

Who are we?

Statistical consultants / Data scientists working @ R&D department of Statistics Netherlands

Statistics Netherlands (SN):

- Government agency
- Produces all official statistics of The Netherlands

Income Tax data

- Contains all income tax records for the Netherlands
- Approx 17M records with 550 variables.
- Used to produce income statistics!

Analysis is not trivial

- Income Tax is complex (at least in the Netherlands)
 - stages of progressive tax
 - Complex Tax deductions (mortgage, flex workers)
 - Complex Tax benefits (child care, social benefits)

Tax data (2)

- 550 variables (for each person in NL):
 - 15 identificators/unique keys
 - Dwelling, person id, etc.
 - 70 categorical
 - 250 numerical variables from the income tax form
 - >200 derived variables (useful for analysis)
 - E.g. expandable income, income of dwelling/household

Income/tax distributions

Income (re)distribution hot topic since Piketty

So how are income/tax/benefits distributed?

- Look at 1D distributions: histograms
- Look at 2D distributions: heatmaps
 - Problem: potentially 0.5 n(n-1) > 100k heatmaps!
 - even more when categorical included

Heatmap Patterns

- What defines a pattern in heatmap?
 - Peak/Spike? (mode, 0D point)
 - Stripe (1D):
 - Horizontal Line?
 - Vertical Line?
 - Band?
 - Ridge?
 - Blob (2D)
 - Similarity between distributions (2D)

Meta pattern?

Meta patterns constitutes of repeating pattern in:

- different subpopulations
 - E.g. Male/female, Social economic status, Works in branch of Industry
- different pairs of variables
 - Income x age
 - Benefits x age
 - Etc.

So patterns that are generic over different heatmaps.

Looking for patterns

Subpopulations:

- Generate heatmap per category e.g. Age x Gross Income per social economic status
- Automatic cluster heatmaps on distribution simularity

Pairs of variables:

- Generate heatmaps for all pairs
- Prune: remove heatmaps with low support
 - 1. Use image classification to cluster them
 - 2. Or Cluster on extracted mode/line (wip)

Anscombes quartet...

DS1 x	у	DS2 x y	DS3 x	y	DS4 x	у
10	8.04	10 9.14	10	7.46	8	6.58
8	6.95	8 8.14	8	6.77	8	5.76
13	7.58	13 8.74	13	12.74	8	7.71
9	8.81	9 8.77	9	7.11	8	8.84
11	8.33	11 9.26	11	7.81	8	8.47
14	9.96	14 8.1	14	8.84	8	7.04
6	7.24	6 6.13	6	6.08	8	5.25
4	4.26	4 3.1	4	5.39	19	12.5
12	10.84	12 9.13	12	8.15	8	5.56
7	4.82	7 7.26	7	6.42	8	7.91
5	5.68	5 4.74	5	5.73	8	6.89

Anscombe's quartet

Property	Value		
Mean of x1, x2, x3, x4	All equal: 9		
Variance of x1, x2, x3, x4	All equal: 11		
Mean of y1, y2, y3, y4	All equal: 7.50		
Variance of y1, y2, y3, y4	All equal: 4.1		
Correlation for ds1, ds2, ds3, ds4	All equal o.816		
Linear regression for ds1, ds2, ds3, ds4	All equal: y = 3.00 + 0.500x		

Looks the same, right?

Lets plot!

Machine learning

So clustering (machine learning) different?

Visualization helps to ...

– Test your (hidden model) assumptions!

- To find structure in data, e.g. "How is my data distributed?"
- Visually explore patterns:
 - Are there clusters?
 - Are there outliers?

Heatmap recipe

- 1. Take two numerical variables x and y
- 2. Determine range $r_x = [\min(x), \max(x)]$
- 3. Chop r_x in n_x equal pieces
- 4. Repeat for *y*
- 5. We now have n_x . n_y bins
- 6. Count # records in each bin
- 7. Assign colors to counts
- 8. Plot matrix
- 9. Enjoy!

Easy as pie?

- 1. Take two numerical variables x and y
- 2. Determine range $r_x = [min(x), max(x)]$
- 3. Chop r_x in n_x equal pieces
- 4. Repeat for y
- 5. We now have $n_x \cdot n_y$ bins
- 6. Count # records in each bin
- 7. Assign colors to counts
- 8. Plot matrix
- 9. Enjoy!

Range: Outliers? (1D)

Range: outliers removed (1% removed)

Range: outliers...

Does your data contain outliers?

- If so: most pixels are empty
- Most cases: outliers have low mass and are barely visible

Truncate range: in x or y direction: e.g. 99% quantile

- Interactively: allow for zoom and pan.

Range: data skewed?

- Many variables are not normal distributed:
 - Power law: x^{α}
 - Exponential: e^{ax+b}

So rescale x or y or both

- 1. Take two numerical variables x and y
- 2. Determine range $r_x = [\min(x), \max(x)]$
- 3. Chop r_x in n_x equal pieces
- 4. Repeat for y
- 5. We now have $n_x \cdot n_y$ bins
- 6. Count # records in each bin
- 7. Assign colors to counts
- 8. Plot matrix
- 9. Enjoy!

Chop: AKA "Binning"

Chop: Too small / Too big

If #bins too small:

- patterns are hidden

If #bins too large:

- heatmap is noisy (signal vs noise)

Optimal nr bins depends on data. (kernel based approx), but always play with bin size / resolution!

Chop: integers...

- 1. Take two numerical variables x and y
- 2. Determine range $r_x = [min(x), max(x)]$
- 3. Chop r_x in n_x equal pieces
- 4. Repeat for y
- 5. We now have $n_x \cdot n_y$ bins
- 6. Count # records in each bin
- 7. Assign colors to counts
- 8. Plot matrix
- 9. Enjoy!

Count: zero counts

Not every variable is relevant for each person!

Count: exclude zero values

- 1. Take two numerical variables x and y
- 2. Determine range $r_x = [min(x), max(x)]$
- 3. Chop r_x in n_x equal pieces
- 4. Repeat for y
- 5. We now have $n_x \cdot n_y$ bins
- 6. Count # records in each bin
- 7. Assign colors to counts
- 8. Plot matrix
- 9. Enjoy!

Colors: scales

- Color 'intensity' implies value
- Percieved response depends on 'color' and 'color lightness' (compare #00ff00 with #0000ff)
- Different models for color response:
 - RGB (models computer monitor)
 - HSV
 - HCL
 - CIELAB (models human eye)
- Gradient generator:http://davidjohnstone.net/pages/lch-lab-colour-gradient-picker

Colors

- Color has two functions in heatmap:
 - Show 'counts' in your data
 - Show 'patterns'

At least, use a perceptually uniform gradient

- Libs: chroma.js, colorbrewer (R)

...but patterns need distinct colors

Color scales

- Range of color scale depends on distribution of data.
- Often have multiple populations/distributions in data
- Severe spikes/stripes drown the smaller distributions:
 - We suggest log scale
 - Sometimes log scale is not enough
- In practice, linear scale with low maximum cut-off works well
- Effect is best understood in 3D (!).

Peaks are best cut-off

Example: Linear gradient

Log-gradient

Linear gradient with cut-off

Perceptually uniform gradient

Colors: background/missings matters

Heatmaps side-by-side: gross income, men vs women

Meta pattern

Meta patterns constitutes of repeating pattern in:

- different subpopulations
- different pairs of variables

So patterns that are generic over different heatmaps.

Heatmaps decomposed in subpopulations:

Gross income by socioeconomic status

Gross income, men, categorized by socioeconomic status

Patterns

- Stripes are real, not outliers:
- Corresponds with benefits, tax breaks
- Needs paradigm shift: data is not normally distributed (but we knew that).

Meta pattern

Meta patterns constitutes of repeating pattern in:

- different subpopulations
- different pairs of variables

So patterns that are generic over different heatmaps.

Image classification of heatmaps

Salary pay structure

Domain knowledge, take II

Pattern removal: Effect of weighting

Summary

Heatmaps:

- ideal tool for analyzing big datasets
- Be aware of perceptual and data biases!

Questions?

Thank you for your attention!

More info?

ah.priem@cbs.nl / @_alex_priem
e.dejonge@cbs.nl / @edwindjonge

Heatmapping code available at https://github.com/alexpriem/heatmapr

