O'REILLY*

Strata CONFERENCE

11-13 Nov 2013
(1) LONDON, ENGLAND

Dealing With Uncertainty:
What the reverend Bayes can teach us

Probability - Bernoulli, de Moivre

- Fair coin
- 50% heads
- 50% tails

What is the probability of two consecutive heads?

25\%

25\%

25\%
25\%

Inverse Probability (Bayes)

- Given a coin, not sure whether biased or not?
- If two rolls turn up heads, is the coin biased or not?

Strata

Strata

BAYESIAN PROBABILITY

Cox Axioms

- The plausibility of a statement is a real number and is dependent on information we have related to the statement.
- Plausibilities should vary sensibly with the assessment of plausibilities in the model.
- If the plausibility of a statement can be derived in many ways, all the results must be equal.

Outcome:

- If A is true then $p(A)=1$
- $p(A)+p(n o t A)=1$
- $p(A$ and $B)=p(A \mid B) \times p(B)$

$p\left(\right.$ "cause"|"effect") $=\frac{p(\text { "effect"|"cause") } p(\text { "cause") })}{p(\text { "effect") }}$

What is the probability that the person behind the screen is a girl?

What is the probability that the person called Charlie behind the screen is a girl?

Something about probability of Charlie

- Girls: 32 / 22989 = 0.13\%
- Buys: 89 / $22070=0.4 \%$

What is the probability that the person called Charlie behind the screen is a girl?

BAYESIAN MACHINE LEARNING

$$
\left.p\left(\operatorname{Road}_{t+1} \mid \operatorname{Image}_{t}\right)=\frac{p\left(\operatorname{Image}_{t} \mid \operatorname{Road}_{t}\right) \times p\left(\operatorname{Road}_{t}\right)}{p\left(\operatorname{Image}_{t}\right)} \right\rvert\,
$$

Bayesian Sick People Experiment

- 1 in 100 has health issue.

- Test is 90% accurate.
- You test positive, what are the odds that you need a treatment?

What is the probability of being sick?
A. $\approx 95 \%$
B. $\approx 90 \%$
C. $\approx 50 \%$
D. $\approx 10 \%$

Abstract

- 1000 people in our sample.
- We expect 10 people to be sick (give or take).
- Imagine testing all individuals?

Abstract

- 1000 people in our sample.
- We expect 10 people to be sick (give or take).
- Imagine testing all individuals?
$\rightarrow 9$ out of 10 sick people test positive.
- 1000 people in our sample.
- We expect 10 people to be sick (give or take).
- Imagine testing all individuals?
$\rightarrow 9$ out of 10 sick people test positive.
$\rightarrow 99$ out of 990 healthy people test positive!
- I.o.w. if you test positive, it is actually not very likely that you are sick.

PROBABILISTIC PROGRAMMING

Сெ甲u\$ Θ -

Offitadt)

Strata

- Imagine a timeline of sales per day for a particular product.
- Did the sales rate for this product change over time?

Thinking From Cause to Effect

- In:
- Sales rate for period 1.
- Sales rate for period 2.
- Switchover point between period 1 and 2.
- Output:
- Unit sales over period 1 and 2.

```
model = pymc.Model()
with model:
    switch = pymc.DiscreteUniform(lower=0, lower=70)
    rate_1 = pymc.Exponential(1.0)
    rate_2 = pymc.Exponential(1.0)
    rates = pymc.switch(switch >= arange(70), rate_1, rate_2)
    unit_sales = pymc.Poisson(rates, observed=data)
```

Posterior distributions of the variables

Strata

References

- Bayesian vs. Frequentist Statistics
- http://www.stat.ufl.edu/~casella/Talks/BayesRefresher.pdf
- Probabilistic Programming \& Bayesian Methods for Hackers
- https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers
- Bayesian Methods
- http://www.gatsby.ucl.ac.uk/~zoubin/tmp/tutorial.pdf
- "The Theory That Would not Die", Sharon Bertsch Mcgrayne
- http://www.amazon.co.uk/dp/0300188226

Medical Example using PyMC

```
model = pymc.Model()
```

with model:

```
sick = pymc.Bernoulli(p=0.01)
test_result = pymc.Bernoulli(sick * 0.9 + (1-sick) * (1.0-0.9), observed=[1])
```

algorithm = pymc.Metropolis()
print "Pr(Sick | Test) = \%f" \% pymc.sample(1000, algorithm)[sick].mean()

