BN
Graph Lab\

Large-Scale Machine Learning and Graphs

Carlos Guestrin

PHASE 1

POSSIBILITY

PHASE 2

SCALABILITY

PHASE 3

USABILITY

Se. THLEO FATIRTED MET- 10, Ll
H. LYUCRAYY,
WIND'W CLEAKIND DEVIEE

LAPLELTHE PILLE SR L)

i Eh

Tl
Nk

A
i

i

Three Phases in Technological Development

Wide
Adoption
1. 2. 3. Beyond
Possibility Scalability ~ Usability Experts &

Enthusiast

Machine Learning
PHASE 1

POSSIBILITY

Rosenblatt 1957

83 YaHoO! ©-9-

M | E
cesulks, schedudes seus Fo

Elived Mk P TRk oaE

MegaMarketing Scodenr Avard
BENERTS EXPOSED! Niosiamians

.....

L“lu-ggmt !-"-.-mm-a- Haeweg - Elﬂ W rnum: Qﬁ ﬂm..

+ Aty aond Hamamivoes

Archinesany, Phomameplyy, Lijerevae..

* Busisgss and Eoonomn [N

Cempaterc 2ad Fatemet [T’
Tmpemet, TR iﬂw} Slukinedna

v M .ud ‘-IuE: Etﬂ

v Recreatiun aod Spocts (Xl
Spers Games, Trnsd Ausies Guidsses

* Rolarence

Lipracis, Picmiomanse. Phone Mygkars

* Education
Unmiversides, R-12, Celieeze Enudres,

* Enierislsmest [Xm]

CoedLinks Mesies, Vi Hanor
& Crovetmmient

o, Pritics Flnw'] Law, Tares..

+ Healis (%ol
Medione Dmgs, Jheegues Prvmeeg

* Sacial Seiendn

Antbrepolagy, Sociplogr, Boanarmsazs.
* Socebr amd Culiars

Zeoie Fmeponment. Eafitar

Google!

r‘:‘iilﬁ:i_ﬂm ol e hachy |

g S LN~ S RO Drageid (RO 1 B mresih Doy

Abo le!

Stamtord Sea1en Lk Seanch
b oo | updahes manthng
J'.-.ﬂ.-l-l-rw - Helgcnsg | Bares

Capymighe T Rankd Lneereay

Machine Learning
PHASE 2

SCALABILITY

Needless to Say, We Need
Machine Learning for Big Data

flickr You ([T

6 Billion - 1 Billion
Flickr Photos 28 Million
Wikipedia Pages

72 Hours a Minute
Facebook Users YouTube

Ehe New JJork Eimes

. “...data a new class of economic asset,
SU“dHYRWIWl like currency or gold.”

WORLD I8 NY, /REGION BITSINESS TEC

WEWS AM&] YELE

The Age of Big Data

B STEVE LOHA
shed : Februss~y 14, 2012

Big Learning

How will we
design and implement
parallel learning systems?

MapReduce for Data-Parallel ML

Excellent for large data-parallel tasks!

< Data-Parallel

Is there more to

MapReduce . |
Machine Learning
Feature Cross
Extraction Validation ?
Computing Sufficient

Statistics ®

What is this an image of?

The Power of
Dependencies

where the value is!

Flashback to 1998

altawsta W Go. nge.

RCH SOFTWARE

First Google advantage:

a Graph Algorithm & a System to Support it!

1t’s all 3

b

Social Media Science Advertising

g & a
v &

¢ Graphs encode the relationships between:

People Products ldeas
Facts Interests

E Big: 100 billions of vertices and edges and rich metadata

o Facebook (10/2012): 1B users, 144B friendships
¢ Twitter (2011): 15B follower edges

Examples of
Graphs in
Machine Learning

Label a Face and Propagate

1

I
grandma

L, F
Y

Pairwise similarity not enough...

Who??2?7208

i
Not similar enough . _—
gfa"dma to be sure

'ﬁ“ -

Propagate Similarities & Co-occurrences
for Accurate Predictions

. ' =)
| ' ‘ . ‘ “‘r
gra'pdma

ocrandmalll I |

:hﬂ Probablllstlc Graphical Models -2
similarity b

co-occurring
faces
further evidence

Collaborative Filtering: Exploiting Dependencies

_
| 4.~ Women on the Verge of a
= = . Nervous Breakdown
H _Ig."
it
. .'.-"'
~
- < T oen
g r"'" — :- e
o

The Celebration

Latent Factor Models
Non-negative Matrix Factorization

"
&Commend???’?’% o

A Wild Strawberries

% La Dolce Vita

Estimate Political Bias

‘ Semi-Supervised &
Transductive Learning

-

o

Topic Modeling

JTRHNNY
APPLESELED

12 LOOK NSIDE

Machine Learning Pipeline

Extract Graph
Features Formation Structured

Machine
Learning
Algorithm

face
labels

images

doc
topics

movie Graphlab ol
<ocial recommend
activity sentiment

analysis

docs

ML Tasks Beyond Data-Parallelism

< Data-Parallel

Map Reduce

Feature Cross
Extraction Validation

Computing Sufficient
Statistics

Example of a
Graph-Parallel
Algorithm

Depends on rank

PageRank of who follows them...
Depends on rank :

‘ of who follows her /

What's the rank
LS of this user?

Loops in graph =» Must iterate!

PageRank Iteration

Iterate until convergence:

“My rank is weighted
average of my friends’ ranks”

¢ aistherandom reset probability
s W is the prob. transitioning (similarity) from jto i

Properties of Graph Parallel Algorithms

Dependency Local lterative
Graph Updates Computation

The Need for a New Abstraction

¢ Need: Asynchronous, Dynamic Parallel Computations

Data-Parallel

Graph-ParaIIeI

Map Reduce

Feature Cross
Extraction Validation

Computing Sufficient
Statistics

‘I;:: .I:I -’ & ']ll

Graphl ab! t«'

Graphical Models
Gibbs Sampling
Belief Propagation

Semi- Superwsed

Learning
Label Propagation

Variational Opt. CoEM
Collaborative Data-Mining
Filtering PageRank

Tensor Factorization Triangle Counting

The GraphLab Goals

Know how to
solve ML problem ¥
on 1 machine megie Mellon Efficient

parallel
predictions

-r. .1

GraphL—'ibqf,’“a

Carnegie Mellon

1

POSSIBILITY

Data Graph

Data associated with vertices and edges

(— p

8

Graph: O_O

e Social Network

Vertex Data: .
* User profile text
* Current interests estimates

Edge Data: i
* Similarity weights

How do we program
graph computation?

“Think like a Vertex.”

-Malewicz et al. [SIGMOD’10]

Update Functions

User-defined program: applied to
vertex transforms data in scope of vertex

Update function applied (asynchronously)
in parallel until convergence

Many schedulers available to prioritize computation

Dynamic
computation

The GraphLab Framework

Graph Based Update Functions
Data Representation User Computation

Scheduler

oooo>

Alternating Least
5 >VD Splash Sampler

Squares
CoEM :
Bayesian Tensor
Lasso Belief Propagation ractorization
P8 PageRank
LDA
Graphl ab!
. . Carnegie Mellﬂn — SV V]
Gibbs Sampling
Dynamic Block Gibbs Sampling
K-Means Matrix

...Many others... o
y Factorization

Linear Solvers

Never Ending Learner Project (CoEM)

Hadoop 95 Cores 7.5 hrs
Distributed 32 EC2 80 secs
GraphLab machines

0.3% of Hadoop time

2 orders of mag faster =

2 orders of mag cheaper

Graph _AD £ o ML algorithms as vertex programs

Carnegie Mellon ™
¢ Asynchronous execution and consistency
models

Thus far...

GraphLab 1 provided exciting
scaling performance

But...
We couldn’t scale up to

Altavista Webgraph 2002
1.4B vertices, 6.7B edges

|
Iy

oI
'
TS

FAMARIIr

7 P10

. NaLETl

"
e

[Image from WikiCommons]

Problem:

Existing distributed graph
computation systems perform
poorly on Natural Graphs

Achilles Heel: ldealized Graph Assumption

Assumed... But, Natural Graphs...

Small degree =»
Easy to partition Many high degree vertices

(power-law degree distribution)
> 4

Very hard to partition

Pow

er- Law Degree Dlstrlbutlon

10™°

=
@)
0©

o
o

Number of Vertices

AltaVista WebGraph

A High-Degree
L% Vertices:

Bl 1% vertices adjacent

" to 50% of edges

1.4B Vertices, 6.6B Edges

0 102

High Degree Vertices are Common

“Social” People Popular Movies
‘ ' f %
| 7| Netflix
= . A -
A o ity ot
§y ¢ Moves [|
Hyper Parameters Common Words

LDA

Docs

Obama

Power-Law Degree Distribution

“Star Like” Motif

President

Obama \ - Y?FOllowers

Problem:
High Degree Vertices = High
Communication for Distributed Updates

Data transmitted
across network
O(# cut edges)

Natural graphs do not have low-cost balanced cuts
[Leskovec et al. 08, Lang 04]

Popular partitioning tools (Metis, Chaco,...) perform poorly
[Abou-Rjeili et al. 06]

Extremely slow and require substantial memory

Random Partitioning

» Both GraphlLab 1, Pregel, Twitter, Facebook,... rely on
Random (hashed) partitioning for Natural Graphs

For p Machines:
- | |[Edges Cut| | | 1
E p

10 Machines =2 90% of edges cut !
100 Machines 2 99% of edges cut!

All data is communicated... Little advantage over MapReduce

In Summary

GraphLab 1 and Pregel are not well
suited for natural graphs

» Poor performance on high-degree vertices
» Low Quality Partitioning

N
Graphlaby

PowerGraph

SCALABILITY

Common Pattern for Update Fncs.

?R[j]%L % - i

R[i]

GraphLab_PageRank (i)

.

" // Compute sum over neighbors

total = ©
foreach(j in in_neighbors(i)):
total = total + R[J] * wy;

Gather Information
About Neighborhood

/

/ // Update the PageRank
R[1] = 0.1 + total

Apply Update to Vertex

// Trigger neighbors to run again

if R[i] not converged then Scatter Signal to Neighbors

foreach(j in out neighbors(i))
signal vertex-program on j

& Modify Edge Data

GAS Decomposition

-

Gather (Reduce)

Accumulate information
about neighborhood

~

Apply
Apply the accumulated
value to center vertex

Scatter

Update adjacent edges
and vertices.

e

Many ML Algorithms fit
into GAS Model

graph analytics, inference in graphical
models, matrix factorization,
collaborative filtering, clustering, LDA, ...

Minimizing Communication in GL2 PowerGraph:

Vertex Cuts
‘

Minimizing Communication in GL2 PowerGraph:

Vertex Cuts
@ Communication linear
in # spanned machines

A vertex-cut minimizes

machines per vertex

Percolation theory suggests Power Law graphs can be split
by removing only a small set of vertices [Albert et al. 2000]

->
Small vertex cuts possible!

Minimizing Communication in GL2 PowerGraph:
Vertex Cuts

GL2 PowerGraph includes novel vertex cut algorithms

Provides order of magnitude gains in performance

BN
Graph Lab}

From the Abstraction
to a System

Triangle Counting on Twitter Graph
34.8 Billion Triangles

Hadoop | LEELRVETL IS
[WWW’11] EZERU LT

GL2 64 Machines
PowerGraph J 15 Seconds

Why? Wrong Abstraction >

Broadcast O(degree?) messages per Vertex

S. Suri and S. Vassilvitskii, “Counting triangles and the curse of the last reducer,” WWW’11

Topic Modeling (LDA)

Million Tokens Per Second
0 20 40 60 80 100 120 140

160

100 Yahoo! Machines
Specifically engineered for this task

Smola et al.

GL2 PowerGraph

¢ English language Wikipedia
« 2.6M Documents, 8.3M Words, 500M Tokens
« Computationally intensive algorithm

How well does GraphlLab scale?

Yahoo Altavista Web Graph (2002):
One of the largest publicly available webgraphs

1.4B Webpages, 6.7 Billion Links

7 seconds per iter.

1B links processed per second

30 lines of user code
|| o =

1024 Cores (2048 HT) 4.4 TB RAM

GraphChi: Going small with GraphlLab

, V| :
R <

Graph Lab\ J4

Solve huge problems on E— <) T
small or embedded (J

devices?

Key: Exploit non-volatile memory

(starting with SSDs and HDs)

GraphChi — disk-based Graphlab

Challenge: ;

Random Accesses \

Novel GraphChi solution:
Parallel sliding windows method =
minimizes number of random accesses

Triangle Counting on Twitter Graph

40oMUsers Total: 34.8 Billion Triangles
1.2B Edges

Hadoop

59 Minutes, 1 Mac Mini!
GraphChi
64 Machines, 1024 Cores

15 Seconds
Graphlab?2

Hadoop results from [Suri & Vassilvitskii '11]

o R %

Graphl ab' A
e’"] o)
P _— L"’J Gl ‘j 1

Carnegie Mellon "

Pan
Graph Lab\,,

PowerGraph

¢ ML algorithms as vertex programs

« Asynchronous execution and consistency
models

« Natural graphs change the nature of
computation

» Vertex cuts and gather/apply/scatter model

GL2 PowerGraph

focused on
Scalability

at the loss of
Usability

GraphlLab 1

PageRank(i, scope){
acc = 0

for (j in InNeighbors) {
acc += pr[j] * edge[j].weight
}

pr[i] = 0.15 + 0.85 * acc

Explicitly described operations

Code is intuitive

GraphlLab 1

PageRank(i, scope){
acc = 0

for (j in InNeighbors) {
acc += pr[j] * edge[j].weight
}

pr[i] = 0.15 + 0.85 * acc

Explicitly described operations

GL2 PowerGraph

Implicit operation

gather(edge) {
return edge.source.value *

edge.weight

merge(accl, acc2) {
return accuml + accum2

}
Implicit aggregation
apply(v, laccum
v.pr = 0.15 + 0.85 * acc
}

Code is intuitive

Need to understand engine
to understand code

Graph Lab\

Gr'a h[_ab PowerGraph
Carnegte Mellon 4 Sca Ia bl I |ty,
Great flexibility, but very rigid abstraction

(many contortions needed to implement

but hit scalability wall

SVD++, Restricted Boltzmann Machines)

N
Graph Lab}

WarpGraph

USABILITY

In a realm all its own. W&

GL3 WarpGraph Goals

Program Run Like
Like GraphlLab 1 Graphlab 2
T Machine 1 Machine 2

-3¢

Fine-Grained Primitives

Expose Neighborhood Operations through Parallelizable Iterators

R[i] =0.15+0.85 > w[j,] = R[j]
(G0 €E

PageRankUpdateFunction(Y) {
Y.pagerank = 0.15 + 0.85 *

Expressive, Extensible Neighborhood API

MapReduce over
Neighbors

: Parallel Transform
Adjacent Edges

Modify adjacent edges

ParsaIIeI '+'+ ¥ '
um e > >
_ J

.

Broadcast

Schedule a selected subset

. of adjacent vertices

J

Can express every GL2 PowerGraph program
(more easily) in GL3 WarpGraph

UpdateFunction(v) {
. if (v.data == 1)
But GL3 is more accum = MapReduceNeighs(g,m)

expressive else ...
}

Multiple Scatter before Conditional
gathers gather execution

Gra ph COlOFi NE Twitter Graph: 41M Vertices 1.4B Edges

GL2 PowerGraph 227 seconds

GL3 WarpGraph|:: ..

WarpGraph outperforms PowerGraph with simpler code

32 Nodes x 16 Cores (EC2 HPC cc2.8x)

o N % .
G raph *"U-f' ¥ ¢ ML algorithms as vertex programs

Carnegie Mellon L
» Asynchronous execution and consistency

models

N
< \
3 f@@h Lab ~ Natural graphs change the nature of

PowerGraph computation
» Vertex cuts and gather/apply/scatter model

SN
Grapn Lalo\1

« Usability is key
WarpGraph

« Access neighborhood through parallelizable
iterators and latency hiding

Usability

RECENT RELEASE: GRAPHLAB 2.2,
INCLUDING WARPGRAPH ENGINE

And support for
streaming/dynamic graphs!

Consensus that WarpGraph is much
easier to use than PowerGraph

“User study” group biased... :-)

Usability for Whom???

-
Q.
=

MG
0o
=

GL2
PowerGraph

Machine Learning
PHASE 3

USABILITY

Exciting Time to Work in ML

With Big Data,
I'll take over
| the world!!!

Why won't
Big Data read
my mind???

We met
because of
Big Data

Unique opportunities to change the world!! ©
But, every deployed system is an one-off solution,
and requires PhDs to make work... ®

But...

Even basics of scalable ML
can be challenging

ML key to any

new service we 6 months from R/Matlab
to production, at best

want to build

State-of-art ML algorithms
trapped in research papers

Goal of GraphLab 3:
Make huge-scale machine learning accessible to all!l ©

Step 1
Learning ML in Practice
with GraphLab Notebook

Step 2
GraphLab+Python:
ML Prototype to Production

Prototype: Production:
pip install graphlab Same code scales -
> 4 execute on EC2
local prototyping cluster

Learn:
GraphlLab

Notebook

Step 3
GraphlLab Toolkits:
Integrated State-of-the-Art
ML in Production

GraphlLab Toolkits

Highly scalable, state-of-the-art
machine learning straight from python

L Y Y Y Y

Graph Graphical Computer Topic Collaborative

Clustering Beteling

Analytics Models Vision Filtering

Now with GraphLab: Learn/Prototype/Deploy

Learn ML with

GraphLab Notebook
Even basics of scalable ML -

can be challenging

6 months from R/Matlab Wl PP install graphlab

to production, at best ~ then deploy on EC2

State-of-art ML algorithms
trapped in research papers Fully integrated
via GraphLab Toolkits

We're selecting strategic partners

Help define our strategy & priorities

And, get the value of GraphlLab in your company

partners@graphlab.com

N
GraphlLa Io\
vl Possibility

v Scalability
vz Usability

GraphlLab 2.2 available now: graphlab.com
Define our future: partners@graphlab.com
Needless to say: jobs@graphlab.com

