

Large-Scale Machine Learning and Graphs

Carlos Guestrin

PHASE 1

POSSIBILITY

PHASE 2

SCALABILITY

PHASE 3

USABILITY

Se. 743.801

PATERYED NOT. 16, 1901.

Three Phases in Technological Development

Adoption Experts &

Machine Learning PHASE 1

POSSIBILITY

Search options

Value! Char with Wall Street gure Jim Cramer, supermodel Frederique

Yellew Pages - People Specific - Mans - Classifieds - Personals - Charl - Free Lundl Shopping - My Yahoo! - News - Speris - Weather - Stock Quotes - more...

- Arts and Humanities
 Architecture, Photography, Literature...
- Business and Economy (Xrrat)
 Companies, Employment
- Computers and Internet [Xma*]
 Internet, WWW, Software, Multimedia.
- Education
 Universities, K-12, College Entrance...
- Entertalament (Xmr.)
 Cool Links Movies, Masse, Hanor
- Government
 Mittary, Paines [Knw], Law, Taxes...
- Health (Xura!)
 Medicine Drings, Diseases, Frincis

- News and Media [Xtra]]
 Current Everts, Magaziner, TV, Newspapers.
- Recreation and Sports (Xtrat)
 Sports Games, Travel Acros, Outdoors
- Reference
 Libraries, Dictionaries, Phone Numbers
- Regional Countries, Regions, U.S. States...
- Science
 CS. Biology, Astronomy, Engineering.
- Social Science Anthropology, Sociology, Economics.
- Society and Culture
 People Entpotment Relitage

Machine Learning PHASE 2

SCALABILITY

Needless to Say, We Need Machine Learning for Big Data

6 Billion Flickr Photos

28 Million Wikipedia Pages

1 Billion Facebook Users

72 Hours a Minute YouTube

Published: February 11, 2012

"... data a new class of economic asset, like currency or gold."

Big Learning

How will we design and implement parallel learning systems?

MapReduce for Data-Parallel ML

Excellent for large data-parallel tasks!

Data-Parallel

MapReduce

Feature

Cross

Extraction

Validation

Computing Sufficient Statistics

Is there more to Machine Learning

The Power of Dependencies

where the value is!

Flashback to 1998

First Google advantage: a **Graph Algorithm** & a **System to Support** it!

Graphs encode the relationships between:

People Products Ideas
Facts Interests

- Big: 100 billions of vertices and edges and rich metadata
 - Facebook (10/2012): 1B users, 144B friendships
 - Twitter (2011): 15B follower edges

Examples of Graphs in Machine Learning

Label a Face and Propagate

Pairwise similarity not enough...

Propagate Similarities & Co-occurrences for Accurate Predictions

faces
further evidence

Collaborative Filtering: Exploiting Dependencies

Women on the Verge of a Nervous Breakdown

The Celebration

Latent Factor Models Non-negative Matrix Factorization

Wild Strawberries

La Dolce Vita

Estimate Political Bias

Topic Modeling

Machine Learning Pipeline

Structured Machine Learning Algorithm

images

docs

movie

ratings

social activity

face labels

doc topics

movie recommend

sentiment analysis

ML Tasks Beyond Data-Parallelism

Data-Parallel

Graph-Paralle

Map Reduce

Feature Extraction

Cross Validation

Computing Sufficient Statistics

Graphical Models
Gibbs Sampling
Belief Propagation

Collaborative
Filtering

Tensor Factorization

Learning
Label Propagation
CoEM

Graph Analysis
PageRank
Triangle Counting

Example of a Graph-Parallel Algorithm

PageRank Iteration

Iterate until convergence:

"My rank is weighted average of my friends' ranks"

$$R[i] = \alpha + (1 - \alpha) \sum_{(j,i) \in E} w_{ji} R[j]$$

- ullet lpha is the random reset probability
- w_{ii} is the prob. transitioning (similarity) from j to i

Properties of Graph Parallel Algorithms

Dependency Graph

Local Updates

Iterative Computation

The Need for a New Abstraction

Need: Asynchronous, Dynamic Parallel Computations

Data-Parallel

Graph-Parallel

Map Reduce

Feature Extraction

Cross Validation

Computing Sufficient Statistics

Graphical Models

Gibbs Sampling Belief Propagation Variational Opt.

Collaborative Filtering

Tensor Factorization

Semi-Supervised Learning

Label Propagation CoEM

Data-Mining

PageRank
Triangle Counting

The **GraphLab** Goals

POSSIBILITY

Data Graph

Data associated with vertices and edges

Graph:

Social Network

Vertex Data:

User profile text

Current interests estimates

Edge Data:

Similarity weights

How do we *program* graph computation?

"Think like a Vertex."

-Malewicz et al. [SIGMOD'10]

Update Functions

User-defined program: applied to **vertex** transforms data in **scope** of vertex

Update function applied (asynchronously) in parallel until convergence

Many schedulers available to prioritize computation

Dynamic computation

The GraphLab Framework

Graph Based

Data Representation

Scheduler

Update Functions
User Computation

Consistency Model

Alternating Least

SVD

Splash Sampler

Squares

CoEM

Bayesian Tensor Factorization

Lasso

Belief Propagation

PageRank

LDA

SVM

Gibbs Sampling

Dynamic Block Gibbs Sampling

K-Means

... Many others...

Matrix Factorization

Linear Solvers

Never Ending Learner Project (CoEM)

Hadoop	95 Cores	7.5 hrs
Distributed GraphLab	32 EC2 machines	80 secs

0.3% of Hadoop time

2 orders of mag faster ->
2 orders of mag cheaper

- ML algorithms as vertex programs
- Asynchronous execution and consistency models

Thus far...

GraphLab 1 provided exciting scaling performance

But...

We couldn't scale up to Altavista Webgraph 2002 1.4B vertices, 6.7B edges

Problem:

Existing *distributed* graph computation systems perform poorly on **Natural Graphs**

Achilles Heel: Idealized Graph Assumption

Assumed...

Small degree

Easy to partition

But, Natural Graphs...

Many high degree vertices (power-law degree distribution)

Very hard to partition

Power-Law Degree Distribution

High Degree Vertices are Common

"Social" People

Popular Movies

Hyper Parameters

Common Words

Power-Law Degree Distribution "Star Like" Motif

Problem:

High Degree Vertices → High Communication for Distributed Updates

Natural graphs do not have low-cost balanced cuts [Leskovec et al. 08, Lang 04]

Popular partitioning tools (Metis, Chaco,...) perform poorly [Abou-Rjeili et al. 06]

Extremely slow and require substantial memory

Random Partitioning

Both GraphLab 1, Pregel, Twitter, Facebook,... rely on Random (hashed) partitioning for Natural Graphs

For *p* Machines:

$$\mathbb{E}\left[\frac{|Edges\ Cut|}{|E|}\right] = 1 - \frac{1}{p}$$

10 Machines → 90% of edges cut 100 Machines → 99% of edges cut!

In Summary

GraphLab 1 and Pregel are not well suited for natural graphs

- Poor performance on high-degree vertices
- Low Quality Partitioning

SCALABILITY

Common Pattern for Update Fncs.

GraphLab_PageRank(i)

```
// Compute sum over neighbors
total = 0
foreach( j in in_neighbors(i)):
  total = total + R[j] * w<sub>ji</sub>
```

Gather Information About Neighborhood

```
// Update the PageRank
R[i] = 0.1 + total
```

Apply Update to Vertex

GAS Decomposition

Many ML Algorithms fit into GAS Model

graph analytics, inference in graphical models, matrix factorization, collaborative filtering, clustering, LDA, ...

Minimizing Communication in GL2 PowerGraph:

Vertex Cuts

Minimizing Communication in GL2 PowerGraph:

Vertex Cuts

Communication linear in # spanned machines

A **vertex-cut** minimizes # machines per vertex

Percolation theory suggests Power Law graphs can be split by removing only a small set of vertices [Albert et al. 2000]

Small vertex cuts possible!

Minimizing Communication in GL2 PowerGraph: **Vertex Cuts**

GL2 PowerGraph includes novel vertex cut algorithms

Provides order of magnitude gains in performance

machines per vertex

Percolation theory suggests Power Law graphs can be split by removing only a small set of vertices [Albert et al. 2000]

Small vertex cuts possible:

From the Abstraction to a System

Triangle Counting on Twitter Graph 34.8 Billion Triangles

Hadoop [WWW'11] 1636 Machines423 Minutes

GL2 PowerGraph 64 Machines15 Seconds

Why? Wrong Abstraction →
Broadcast O(degree²) messages per Vertex

Topic Modeling (LDA)

- English language Wikipedia
 - 2.6M Documents, 8.3M Words, 500M Tokens
 - Computationally intensive algorithm

How well does GraphLab scale?

Yahoo Altavista Web Graph (2002):

One of the largest publicly available webgraphs

1.4B Webpages, 6.7 Billion Links

7 seconds per iter.

1B links processed per second 30 lines of user code

No.

1024 Cores (2048 HT)

4.4 TB RAM

GraphChi: Going small with GraphLab

Solve huge problems on small or embedded devices?

Key: Exploit non-volatile memory (starting with SSDs and HDs)

GraphChi – disk-based GraphLab

Challenge:

Random Accesses

Novel GraphChi solution:

Parallel sliding windows method

minimizes number of random accesses

Triangle Counting on Twitter Graph

40M Users 1.2B Edges **Total: 34.8 Billion Triangles**

- ML algorithms as vertex programs
- Asynchronous execution and consistency models

- Natural graphs change the nature of computation
- Vertex cuts and gather/apply/scatter model

GL2 PowerGraph focused on Scalability

at the loss of Usability

GraphLab 1

```
PageRank(i, scope){
   acc = 0
   for (j in InNeighbors) {
     acc += pr[j] * edge[j].weight
   }
   pr[i] = 0.15 + 0.85 * acc
}
```

Explicitly described operations

Code is intuitive

GraphLab 1

```
PageRank(i, scope){
   acc = 0
   for (j in InNeighbors) {
     acc += pr[j] * edge[j].weight
   }
   pr[i] = 0.15 + 0.85 * acc
}
```

Explicitly described operations

GL2 PowerGraph

Implicit operation

```
gather(edge) {
  return edge.source.value *
         edge.weight
merge(acc1, acc2) {
       return accum1 + accum2
                   Implicit aggregation
apply(v, accum)
 v.pr = 0.15 + 0.85 * acc
```

Code is intuitive

Need to understand engine to understand code

Great flexibility, but hit scalability wall

Scalability,
but very rigid abstraction
(many contortions needed to implement
SVD++, Restricted Boltzmann Machines)

What now?

USABILITY

GL3 WarpGraph Goals

Run Like **Program** Like GraphLab 1 **GraphLab 2** Machine 2 Machine 1

Fine-Grained Primitives

Expose Neighborhood Operations through Parallelizable Iterators

$$R[i] = 0.15 + 0.85 \sum_{(j,i)\in E} w[j,i] * R[j]$$

PageRankUpdateFunction(Y) {
 Y.pagerank = 0.15 + 0.85 *

Expressive, Extensible Neighborhood API

Can express every GL2 PowerGraph program (more easily) in GL3 WarpGraph

But GL3 is more expressive

```
UpdateFunction(v)
if (v.data == 1)
    accum = MapReduceNeighs(g,m)
else ...
}
```

Multiple gathers

Scatter before gather

Conditional execution

Graph Coloring Twitter Graph: 41M Vertices 1.4B Edges

WarpGraph outperforms PowerGraph with simpler code

- ML algorithms as vertex programs
- Asynchronous execution and consistency models

- Natural graphs change the nature of computation
- Vertex cuts and gather/apply/scatter model

- Usability is key
- Access neighborhood through parallelizable iterators and latency hiding

Usability

RECENT RELEASE: GRAPHLAB 2.2, INCLUDING WARPGRAPH ENGINE

And support for streaming/dynamic graphs!

Consensus that WarpGraph is much easier to use than PowerGraph

"User study" group biased...:-)

Usability for Whom???

Machine Learning PHASE 3

USABILITY

Exciting Time to Work in ML

Unique opportunities to change the world!! © But, every deployed system is an one-off solution, and requires PhDs to make work... ©

ML key to any new service we want to build

But...

Even basics of scalable ML can be challenging

6 months from R/Matlab to production, at best

State-of-art ML algorithms trapped in research papers

Goal of GraphLab 3:

Make huge-scale *machine learning* accessible to all!

Step 1 Learning ML in Practice with GraphLab Notebook

Step 2 GraphLab+Python: ML Prototype to Production

Step 3 GraphLab Toolkits: Integrated State-of-the-Art ML in Production

GraphLab Toolkits

Highly scalable, state-of-the-art machine learning straight from python

Now with GraphLab: Learn/Prototype/Deploy

Even basics of scalable ML can be challenging

Learn ML with GraphLab Notebook

6 months from R/Matlab to production, at best

pip install graphlab then deploy on EC2

State-of-art ML algorithms trapped in research papers

Fully integrated via GraphLab Toolkits

We're selecting strategic partners

Help define our strategy & priorities And, get the value of GraphLab in your company

partners@graphlab.com

V1 Possibility

№2 Scalability

V3 Usability

GraphLab 2.2 available now: graphlab.com Define our future: partners@graphlab.com Needless to say: jobs@graphlab.com