
Tachyon: Reliable File

Sharing at Memory-Speed

Across Cluster Frameworks

Haoyuan (HY) Li

UC Berkeley

Outline

Motivation

System Design

Evaluation Results

Release Status

Memory is King

Memory Trend

RAM throughput increasing exponentially

Disk Trend

Disk throughput increasing slowly

Consequence

Memory locality key to achieve

- Interactive queries

- Fast query response

Current Big Data Eco-system

Many frameworks already leverage memory

- e.g. Spark, Shark, and other projects

File sharing among jobs replicated to disk

- Replication enables fault-tolerance

Problems

- Disk scan is slow for read.

- Synchronous disk replication for write is even slower.

Current Big Data Eco-system

Many frameworks already leverage memory

- e.g. Spark, Shark, and other projects

File sharing among jobs replicated to disk

- Replication enables fault-tolerance

Problems

- Disk scan is slow for read.

- Synchronous disk replication for write is even slower.

Tachyon Project

Reliable file sharing at memory-speed across cluster

frameworks/jobs

Challenge

- How to achieve reliable file sharing without replication?

Idea

Re-computation (Lineage) based storage using memory

aggressively.

1.One copy of data in memory (Fast)

2.Upon failure, re-compute data using lineage (Fault tolerant)

Stack

Architecture

Lineage

Lineage Information

Binary program

Configuration

Input Files List

Output Files List

Dependency Type

Fault Recovery

Re-computation Cost?

Example

Asynchronous Checkpoint

 Better than using existing solutions even under failure.

 Bounded recovery cost (Snapshot algorithm).

Master Fault Tolerance

Multiple masters

- Use ZooKeeper to elect a leader

After crash workers contact new leader

- Update the state of leader with contents in memory

Implementation

Java

Thrift

HDFS, S3, localFS

Sequential Read using Spark

Flat

Datacenter

Storage

Theoretical

Maximum

Disk

Throughput

Sequential Write using Spark

Flat

Datacenter

Storage

Theoretical

Maximum

Disk

Throughput

Realistic Workflow using Spark

Conviva Spark Query (I/O intensive)

Tachyon outperforms

Spark cache because

of Java Garbage

Collection

More than

75x speedup

Conviva Spark Query (less I/O intensive)

12x speedup
Garbage collection

kicks in earlier for

Spark cache

Alpha Status

Developer Preview: V0.3.0 (October 2013)

- First read of files cached in-memory

- Writes go synchronously to HDFS (No lineage information in

Developer Preview release)

- MapReduce and Spark can run without any code change (ser/de

becomes the new bottleneck)

Current Features

Java-like file API

Compatible with Hadoop

Master fault tolerance

Native support for raw tables

WhiteList, PinList

CLI, Web UI

Spark without Tachyon

val file = sparkcontext.textFile(“hdfs://ip:port/path”)

Spark with Tachyon

val file = sparkcontext.textFile(“tachyon:// ip:port/path”)

Shark without Tachyon

CREATE TABLE orders_cached AS SELECT * FROM
orders;

Shark with Tachyon

CREATE TABLE orders_tachyon AS SELECT * FROM
orders;

More Experiments with Shark

Shark (from 0.7) can store tables in Tachyon with fast columnar Ser/De

 20 GB data / 5 machines Spark Cache Tachyon

Table Full Scan 1.4 sec 1.5 sec

GroupBys (10 GB Shark Memory) 70 sec 47.5 sec

GroupBys (15 GB Shark Memory) 46 sec 41 sec

4 * 100 GB TPC-H data / 17

machines

Spark Cache Tachyon

TPC-H Q1 65.68 sec 24.75 sec

TPC-H Q2 438.49 sec 139.25 sec

TPC-H Q3 467.79 sec 55.99 sec

TPC-H Q4 457.50 sec 111.65 sec

Future

Efficient Ser/De support

Fair sharing for memory

Full support for lineage

Acknowledgment

Ali Ghodsi, Matei Zaharia, Scott Shenker, Ion Stoica , Eric

Baldeschwieler, Calvin Jia, Bill Zhao, Nick Lanham, Mark Hamstra,

Rong Gu, Hobin Yoon, Vamsi Chitters, Joseph Jin-Chuan Tang,

Grace Huang, Reynold Xin, Achal Soni, Dilip Joseph, Srinivas Parayya

Summary

High-throughput, fault-tolerant in-memory storage

 Interface compatible to HDFS

Further improve performance for Spark, Shark, and Hadoop

Growing community with 8 companies contributing since its

first public release six months ago

More information: www.tachyonproject.org

http://www.tachyonproject.org/

