UCB-1, KL-UCB
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IN PRACTICE 

THOMPSON SAMPLING IS 

SUPERIOR
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THEORY
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MINIMISE EXPECTED 
REGRET
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Regret(T ) = µ∗T − E
�

T�

i=1

ri
�

µ∗ : expected reward of best arm

ri : reward at time i
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Regret(T ) = Ω(log(T ))
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THOMPSON SAMPLING IS 

OPTIMAL 
(Kaufmann, Korda, & Munos, 2012; 

Agrawal and Goyal, 2012)
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BEST ARM
IDENTIFICATION
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FIND WITH HIGH 
PROBABILITY

ARM(S) WITH HIGHEST 
EXPECTED REWARD
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A/B TESTING
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BETTER CONFIDENCE 
INTERVALS 
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MIND THE GAP 
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ADDING

STRUCTURE
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EXAMPLE: 
EACH USER HAS A

PROFILE
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IN GENERAL, 
RECEIVE A

CONTEXT VECTOR 

AT EACH DECISION
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ASSUME REWARD IS

LINEAR FUNCTION 

OF CONTEXT
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ci ∈ Rd : context at time i

µ̄ ∈ Rd : linear payoff function

cTi µ̄ : expected payoff
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DO SAME

PROBABILITY 
MATCHING 

AS BEFORE
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Put prior on payoff 
function. E.g. Gaussian

Create likelihood function 
over rewards. E.g. Gaussian

Tuesday, 12 November 2013



Regret(T ) = Ω
�
d
�
(T )

�

(Agrawal & Goyal, 2013)
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ESSENTIALLY

BING’S CTR PREDICTION 

ALGORITHM
(Graepel et al, 2010)
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OTHER BITS AND PIECES
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NON-STATIONARY
REWARDS
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ADVERSARIAL
REWARDS SET 
ARBITRARILY
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Regret(T ) = Ω
��

(T )
�
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PREDICTABLE
(BUT NON-STATIONARY)

REWARDS
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LOTS MORE
(COMBINATORIAL BANDITS, 

LINEAR OPT etc.)
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THANK YOU!
NOW GO FORTH AND 

ENGAGE IN 
BANDITRY
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MORE:

noelwelsh.com & 
bandits.mynaweb.

com
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CREDITS
Photos and artwork by the following people were used in 

this presentation: 

Moyan Brenn http://www.flickr.com/photos/aigle_dore/
Suicine http://www.flickr.com/photos/bigmikeyeah

ankakay http://www.flickr.com/photos/ankakay/
Cdr Aitch http://www.flickr.com/people/hjsouthgate/

StJost http://stjost.deviantart.com/ 
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