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Patterns and meta patterns 
in Income Tax Data 



Age vs mortgage debt (men) 



Who are we? 

Statistical consultants / Data scientists  

working @ R&D department of Statistics 

Netherlands 

 

 

Statistics Netherlands (SN): 

- Government agency 

- Produces all official statistics of The Netherlands 
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Income statistics based  
on Tax data  

4 



Income Tax data 

– Contains all income tax records for the Netherlands 

– Approx 17M records with 550 variables. 

– Used to produce income statistics!  

 

 

Analysis is not trivial 

– Income Tax is complex (at least in the Netherlands) 

‐ stages of progressive tax 

‐ Complex Tax deductions (mortgage, flex workers) 

‐ Complex Tax benefits (child care, social benefits) 
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Tax data (2) 

- 550 variables (for each person in NL): 

- 15 identificators/unique keys 

- Dwelling, person id, etc. 

- 70 categorical 

- 250 numerical variables from the income tax 

form 

- >200 derived variables (useful for analysis) 

- E.g. expandable income, income of 

dwelling/household 
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Income/tax distributions 

Income (re)distribution hot topic since Piketty 

 

So how are income/tax/benefits distributed?  

 

- Look at 1D distributions: histograms 

- Look at 2D distributions: heatmaps 

- Problem:  potentially 0.5 n(n-1) > 100k heatmaps!  

 

- even more when categorical included 

7 



Let look at Patterns… 
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Heatmap Patterns 

– What defines a pattern in heatmap? 

‐ Peak/Spike? (mode, 0D point) 

‐ Stripe (1D): 

• Horizontal Line? 

• Vertical Line? 

• Band? 

• Ridge? 

‐ Blob (2D) 

‐ Similarity between distributions (2D) 
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Meta pattern? 

Meta patterns constitutes of repeating pattern in: 

‐ different subpopulations 

• E.g. Male/female, Social economic status, Works 

in branch of Industry 

‐ different pairs of variables 

• Income x age 

• Benefits x age 

• Etc. 

 

So patterns that are generic over different heatmaps. 
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Looking for patterns 

Subpopulations: 

–  Generate heatmap per category e.g. Age x Gross Income 

per social economic status 

– Automatic cluster heatmaps on distribution simularity 

 

Pairs of variables: 

- Generate heatmaps for all pairs 

- Prune: remove heatmaps with low support 

1. Use image classification to cluster them 

2. Or Cluster on extracted mode/line (wip) 

 

You will still need to look at the result! 
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Why Visualization? 



Anscombes quartet… 
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DS1 x 

                       
                    
         y                            DS2 x     y 

                    
            DS3      x     y                DS4         x               y 

10 8.04 10 9.14 10 7.46 8 6.58 

8 6.95 8 8.14 8 6.77 8 5.76 

13 7.58 13 8.74 13 12.74 8 7.71 

9 8.81 9 8.77 9 7.11 8 8.84 

11 8.33 11 9.26 11 7.81 8 8.47 

14 9.96 14 8.1 14 8.84 8 7.04 

6 7.24 6 6.13 6 6.08 8 5.25 

4 4.26 4 3.1 4 5.39 19 12.5 

12 10.84 12 9.13 12 8.15 8 5.56 

7 4.82 7 7.26 7 6.42 8 7.91 

5 5.68 5 4.74 5 5.73 8 6.89 



Anscombe’s quartet 

Property Value 

Mean of x1, x2, x3, x4 All equal:  9 

Variance of x1, x2, x3, x4 All equal:  11 

Mean of y1, y2, y3, y4 All equal:  7.50 

Variance of y1, y2, y3, y4 All equal: 4.1 

Correlation for ds1, ds2, ds3, ds4 All equal 0.816 

Linear regression for ds1, ds2, ds3, 
ds4 

All equal: y = 3.00 + 0.500x  

 

 

Looks the same, right? 



Lets plot! 

 



Machine learning 

So clustering 

(machine learning) 

different? 
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Visualization helps to … 

– Test your (hidden model) assumptions!  

 

–  To find structure in data, e.g.  

“How is my data distributed?” 

 

–Visually explore patterns: 

‐ Are there clusters? 

‐ Are there outliers? 
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Heatmap recipe 
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1. Take two numerical variables x and y 

2. Determine range 𝑟𝑥 = [min 𝑥 ,max⁡(𝑥)] 

3. Chop 𝑟𝑥 in 𝑛𝑥  equal pieces 

4. Repeat for y 

5. We now have 𝑛𝑥⁡. 𝑛𝑦 bins 

6. Count # records in each bin 

7. Assign colors to counts 

8. Plot matrix 

9. Enjoy! 



Easy as pie? 

Best practices and problems with heatmaps: 

- Resolution 

- Rescaling 

- Zooming 

- Outliers 

- Color scales 
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1. Take two numerical variables x and y 

2. Determine range 𝐫𝐱 = [𝐦𝐢𝐧 𝐱 ,𝐦𝐚𝐱⁡(𝐱)] 

3. Chop 𝑟𝑥 in 𝑛𝑥  equal pieces 

4. Repeat for y 

5. We now have 𝑛𝑥⁡. 𝑛𝑦 bins 

6. Count # records in each bin 

7. Assign colors to counts 

8. Plot matrix 

9. Enjoy! 



Range: Outliers? (1D) 
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+5M€  -1M€  

Gross Income 



Range: outliers removed  (1% removed) 
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Gross Income 

+150k€  



Range: outliers… 

Does your data contain outliers?  

- If so: most pixels are empty 

- Most cases: outliers have low mass and are 

barely visible 

 

Truncate range: in x or y direction: e.g. 99% 

quantile 

- Interactively: allow for zoom and pan. 
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Range: data skewed? 
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–Many variables are not normal 

distributed: 

‐ Power law: 𝒙𝛼 

‐ Exponential: 𝑒𝑎𝒙+𝑏 

 

So rescale x or y or both 
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1. Take two numerical variables x and y 

2. Determine range rx = [min x ,max⁡(x)] 

3. Chop 𝒓𝒙 in 𝒏𝒙  equal pieces 

4. Repeat for y 

5. We now have 𝑛𝑥⁡. 𝑛𝑦 bins 

6. Count # records in each bin 

7. Assign colors to counts 

8. Plot matrix 

9. Enjoy! 



Chop: AKA “Binning” 
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Chop: resolution 

Resolution matters 
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25 x 25 
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50 x 50 
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100 x 100 
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250 x 250 
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500 x 500 



Chop: Too small / Too big 

If #bins too small: 

- patterns are hidden 

 

If #bins too large: 

- heatmap is noisy (signal vs noise) 

 

Optimal nr bins depends on data. 

(kernel based approx), but always play with bin 

size / resolution! 
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Chop: integers… 
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1. Take two numerical variables x and y 

2. Determine range rx = [min x ,max⁡(x)] 

3. Chop 𝑟𝑥 in 𝑛𝑥  equal pieces 

4. Repeat for y 

5. We now have 𝑛𝑥⁡. 𝑛𝑦 bins 

6. Count # records in each bin 

7. Assign colors to counts 

8. Plot matrix 

9. Enjoy! 



Count: zero counts 

Not every variable is relevant for each person! 
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Count: exclude zero values 

40 



Assign colors! 
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1. Take two numerical variables x and y 

2. Determine range rx = [min x ,max⁡(x)] 

3. Chop 𝑟𝑥 in 𝑛𝑥  equal pieces 

4. Repeat for y 

5. We now have 𝑛𝑥⁡. 𝑛𝑦 bins 

6. Count # records in each bin 

7. Assign colors to counts 

8. Plot matrix 

9. Enjoy! 
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Colors: scales 

– Color ‘intensity’ implies value 

– Percieved response depends on ‘color’ and ‘color 

lightness’ (compare #00ff00 with #0000ff) 

– Different models for color response: 

‐ RGB (models computer monitor) 

‐ HSV  

‐ HCL  

‐ CIELAB  (models human eye) 
– Gradient generator: 

http://davidjohnstone.net/pages/lch-lab-colour-gradient-picker 
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Colors 

– Color has two functions in heatmap:  

‐ Show ‘counts’ in your data 

‐ Show ‘patterns’ 

 

At least, use a perceptually uniform gradient  

- Libs: chroma.js, colorbrewer (R) 

 

…but patterns need distinct colors 
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Color scales 

– Range of color scale depends on distribution of data.  

– Often have multiple populations/distributions in data 

– Severe spikes/stripes drown the smaller distributions:  

‐ We suggest log scale  

‐ Sometimes log scale is not enough 

 

– In practice, linear scale with low maximum cut-off works 

well 

– Effect is best understood in 3D (!). 
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Peaks are best cut-off 
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Example: Linear gradient 
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Log-gradient 
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Linear gradient with cut-off 
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Perceptually uniform gradient 
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Colors: background/missings matters 
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Heatmaps side-by-side:  
gross income, men vs women 
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Meta pattern 

Meta patterns constitutes of repeating pattern in: 

‐ different subpopulations 

‐ different pairs of variables 

 

 

So patterns that are generic over different 

heatmaps. 
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Heatmaps  decomposed in 
subpopulations: 
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Gross income by socioeconomic status 
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Gross income, men, categorized by 
socioeconomic status 
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Patterns 

– Stripes are real, not outliers:   

– Corresponds with benefits, tax breaks 

– Needs paradigm shift: data is not normally 

distributed (but we knew that). 
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Meta pattern 

Meta patterns constitutes of repeating 

pattern in: 

‐ different subpopulations 

‐ different pairs of variables 

 

 

So patterns that are generic over different 

heatmaps. 
59 



Image classification of heatmaps 
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No Domain knowledge required? 
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Salary pay structure 
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Domain knowledge, take II 
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Pattern removal: Effect of weighting 
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Summary 

Heatmaps:  
– ideal tool for analyzing big datasets 

– Be aware of perceptual and data biases! 
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Questions? 

Thank you for your attention! 

 

More info? 

ah.priem@cbs.nl / @_alex_priem 

e.dejonge@cbs.nl / @edwindjonge 

 
Heatmapping code available at 

https://github.com/alexpriem/heatmapr 

 67 

mailto:ah.priem@cbs.nl
mailto:e.dejonge@cbs.nl

