

Managing Big Data Reaching Back to the 11th Century

Scott Sorensen

Ancestry.com mission

Our mission is to help everyone

discover, preserve and share

their family history.

Data is our product

It's the "aha" moment of a discovery that drives our

World's largest online family history resource

- Over 30,000 historical content collections
- Records dating back to 11th century
- 12 billion records and images

User contributed content and structure

- 50 million family trees
- More than 5 billion profiles
- 200 million stories and photos

Behavioral data

Next Best Discovery Algorithm

40 million searches/day

 10 million people added to trees/day

The math behind our big data equation

We've barely scratched the surface

 Making the site more social through sharing

 Mobile extends the core users experience and attracts a new demographic

 New experiences like AncestryDNA

Our transition to Hadoop

How we're using Hadoop

- 1. Machine Learning
- 2. Predictive analytics
- 3. Natural Language Processing and Entity Extraction
- 4. DNA Processing

Ancestry DNA

Spit in a tube, pay \$99, learn your past

Autosomal DNA tests
Samples from over 200,000 people
700,000 SNPs for each sample
10,000,000 4th cousin matches

Discover Your Ethnicity

Find out if you're part Irish, Native American, or maybe Cameroonian.

NEWLY UPDATED

Connect with new relatives

Imagine meeting a 3rd cousin for the 1st time.

Family history is in our DNA

Even more powerful when combined with Ancestry.com.

Estimating IBD (matching)

- We identify "long" DNA segments shared by two individuals.
- These segments are said to be Identical-by-Descent (IBD) and identify recent shared genetic ancestry.

Network effect & cousin matches

Algorithms in the pipeline

GERMLINE run times (in hours)

Projected GERMLINE run times (in hours)

Kara Thrace, aka Starbuck

- Ace viper pilot
- Has a special destiny
- Not to be trifled with

The Input

Starbuck : ACTGACCTAGTTGAC Adama : TTAAGCCTAGTTGAC

Admiral Adama

- Admiral of the Colonial Fleet
- Routinely saves humanity from destruction

Separate into words

0 1 2

Starbuck : ACTGA CCTAG

TTGAC

Adama: TTAAG CCTAG

TTGAC

Build the hash table

0 1 2
Starbuck : ACTGA CCTAG TTGAC
Adama : TTAAG CCTAG TTGAC

ACTGA_0 : Starbuck

TTAAG_0 : Adama

CCTAG_1 : Starbuck, Adama

TTGAC_2: Starbuck, Adama

Iterate through genome and find matches

0 1 2

Starbuck: ACTGA CCTAG TTGAC

Adama: TTAAG CCTAG TTGAC

ACTGA_0 : Starbuck

TTAAG 0: Adama

CCTAG_1: Starbuck, Adama

TTGAC_2: Starbuck, Adama

Starbuck and Adama match from position 1 to position 2

Does that mean they're related?

...maybe

But wait... what about Baltar?

Baltar: TTAAGCCTAGGGGCG

Gaius Baltar

- Handsome
- Genius
- Kinda evil

The jermline way

Step one: Update the hash table.

	Starbuck	Adama
2_ACTGA_0	1	
2_TTAAG_0		1
2_CCTAG_1	1	1
2_TTGAC_2	1	1

Baltar: TTAAG CCTAG GGGCG

New sample to add

Key : [CHROMOSOME]_[WORD]_[POSITION]

Cell value: A byte set to 1, denoting that the user has that word at that position on

that chromosome

The jermline way

Step two: Find matches, update the results table

	2_Starbuck	2_Adama
2_Starbuck		{ (1, 2),}
2_Adama	{ (1, 2),}	

Baltar and Adama match from position 0 to position 1
Baltar and Starbuck match at position 1

Key : [CHROMOSOME]_[USER ID]

Cell value: A list of ranges where the two users match on a chromosome

The jermline way

Hash Table					
	Starbuck	Adama	Baltar		
2_ACTGA_0	1				
2_TTAAG_0		1	1		
2_CCTAG_1	1	1	1		
2_TTGAC_2	1	1			
2_GGGCG_2			1		

Results Table					
	2_Starbuck	2_Adama	2_Baltar		
2_Starbuck		{ (1, 2),}	{ (1),}		
2_Adama	{ (1, 2),}		{ (0,1),}		
2_Baltar	{ (1),}	{ (0,1),}			

But wait ... what about Zarek, Roslin, Hera, and Helo?

Run them in parallel with Hadoop!

Photo by Benh Lieu Song

Parallelism with Hadoop

Batches are usually about a thousand people.

 Each mapper takes a single chromosome for a single person.

MapReduce Jobs :

Job #1 : Match Words

Updates the hash table

Job #2 : Match Segments

Identifies areas where the samples match

Run times for matching (in hours)

Run times for matching (in hours)

AncestryDNA – Cast of characters

Scientists

Think they can code:

- Linux
- MySQL
- PERL and/or Python

Software Engineers

Think they are Scientists:

- Math
- Statistics
- Read science papers

Pressures of a startup business

Release a product, learn, and then scale

Other lessons learned

- Prototyping is key to overcoming resistance to change
- Technical architecture is heavily influenced by people organization
- Developing a team of experienced Hadoop users can often be done using internal employees
- A culture of experimentation and innovation yields the best results

Using Hadoop to drive scalable results

- Machine learning and predictive analytics
- Entity extraction and product development

DNA pipeline processing

Questions?

Tech Roots blog - http://blogs.ancestry.com/techroots/