

Predictive Analytics with Hadoop

Tomer Shiran VP Product Management MapR Technologies

November 12, 2013

Me, Us

- Tomer Shiran
 - VP Product Management, MapR Technologies
 - tshiran@maprtech.com
- MapR
 - Enterprise-grade Hadoop distribution
 - Apache Hadoop + infrastructure and management innovation
 - > 500 paying customers
 - EMEA offices in UK, Germany, Sweden and France (HQ in London)
- Twitter: #mapr

Hadoop Job Growth

Agenda

- Examples
- Data-driven solutions
- Obtaining <u>big</u> training data
- Recommendation with Mahout and Solr
- Operational considerations

Recommendation is Everywhere

- Using MapR

Media and **Advertising**

e-commerce

Enterprise Sales

 Recommend sales opportunities to partners • \$40M revenue in year 1 • 1.5B records per day

Classification is Everywhere

- 600+ variables considered for every IP address
- Billions of data points
- Using MapR

- Identify anomalous patterns indicating fraud, theft and criminal activity
- Stop phishing attempts
- Using MapR

- Customer 360 application • Each customer is scored and categorized based on all their activity Data from hundreds of streams and databases • Using MapR

IP address blacklisting

Fraud Detection

Fortune 100 Telco

Customer 360 Scoring & Categorization

Data-Driven Solutions

- Physics is simple: f = ma; E=mc²
- Human behavior is much more complex
 - Which ad will they click?
 - Is a behavior fraudulent? Why?
- Don't look for complex models that try to discover general rules - The size of the dataset is the most important factor - Simple models (n-gram, linear classifiers) with Big Data
- A. Halevy, P. Norvig, and F. Pereira. <u>The unreasonable effectiveness</u> of data. IEEE Intelligent Systems, 24(2):8-12, 2009.

The Algorithms Are Less Important

Focus on the Data

Most algorithms come down to counting and simple math

- Invest your time where you can make a difference - Getting more data can improve results by 2x
 - eg, add beacons everywhere to instrument user behavior
 - Tweaking an ML algorithm will yield a fraction of 1%
- Data wrangling
 - Feature engineering
 - Moving data around

Obtaining <u>Big</u> Training Data

- Can't really rely on experts to label the data

 Doesn't scale (not enough experts out there)
 - Too expensive
- So how do you get the training data?
 - Crowdsourcing
 - Implicit feedback
 - "Obvious" features
 - User engagement

Using Crowdsourcing for Annotation

R. Snow, B. O'Connor, D. Jurafsky, and A. Ng. <u>Cheap and fast –</u> but is it good? Evaluating non-expert annotations for natural language tasks. EMNLP, 2008.

		Cost	Time	Labels	Labels
Task	Labels	(USD)	(hrs)	per USD	per hr
Affect	7000	\$2.00	5.93	3500	1180.4
WSim	300	\$0.20	0.174	1500	1724.1
RTE	8000	\$8.00	89.3	1000	89.59
Event	4620	\$13.86	39.9	333.3	115.85
WSD	1770	\$1.76	8.59	1005.7	206.1
Total	21690	25.82	143.9	840.0	150.7

Table 3: Summary of costs for non-expert labels

Quantity: \$2 for 7000 annotations (leveraging Amazon Mechanical Turk and a "flat world")

Emotion	1-Expert	10-NE	\boldsymbol{k}	
Anger	0.459	0.675	2	Γ
Disgust	0.583	0.746	2	
Fear	0.711	0.689	-	
Joy	0.596	0.632	7	
Sadness	0.645	0.776	2	
Surprise	0.464	0.496	9	
Valence	0.759	0.844	5	
Avg. Emo.	0.576	0.669	4	
Avg. All	0.603	0.694	4	

Table 2: Average expert and averaged correlation over 10 non-experts on test-set. k is the minimum number of non-experts needed to beat an average expert.

Quality: 4 non-experts = 1 expert

- k-NE 0.5360.627 0.600 0.656 0.481 0.803 0.589 0.613

Using "Obvious" Features for Annotation

Siah @siah 95 percent of my money comes from my R and Hadoop skills. Only 5 percent from the PhD that I spent 4 years of my life on :) #rstats

Expand

25 Nov

aw @_a_w_ Started uplo

Started uploading some old #hadoop presentations to @slideshare . Looks like it doesn't like Keynote speaker notes though. :(

Expand

Leveraging Implicit Feedback

- Users behavior provides valuable training data
- Google adjusts search rankings based on engagement
 Did the user click on the result?
 - Did the user come back to the search page within seconds?
- Most recommendation algorithms are based solely on user activity - What products did they view/buy?
 - What ads did they click on?
- T. Joachims, L. Granka, B. Pan, H. Hembrooke, F. Radlinski, and G. Gay. <u>Evaluating the accuracy of implicit feedback from clicks and query</u> <u>reformulations in Web search</u>. ACM TOIS, 25(2):1{27, 2007.

Increasing Exploration

We need to find ways to increase exploration to broaden our learning

Exploration of the second page

Result Dithering

- Dithering is used to re-order recommendation results - Re-ordering is done randomly
- Dithering is guaranteed to make off-line performance worse
- Dithering also has a near perfect record of making actual performance much better
 - "Made more difference than any other change"

Simple Dithering Algorithm

Generate synthetic score from log rank plus Gaussian

 $s = \log r + N(0,\varepsilon)$

Pick noise scale to provide desired level of mixing

 $\Delta r \propto r \exp \varepsilon$

Typically:

$$\varepsilon \in [0.4, 0.8]$$

• Oh... use floor(t/T) as seed so results don't change too often

Example: $\varepsilon = 0.5$

1	2	6	5	3	4	13	16	
1	2	3	8	5	7	6	34	
1	4	3	2	6	7	11	10	
1	2	4	3	15	7	13	19	
1	6	2	3	4	16	9	5	
1	2	3	5	24	7	17	13	
1	2	3	4	6	12	5	14	
2	1	3	5	7	6	4	17	
4	1	2	7	3	9	8	5	
2	1	5	3	4	7	13	6	
3	1	5	4	2	7	8	6	
2	1	3	4	7	12	17	16	
						1.7		

- Each line represents a recommendation of 8 items
- The non-dithered recommendation would be 1, 2, ..., 8

Example: $\varepsilon = \log 2 = 0.69$

1	2	8	3	9	15	7	6	
1	8	14	15	3	2	22	10	
1	3	8	2	10	5	7	4	
1	2	10	7	3	8	6	14	
1	5	33	15	2	9	11	29	
1	2	7	3	5	4	19	6	
1	3	5	23	9	7	4	2	
2	4	11	8	3	1	44	9	
2	3	1	4	6	7	8	33	
3	4	1	2	10	11	15	14	
11	1	2	4	5	7	3	14	
1	8	7	3	22	11	2 18	33	

- Each line represents a recommendation of 8 items
- The non-dithered recommendation would be 1, 2, ..., 8

What is Recommendation?

The behavior of a crowd helps us understand what individuals will do...

Batch and Real-Time

- We can learn about the relationship between items every X hours – These relationships don't change often
 - People who buy Nikon D7100 cameras also buy a Nikon EN-EL15 battery
- What to recommend to Bob has to be determined in real-time – Bob may be a new user with no history
 - Bob is shopping for a camera right now, but he was buying a baby bottle an hour ago
- How do we do that?
 - Mahout for the heavy number crunching
 - Solr / Elasticsearch for the real-time recommendations

Recommendations

Alice Alice got an apple and a puppy

Charles

Charles got a bicycle

Recommendations

Recommendations

What else would Bob like?

Charles

Log Files

History Matrix

Co-Occurrence Matrix: Items by Items

Q: How do you tell which co-occurrences are useful? A: Let Mahout do the math...

Indicator Matrix: Anomalous Co-Occurrences

Result: The marked row will be added to the indicator field in the item document...

Indicator Matrix

Note: Data for the indicator field is added directly to meta-data for a document in Solr index. You don't need to create a separate index for the indicators.

That one row from indicator matrix becomes the indicator field in the Solr document used to

Internals of the Recommender Engine

recommend if new user Domino & 303:Beatles?

A: Search the index with "indicator artists:2122

Internals of the Recommender Engine LucidWorks admin | Sign out | Users | Settings 1710:Check Berry is the Dashboard : Artists top recommendation Status Access Control Search Advanced Indexing Querving Results 1 - 10 of 152 for "indicator_artists:2122 OR indicator_artists:303" 1 2 3 4 5 6 7 8 9 ... 15 16 Next → Results 1 - 10 of 152 fo 1710 12345678 row your search mbid: 592a3b6d-c42b-4567 9c9-ecf63bd66499 1710 name: Chuck Berry 592a3 mbid: der area: United States name: Chucl sender: Jale Unite area: indicator_artists: 382685.875994.637954.3418.1344.315154.694400.789739.1460.630993.71 gender: Male indicator_artists: 3866 07,4111,858195,29,745742,3331,162 1710 - Find similar - Explain 4 1710 - Find similar - Ex 541902 mbid: 983d4f8f-473e-4091-8394-415c105c465 name: Charlie Winston area: United Kingdom gender: None indicator_artists: ,997727,109601,815,830794,59588,900,2591,311520,696268,6238,56964,809858,42884,821586,22532,805582,112605,2122,185581,242,303,719703,2129,125800,825 541902 - Find similar - Explain 4

Toolbox for Predictive Analytics with Hadoop

- Mahout
 - Use it for Recommendations, Clustering, Math
- Vowpal Wabbit – Use it for Classification (but it's harder to use)

- SkyTree
 - Commercial (not open source) implementation of common algorithms

Operational Considerations

- Snapshot your raw data before training
 - Reproducible process
 - MapR snapshots
 - (Beware of HDFS so-called "snapshots" not consistent...)
- Leverage NFS for real-time data ingestion

 Train the model on today's data
 - Learning schedule independent from ingestion schedule
- Look for HA, data protection, disaster recovery

 Predictive analytics increases revenue or reduces cost
 - Quickly becomes a must-have, not a nice-to-have

Starting a Project or Moving to Production?

- Read the Hadoop Buyer's Guide - Free hard copies at the MapR booth
 - Or read it online: www.HadoopBuyersGuide.com
- Come to our office hour (right now, 2:45pm) Will be joined by Ted Dunning, Mahout Committer and author of Mahout In Action
- Contact MapR
 - Data Science team that can help you with Hadoop and predictive analytics

Thank You

