O'REILLY[®] Strata CONFERENCE Making Data Work

■ 11–13 Nov 2013 LONDON, ENGLAND

#strataconf strataconf.com/london

A Physics Approach to "Big Data"

Adam Kocoloski, PhD CTO Cloudant

2009	2010	2011	2012	2013	- 201

Solenoidal Tracker at RHIC (STAR)

The life of LHC data

Detected by experiment

- "Online" filtering (hardware and software)
- Transferred to CERN main campus, archived & reconstructed
- Transferred to T1 sites, archived, reconstructed & skimmed
- Transferred to T2 sites, reconstructed, skimmed, filtered & analysed
- Written into locally analyzable files, put on laptops
- Turned into a plot in a paper

The life of LHC data

- Detected by experiment
- "Online" filtering (hardware and software)
- Transferred to CERN main campus, archived & reconstructed
- Transferred to T1 sites, archived, reconstructed & skimmed
- Transferred to T2 sites, reconstructed, skimmed, filtered & analysed
- Written into locally analyzable files, put on laptops
- Turned into a plot in a paper

We have a big digital camera

It takes photos of this

Courtesy @jamesafjackson

Which come out looking like this

Courtesy @jamesafjackson

We have a big digital camera

We have a big digital camera

Which goes into lots of computers (HLT)

We have a big digital camera

Which goes into lots of computers (HLT)

And then into lots of disk (Storage Manager)

We have a big digital camera

~200 GB/s

Which goes into lots of computers (HLT)

~2 GB/s

And then into lots of disk (Storage Manager)

Throw away data ASAP

The life of LHC data

- Detected by experiment
- "Online" filtering (hardware and software)
- Transferred to CERN main campus, archived & reconstructed
- Transferred to T1 sites, archived, reconstructed & skimmed
- Transferred to T2 sites, reconstructed, skimmed, filtered & analysed
- Written into locally analyzable files, put on laptops
- Turned into a plot in a paper

The life of LHC data

- Detected by experiment
- "Online" filtering (hardware and software)
- Transferred to CERN main campus, archived & reconstructed
- Transferred to T1 sites, archived, reconstructed & skimmed
- Transferred to T2 sites, reconstructed, skimmed, filtered & analysed
- Written into locally analyzable files, put on laptops
- Turned into a plot in a paper

Tiers

- Maybe a bit different
- Many (>100) sites with 100's TB storage, 10000's worker nodes
- Why so many? Politics, power budget, cost

The life of LHC data

- Detected by experiment
- "Online" filtering (hardware and software)
- Transferred to CERN main campus, archived & reconstructed
- Transferred to T1 sites, archived, reconstructed & skimmed
- Transferred to T2 sites, reconstructed, skimmed, filtered & analysed
- Written into locally analyzable files, put on laptops
- Turned into a plot in a paper

Analysis Workflow

- Each analysis is ~unique
- Query language is C++
- Runs on distributed and local resources
- Myriad "cut" selections to identify interesting events
- Data in final plot substantially reduced from the original dataset

Courtesy @jamesafjackson

Courtesy @jamesafjackson

Multivariate analyses extract signals that are impossible to find via "hand-drawn" cuts

Humans find signals even when none exist

http://www.slac.stanford.edu/econf/C030908/papers/TUIT001.pdf

Workflow Ladder

Number of users

Large datasets (>100 TB) Complex computation

Large datasets (>100 TB) Simple computation

Shared datasets (>500 GB) Complex computation

Shared datasets (10-500 GB) Complex computation

Shared datasets (10-100 GB) Simple computation

Shared datasets (0.1-10 GB) Simple computation

Private datasets (0.1-10 GB) Simple computation

Use Grid compute and storage exclusively

Work on departmental resources, store resulting datasets to Grid storage

Work on laptop/desktop machine, store resulting datasets to Grid storage

Collaborative "skimming" remains valuable

Particle physics is special

- Particle physics is special
- But not as special as it used to be vis a vis data operations

- Particle physics is special
- But not as special as it used to be vis a vis data operations
- And that's a good thing

- Particle physics is special
- But not as special as it used to be vis a vis data operations
- And that's a good thing
- Keep only the data you can analyze

- Particle physics is special
- But not as special as it used to be vis a vis data operations
- And that's a good thing
- Keep only the data you can analyze

Remember that we're biased to find patterns, and lots of data means lots of patterns

- Particle physics is special
- But not as special as it used to be vis a vis data operations
- And that's a good thing
- Keep only the data you can analyze
- Multivariate analyses win in the end

Remember that we're biased to find patterns, and lots of data means lots of patterns

- Particle physics is special
- But not as special as it used to be vis a vis data operations
- And that's a good thing
- Keep only the data you can analyze
- Multivariate analyses win in the end
- Skim datasets for fun and profit

Remember that we're biased to find patterns, and lots of data means lots of patterns

Thanks!

@kocolosk

<u>adam@cloudant.com</u>

