Hadoop Internals for Oracle Developers and DBAs
Exploring the HDFS and MapReduce Data Flow

Tanel Poder
Enkitec

http://www.enkitec.com
http://blog.tanelpoder.com
@tanelpoder

www.enkitec.com

enkitec

Oakr:

able.nel .
Intro: About me T"‘r B | e orecer
ORACLE | i513'T'a
* Tanel Poder
* Former Oracle Database Performance geek
* Present Exadata Performance geek
* Aspiring Hadoop Perfomance geek

Expert

Oracle

» This makes me feel old: Oracle
Exadata

A) RO S
0 50m OCTE &
Sy

Exadata

* 20+ years of Linux
¢ 15+ years of Oracle e e SO

Apress

* 5+ years of Exadata ™

* 1+ year of Hadoop ﬁ

Expert Oracle Exadata
* My Hadoop interests book

(with Kerry Osborne and

* Performance stuff, DW offloading Randy Johnson of Enkitec)

enl—{]tec www.enkitec.com 5

About Enkitec

* Enkitec enl_{ltec

* North America
" UK EMEA ORACLE [uive

* ~100 staff Cloudera Partner SI

* In US, Europe

* Consultants with
Oracle experience
of 15+ years on average

* What makes us so awesome ©
* 200+ Exadata implementations to date

* Enkitec Exa-Lab ©
* We have 3 Exadatas (V2, X2-2, X3-2)
* Full-Rack Big Data Appliance
* Exalytics
* ODA

www.enkitec.com

enkitec

g

Everything Exa

Planning/PoC
Implementation
Consolidation
Migration
Backup/Recovery
Patching
Troubleshooting
Performance
Capacity
Training

Oracle<->Hadoop

Enkitec's exalab: Big Data Appliance Hardware Features

A full rack of 18 servers
* An engineered system

16 CPU cores per server
* Total 288 cores in full rack

12 x 3 TB disks per server
* 648 TB of disk space in rack

Connected with InfiniBand

A Built in beer-holder!

www.enkitec.com 4

enkitec

Why

also | am excited about

Hadoop?

www.enkitec.com

enkitec

Typical Data Processing

Complex Processing:
Business Logic, Analytics

Simple Processing:
Aggregate, Join, Sort, ...

Filter Data
("where sal > 50000")

Read Data from Disks

—_—
enkitec

Oracle + SAN

App
Server

Database
Server

Storage
Array

www.enkitec.com

Exadata

App
Server

Database
Server

Storage
Cell

Hadoop+MR

App code
+

Map/
Reduce
on HDFS

All processing can be close to datal

One of the mantras of Hadoop:
"Moving computation is cheaper than moving data”

MapReduce + HDFS hide the complexity of placing the computation
of data on their local (or closest) cluster nodes

No super-expensive interconnect network and complex scheduling & MPI
coding needed

No need for shared storage (expensive SAN + Storage Arrays!)

Now you can build a supercomputer (from commodity pizzaboxes)
cheaply!

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node ... Node N
+ disks + disks + disks + disks + disks + disks + disks + disks

enkitec

www.enkitec.com

Oracle Database's internal "MapReduce”

A SELECT COUNT(*) FROM tis not a real-life query

Gives very simple and scalable execution plan

Similarly, a MapReduce task just counting words from a single
file is not a real-life Hadoop job
But let's start from a simple example anyway

SQL> SELECT /*+ PARALLEL(4) */ COUNT(*) FROM t;

0 | SELECT STATEMENT |
1 | SORT AGGREGATE |
2 | PX COORDINATOR |
3 | PX SEND QC (RANDOM) | :TQ10000 | 1
4 | |
5 | |
6 | |

SORT AGGREGATE | 1 | 01,00 | PCWP

PX BLOCK ITERATOR | 598K | 834 ()| Q1,00 | PCWC

* TABLE ACCESS FULL| T 598K | 834 (1)|] 01,00 | Pcwp
www.enkitec.com 8

Simple "MapReduce" behavior in Oracle

QC spawns 4 slaves and maps out work (PX granules) to them

Slaves read only the PX granules "allocated" to them for reading by
the PX BLOCK ITERATOR

Slaves do the computation they can (count) and send results to QC
QC reduces the 4 slaves results to one (sums the counts together)
——— Each slave essentially

| Id | Operation | Name | TQ | IN-OUT | executes the same cursor,
——— but the PX BLOCK

| 0 | SELECT STATEMENT | | | | ITERATOR (and the access

| 1 | SORT AGGREGATE | | | | predicate below) return

| 2 | PX COORDINATOR | | | | different Data Block

| 3 | PX SEND QC (RANDOM) | :TQ10000 | 01,00 | P->S | Address ranges to scan.

| 4 | SORT AGGREGATE | | 01,00 | PCWP |

| 5 | PX BLOCK ITERATOR | | 01,00 | PCWC |

|* 6 | TABLE ACCESS FULL| T | 01,00 | PCwP | If an inter-instance PX SQL,

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ the cursor has to be

shipped to the library cache
6 - access(:Z>=:Z AND :Z2<=:7) of all executing nodes

GDRI’(GC www.enkitec.com 9

Measuring PX Data Flow — VSPQ_TQSTAT

VSPQ_TQSTAT shows the dataflow stats between slave sets
Producer <-> Consumer

"Map" <-> "Reduce”

SQL> @tqg
Show PX Table Queue statistics from last Parallel Execution in this
session...

TQ ID TQ FLOW
(DFO,SET) DIRECTION NUM_ROWS BYTES WAITS TIMEOUTS PROCESS
:TQ1,0000 Producer 1 32 13 0 P0O03

Producer 1 32 14 0 P0OO0O1
Producer 1 32 14 0 P002
Producer 1 32 11 0 P00O
Consumer 4 128 56 17 QC
http://blog.tanelpoder.com/files/scripts/tq.sql
www.enkitec.com
enkitec 10

More complex "MapReduce" behavior in Oracle

* The parallel query has more levels now — two table queues

SELECT /*+ PARALLEL(4) */ owner, COUNT(*) FROM t GROUP BY owner

Plan hash value: 129087698

| Id | Operation | Name | TQ |IN-OUT| PQ Distrib |
| 0 | SELECT STATEMENT | | | | Data Flow
| 1 | PX COORDINATOR | | | | between Slave
2 PX SEND QC (RANDOM :TQ10001 1,01 | p->s C (RAND
| | oc () | :TQ | 01,01 | | oc () Sets (Stages)
| 3 | HASH GROUP BY | | 01,01 | PCwP |)
via memory or
| 4 | PX RECEIVE | | 01,01 | PCwp | D
| 5 | PX SEND HASH | :TQ10000 | 01,00 | P->P | HASH , ubp
6	HASH GROUP BY		01,00	PCwp
7	PX BLOCK ITERATOR		01,00	pcwC
* 8	TABLE ACCESS FULL	T	01,00	PCwp
www.enkitec.com
enkitec 11

What is the Hadoop physically?

* Hadoop is an ecosystem of many (mainly) Java programs

* We will be talking about HDFS and MapReduce
* HDFS = Hadoop's Distributed File System
* MapReduce = A job placement, scheduling and data flow library
* ...they are also just some Java programs

* Lots of JVMs!

* Some run as daemons (various metadata servers)
* Some get started & stopped for each MapReduce Job

* And some higher level programs (like Hive, Pig) generate & run map-
reduce jobs internally

www.enkitec.com

enkitec

12

HDFS processes

$ ps auxwww | grep hdfs

hdfs 2860 0.2 4.0 790500 159808 ? ST 19:28 0:30 /usr/java/
jdk1l.6.0_31/bin/java -Dproc_namenode -Xmx1000m -
Dhdfs.audit. logger=INFO,RFAAUDIT -Dsecurity.audit.logger=INF0,RFAS -
Djava.net.preferIPv4Stack=true -Dhadoop.log.dir=/var/log/hadoop—-hdfs -
Dhadoop. log. file=hadoop-cmf-hdfs1-NAMENODE-localhost. localdomain. log.out -
Dhadoop.home.dir=/usr/lib/hadoop -Dhadoop.id.str=hdfs -
Dhadoop. root. logger=INFO,RFA -Djava. library.path=/usr/lib/hadoop/lib/native -
Dhadoop.policy.file=hadoop-policy.xml -Djava.net.preferIPv4Stack=true -
Xmx181542808 —-XX:+UseParNewGC —-XX:+UseConcMarkSweepGC —XX: -
CMSConcurrentMTEnabled —-XX:CMSInitiatingOccupancyFraction=70
org.apache.hadoop.hdfs.server.namenode.NameNode

hdfs 2918 0.2 3.5 772016 139824 ? ST 19:28 0:30 /usr/java/
jdk1.6.0_31/bin/java -Dproc_datanode -Xmx1000m -
Dhdfs.audit. logger=INFO,RFAAUDIT -Dsecurity.audit.logger=INF0,RFAS -
Djava.net.preferIPv4Stack=true -Dhadoop.log.dir=/var/log/hadoop—hdfs -
Dhadoop. log. file=hadoop-cmf-hdfs1-DATANODE-localhost. localdomain. log.out -
Dhadoop.home.dir=/usr/lib/hadoop -Dhadoop.id.str=hdfs -
Dhadoop. root. logger=INFO,RFA -Djava. library.path=/usr/lib/hadoop/lib/native -
Dhadoop.policy.file=hadoop—-policy.xml -Djava.net.preferIPv4Stack=true -server
-Xmx181542808 —-XX:+UseParNewGC —XX:+UseConcMarkSweepGC —-XX:-
CMSConcurrentMTEnabled —-XX:CMSInitiatingOccupancyFraction=70
org.apache.hadoop.hdfs.server.datanode.DataNode

www.enkitec.com 13

enkitec

total 6108

drwxr-xr-x. 2 root
drwxr-xr-x. 2 root
-rw-r--r--. 1 root
-rw-r--r--. 1 root
lrwxrwxrwx. 1 root

cat /etc/hadoop/conf/hdfs-site.xml

HDFS Libraries & Config

$ 1ls -1 /usr/lib/hadoop-hdfs/

root 4096
root 4096
root 4534749
root 1692271
root 30

Jul
Jul
May
May
Jul

15
15
27
27
15

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

<property>

03:33
03:33
20:00
20:00
03:33

<name>dfs.namenode.http-address</name>
<value>localhost.localdomain:50070</value>

</property>
<property>

<name>dfs.replication</name>

<value>3</value>

</property>
<property>

<name>dfs.blocksize</name>
<value>134217728</value>

</property>

enkitec

bin

cloudera
hadoop-hdfs-2.0.0-cdh4.3.0. jar
hadoop-hdfs-2.0.0-cdh4.3.0-tests. jar
hadoop-hdfs.jar -> hadoop-hdfs-2.0.0-

cdh4.3.0.jar

www.enkitec.com

14

HDFS low-level structure

It's just a bunch of regular files in an OS directory!
Residing on a regular local OS filesystem (like EXT3, EXT4, XFS, etc)

$ cd /dfs

$ s -1

total 12 dn = DataNode (actual data)

drwxr-xr-x. 3 hdfs hadoop 4096 Aug 5 19:29 dn nn = NameNode (file metadata)

drwx—————- . 3 hdfs hadoop 4096 Aug 5 19:28 nn snn = Secondary NameNode

d rwx—————— . 3 hdfs hadoop 4096 Aug 5 19:28 snn

i i HDFS names the OS-

55OM dn level files and splits ‘meta files

2.2M nn large ones to hold

152K snn "blocks" (dfs.blocksize) checksums for
across multiple nodes the file

$ 1s —1R dn

dn/current/BP-763425243-127.0.0.1-1373884718246/current/finalized/subdir45:
total 504672

-rw—r——r—— 1 hdfs hdfs 134 Aug 5 21:43 blk_1335263265743075945
—-rw-r——r—— 1 hdfs hdfs 11 Aug 5 21:43 blk_1335263265743075945_1231.meta
—-rw—r——r—— 1 hdfs hdfs 38 Aug 5 20:13 blk_-181798089218823916

—-rw—r——r—— 1 hdfs hdfs 134217728 Aug 5 20:39 blk_2806839731572335391
-rw-r——r—— 1 hdfs hdfs 1048583 Aug 5 20:39 blk_2806839731572335391_1225.meta

www.enkitec.com 15

enkitec

1. Open & scan /user/x/file.txt

HDFS high-level picture

Cluster Node X

2. reply:

hdfs://nodel/dirl/blk123
hdfs://node2/dirl/blk345
hdfs://node3/dir1/blk678

NameNode
Daemon

—

—

EXT3 NFS

The HDFS magic happens at
a higher level from
traditional filesystems (in
Hadoop libraries, not OS
kernel). The developer
doesn't need to know
where the file blocks
physically reside.

Cluster Node 1

Cluster Node 2

T

DataNode
daemon

¥

DataNode
daemon

— —

EXT3

i
—— —

EXT3

—— I

Cluster Node ...

DataNode
daemon

—— =
EXT3

—— I

Cluster Node N
e

DataNode
daemon

EXT3

enkitec

www.enkitec.com

16

HDFS Design and Tradeoffs

HDFS is designed for "write once, read many" use cases

HBASE

Large sequential streaming reads (scans) of files supports this
Not optimal for random seeks and small 10s thanks to its
indexed file

format + cache

"Inserts" are appended to the end of the file
HBASE
supports
random
lookups and
updates

No updates

HDFS performs the replication ("mirroring") and is designed
anticipating frequent DataNode failures

www.enkitec.com 17

enkitec

. Exadata IO flow & address space translation
J‘G,,

Exadata Compute Node

<:> Oracle DB Instance ASM instance
<:> Cached ASM Metadata <::> ASM Metadata
(AU maps)

(ASM extent pointer array)

roc.

g Network Q

_— -

U1 et ath

Storage Cell Storage Cell Storage Cell

cellsrv cellsrv cellsrv

www.enkitec.com 18

Hadoop 10 flow & address space translation

<
d‘@/‘
NameNode
In-memory hashtable
Job Tracker > of HDFS maps
Secondary
NameNode
Metadata Checkpoints
g NeMork —_—
< T+ 7
Cluster Node A Cluster Node B Cluster Node C

DataNode + TaskTracker DataNode + TaskTracker DataNode + TaskTracker

www.enkitec.com 19

Hadoop Jobs vs Tasks

* If Hadoop Jobs were Oracle SQL statements executed in
parallel

* The JobTracker would be like Oracle’s Query Coordinator

* ...then Tasks would be like the Parallel Execution Slaves*™

 Max amount of concurrently running Tasks configured by task slots

* An input-split (range of data) passed to a Task for mapping is like the
PX-granule in Oracle

www.enkitec.com

enkitec

20

Hadoop Job Placement

* A Hadoop Job gets split into many Tasks for distributed
parallel processing:

* The JobTracker first tries to schedule the Tasks on the nodes where
the corresponding data resides

* |f there are no available Task Slots on the node, then another node (in
the same rack is picked)

www.enkitec.com 21

enkitec

Logical view: Oracle Exadata Parallel Full Table Scan

Each PX slave processes:
User > QU.ery P
Coordinator 1) A part of the query
2) Only some
"chunks" (PX granules)
4 on disk as directed by

PX slave 1 PX slave 2 PX slave N the QC

8

>

C

o

O

x

e — N Y "’A VS S
" Full Table Scan
= JJ1I il l

s —— \\

(Vg)

< -

www.enkitec.com 22

User

Logical view: Hadoop "Parallel Full Table Scan"

>

Input Splits

HDFS blocks

Job Tracker

Scheduling tasks to run on
the nodes where their data
resides gives much better
locality and less network
interconnect traffic — better
performance and less
scalability bottlenecks

www.enkitec.com

What is Hadoop MapReduce physically, anyway?

* MapReduce is just a Java library which can talk to HDFS,
NameNodes, Job Trackers etc
* So your (Java) app needs to use the MapReduce library
* Somewhat like using JDBC to run SQL
* ... you would use MapReduce to scan (HDFS) files

* Note that MapReduce does not have to work with HDFS, many other
data sources are supported (like FTP, HTTP, Amazon S3 etc)

* You can call the MapReduce library directly in Java (and other
JVM-based languages)

* The MapReduce library logic and application logic would reside in the
same JVM — less IPC and communication overhead

* Indirect APIs for C, Python, etc also available

www.enkitec.com 24

enkitec

A typical MapReduce app run

1. Your MapReduce app with required libraries packed into JAR
2. $ hadoop jar app.jar MainClass argl arg2
3. The app.jar gets copied to HDFS, replicated

4. The Task Trackers copy the JAR to local tmp directory

5. The Task Tracker launches a new JVM with the JAR and Class name to
execute

6. Your code in the JAR will take over and call out HDFS, input, output libraries
as needed

7. After X seconds (minutes, hours) you will have an output file in HDFS

It is possible to cache the JARs for future use using DistributedCache and even reuse JVMs for next task runs

www.enkitec.com 25

enkitec

Thanks!!!

Questions?
* Ask now :)

Or Contact
* tanel@tanelpoder.com

* http://blog.tanelpoder.com

* @tanelpoder

http://www.enkitec.com

(we rock! ;-)

www.enkitec.com

enkitec

26

