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Memory is King 



Memory Trend 

RAM throughput increasing exponentially 
 



Disk Trend 

Disk throughput increasing slowly 
 



Consequence 

 

Memory locality key to achieve 

- Interactive queries 

- Fast query response 



Current Big Data Eco-system 

Many frameworks already leverage memory 

- e.g. Spark, Shark, and other projects 

 

File sharing among jobs replicated to disk 

- Replication enables fault-tolerance 

 

Problems 

- Disk scan is slow for read. 

- Synchronous disk replication for write is even slower. 
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Tachyon Project 

 

Reliable file sharing at memory-speed across cluster 

frameworks/jobs 

 

 

Challenge 

- How to achieve reliable file sharing without replication? 



Idea 

 

Re-computation (Lineage) based storage using memory 

aggressively.  

 

1.One copy of data in memory (Fast) 

 

2.Upon failure, re-compute data using lineage (Fault tolerant) 



Stack 



Architecture 



Lineage 



Lineage Information 

 

Binary program 

Configuration 

Input Files List 

Output Files List 

Dependency Type 



Fault Recovery 

 

 

 

Re-computation Cost? 



Example 



Asynchronous Checkpoint 

 

 Better than using existing solutions even under failure. 

 

 Bounded recovery cost (Snapshot algorithm). 



Master Fault Tolerance 

 

Multiple masters 

- Use ZooKeeper to elect a leader 

 

After crash workers contact new leader 

- Update the state of leader with contents in memory 



Implementation 

 

Java 

 

Thrift 

 

HDFS, S3, localFS 

 



Sequential Read using Spark 
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Realistic Workflow using Spark 



Conviva Spark Query (I/O intensive) 

Tachyon outperforms 

Spark cache because 

of  Java Garbage 

Collection 

More than  

75x speedup 



Conviva Spark Query (less I/O intensive) 

12x speedup 
Garbage collection 

kicks in earlier for 

Spark cache 



Alpha Status 

 

Developer Preview: V0.3.0 (October 2013) 

- First read of files cached in-memory 

- Writes go synchronously to HDFS (No lineage information in 

Developer Preview release) 

- MapReduce and Spark can run without any code change (ser/de 

becomes the new bottleneck) 



Current Features 

 

Java-like file API 

Compatible with Hadoop 

Master fault tolerance 

Native support for raw tables 

WhiteList, PinList 

CLI, Web UI 



Spark without Tachyon 

 

 

 

val file = sparkcontext.textFile(“hdfs://ip:port/path”) 

 

 



Spark with Tachyon 

 

 

 

val file = sparkcontext.textFile(“tachyon:// ip:port/path”) 



Shark without Tachyon 

 

 

 

CREATE TABLE orders_cached AS SELECT * FROM 
orders; 



Shark with Tachyon 

 

 

 

CREATE TABLE orders_tachyon AS SELECT * FROM 
orders; 

 



More Experiments with Shark 

Shark (from 0.7) can store tables in Tachyon with fast columnar Ser/De 

 20 GB data / 5 machines Spark Cache Tachyon 

Table Full Scan 1.4 sec 1.5 sec 

GroupBys (10 GB Shark Memory) 70 sec 47.5 sec  

GroupBys (15 GB Shark Memory) 46 sec 41 sec 

4 * 100 GB TPC-H data / 17 

machines 

Spark Cache Tachyon 

TPC-H Q1 65.68 sec 24.75 sec 

TPC-H Q2 438.49 sec 139.25 sec 

TPC-H Q3 467.79 sec 55.99 sec  

TPC-H Q4 457.50 sec 111.65 sec 



Future 

 

Efficient Ser/De support 

 

Fair sharing for memory 

 

Full support for lineage 
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Summary 

High-throughput, fault-tolerant in-memory storage 

 Interface compatible to HDFS 

Further improve performance for Spark, Shark, and Hadoop 

Growing community with 8 companies contributing since its 

first public release six months ago 

More information: www.tachyonproject.org 

 

http://www.tachyonproject.org/

