

Opportunities and Challenges of Data Processing in the Internet of Things (IoT)

Michael Hausenblas, Chief Data Engineer Strata Barcelona, 2014-11-20

IoT—a superset of the Internet

IoT—a superset of the Internet

What is the IoT?

"The idea of an all-encompassing and ubiquitous network of devices to facilitate co-ordination and communication between the devices themselves as well as between the devices and human end-users. The involved devices are typically constrained devices such as RFID sensors, but may also more sophisticated ones like smartphones."

IoT—a superset of the Internet

The IoT landscape

apps

data

infrastructure

IoT application areas

Use cases

Personal IoT

wearables, smart phones, cloths

Community IoT

smart cities, smart roads, parks

Group IoT

vehicles, smart houses, tourism, education

Industrial IoT

smart factories, agriculture, retail, manufacture

Categorization & use cases: Personal IoT

Scope is on a *single person*, for example a smartphone equipped with GPS sensor or a fitness device that measures the heart and sharing this data with her GP. One of the fastest growing, rather consumer-oriented areas of IoT.

Personal IoT **Group IoT** wearables, vehicles, smart phones, smart houses, cloths tourism. education Community IoT Industrial IoT smart cities, smart factories, agriculture, smart roads, retail, parks

manufacture

- Quantified self
- Smart jackets
- Personal digital assistant

Categorization & use cases: Group IoT

Focuses on a *small group of people*, for example a family in the context of a smart home where the deployed sensors capture temperature and lighting conditions for optimal comfort. One of the most challenging areas and yet early days.

Personal IoT wearables, smart phones, cloths

community loT smart cities, smart roads, parks

Group IoT vehicles, smart houses, tourism,

education

Industrial IoT smart factories, agriculture, retail, manufacture

- Smart homes
- Proactive/predictive car maintenance
- Interactive tourism

Categorization & use cases: Community IoT

Considers a *large group of people*, potentially tens of thousands, usually in the context of public infrastructure, such as smart cities. Some immature from a commercial POV but potentially promising IoT area.

Personal IoT **Group IoT** wearables, vehicles, smart phones, smart houses, cloths tourism. education Community IoT Industrial IoT smart cities, smart factories, agriculture, smart roads, retail, parks manufacture

- Smart cities
- Health care (monitoring, trackers)

Categorization & use cases: Industrial IoT

Scope can be either *within* an *organization* or *between* organizations and/or individuals. This is arguably the most established and mature part of IoT, see also <u>M2M</u>.

Personal IoT

wearables, smart phones, cloths

Community IoT

smart cities, smart roads, parks

Group IoT

vehicles, smart houses, tourism, education

Industrial IoT

smart factories, agriculture, retail, manufacture

- Smart factory
- Retailer supply chain
- Agriculture
- Waste management

IoT use case examples

Largest biometric database in the world

Largest biometric database in the world

- Goals:
 - Enable residents to participate in daily commercial business
 - Decrease embezzlement of government subsidies \$1.3+ billion
- Introduced in 2010 now over 500 million residents are registered
- Performs > 4.73 million authentications per minute with a latency SLA of 200 milliseconds

Largest biometric database in the world

http://uidai.gov.in/publication-and-reports.html

A proof of concept from the automotive sector

A proof of concept from the automotive sector

Waste & Recycling Leader

DATA

- Geolocation of 20,000 trucks
- Arriving every 5 seconds
- Geographic boundaries
- of landfills

GOALS

- Online alerts
- Tax reduction reporting
- Route optimization

Waste & Recycling Leader—Architecture

Business Intelligence and the IoT

What is Business Intelligence (BI)?

Umbrella term for methodologies, architectures, and technologies that transform raw data into meaningful business insights. This includes related activities such as:

- reporting
- online analytical processing (OLAP)
- real-time analytics
- predictive analytics

The value of BI

predictive analytics
what might happen?

real-time analytics

what and why is it happening, now?

OLAP

why did it happen?

reporting what happened?

Technologies typically used to realise ...

		Back-end	Front-end
	reporting	Hive, Pig, Spark SQL (Shark)	Excel, Tableau, Datameer
	OLAP	Hive/HBase/M7 tables + Drill/Impala/Vertica	SAS, QlikView, Tableau, Datameer
D	real-time analytics	Kafka + Storm/Spark Streaming + Hive	DataTorrent, bespoke dashboards (web applications)
\approx	predictive analytics	Potentially all above + Elasticsearch/Solr Mahout/Spark MLLib	Often bespoke apps

The Internet of Things architecture: iot-a

IoT lends itself to Big Data approach

"Using scale-out techniques on commodity hardware in a schema-onread fashion along with community-defined interfaces"

Volume: store all incoming sensor data for historical references

Variety: dozens of data formats in use in the IoT world, none is relational

Velocity: many devices generate data at a high rate; usually data streams

Requirements

- Able to natively deal with the raw data from devices, typically many (trillions) of small files in non-relation formats
- Support a range of workloads, especially streaming as first-class citizen
- Ensure business continuity to meet SLAs
- Provide for a secure, safe and privacy-aware end-to-end operation

The IoT architecture (iot-a)

Example iot-a

Apache Kafka

- High-throughput, distributed, persistent publish-subscribe messaging system
- Typically used together with Storm/Spark for online stream processing

http://kafka.apache.org/

Apache Storm

- Distributed, fault-tolerant stream-processing platform
- Guaranteed message processing; takes care of replaying messages on failure
- Concepts: tuples, streams, spouts, bolts, topologies

http://storm.apache.org/

Apache Spark

https://spark.apache.org/

Apache HBase

- Distributed, column-oriented database built on top of HDFS
- Based on Google's BigTable technology
- Able to scale horizontally to 1,000s of commodity servers, petabytes
 of data with low-latency get/put ops

http://hbase.apache.org/

Managing Time Series at Scale

Stream data sources

- physical sources such as IoT devices
- social media streams such as Twitter firehose

Stream data sources

What about development and testing?

- synthetic sources
 - https://github.com/tdunning/log-synth
 - https://github.com/mapr-demos/gess
 - https://github.com/mapr-demos/direhose

OpenTSDB

OpenTSDB is a distributed Time Series Database on top of HBase, enabling you ...

- to store & index, as well as
- to query & plot

... metrics at scale.

http://opentsdb.net/

OpenTSDB: key concepts

data point: (timestamp, value)

+ metric

+ tag: key=value

→ time series

OpenTSDB: high-level architecture

OpenTSDB: collecting metrics

- tcollector: gathers data from local collectors, pushes to TSDs and providing deduplication
- lots <u>bundled</u>
 - General: iostat, netstat, etc.
 - Others: MySQL, HBase, etc.
- ... or roll your own

couchbase.py	Removed err function from individual collectors	
distat.py	dfstat.py: python2.4 compatibility support	
elasticsearch.py Removed err function from individual collectors		
graphite_bridge.py	Add a collector bridge for the basic graphite protocol.	
hadoop_datanode.py	Permissions change of hadoop_datanode.py and hadoop_namenode.py	
hadoop_namenode.py	Permissions change of hadoop_datanode.py and hadoop_namenode.py	
haproxy.py	Move hibase and hadoop to http://mx collection	
hbase_master.py	Move house and hadoop to http://mx collection	
hbase_regionserver.py hbase_regionserver.py: fix region metrics splitting		
ifstat.py	ifstat.py: code cleanup	
iostat.py	iostat.py: code cleanup	
mongo.py	Remove code duplication by introducing a utils library.	
mysql.py	Move house and hadoop to http://mx collection	
netstat.py	netstat.py: handle multiple sets of data for the same data type, e.g.,	
nfsstat.py	Make rifs stats per version, and support v3.	
openisdb.sh	Move copyright info to AUTHORS, and add a THANKS file.	
postgresql.py	Move house and hadoop to http /jmx collection	
procnettop.py Remove code duplication by introducing a utils library.		
procstats.py	NUMA stat files have to be opened/closed each time to get fresh stats	
redis-stats.py	Redis: add per database metrics	

OpenTSDB: interfacing

HTTP API

Grafana Dashboard

- lipper_50 - laper_75 - saper_50

Server side page request time

- <u>CLI</u> (tsd, query, mkmetric, etc.)
- Java lib: <u>asynchbase</u>
- Dashboards (<u>Grafana</u>, etc.)

Hart Street Wet.

OpenTSDB with MapR (HBase <--> MapR-DB)

https://github.com/mapr-demos/opentsdb

Alternative TSDB for smaller scales

- InfluxDB (written in Go)
- lots of client libs
- (cluster support via Raft)
- powerful query language

```
select mean(value), percentile(90, value) as percentile 90
from /^stats.*/
group by time(10m)
into 10m.:series_name
```


MapR's IoT offering

@mhausenblas

maprtech

mapr-technologies

MapR

mhausenblas@mapr.com

maprtech

