cloudera

Ask Bigger Questions

Practical Performance Analysis and
Tuning for Cloudera Impala

Greg Rahn | @GregRahn

Strata + Hadoop World 2013 | #strataconf + #hw2013
2013-10-30 e

0., 2
L ~ .
% .“c !
\"'\. . _:* . t\\' »
_ - 4 <& b, | 2 \? ’ .‘."
4 =
; ;./-/ ; "7' //f.:‘? //:/
7 "'/{—:'/ '—’f,, o can X
e i 7 ",//—{ > -
7 £ -~
T / Copyright © 2013 Cloudera Inc.
i . All rights reserved.
\-::‘"‘ T I

GO gle Greg Rahn

Web Images Maps Shopping Videos More ~ Search tools

About 429,000 results (0.20 seconds)

Greg Rahn | LinkedIn
www.linkedin.com/in/gregrahn ~

San Francisco Bay Area - Big Data Aficionado
View Greg Rahn's professional profile on LinkedIn. LinkedIn is the world's largest
business network, helping professionals like Greg Rahn discover inside ...

Greg Rahn (GregRahn) on Twitter
https://twitter.com/GregRahn ~

The latest from Greg Rahn (@GregRahn). big data nerd, database junkie, SQL guru,
machine learning enthusiast, data scientist in training, vidb performance ...

Structured Data | Thoughts on: Big Data, Hadoop. Databases ...
structureddata.org/ ~

10 hours ago - Office Hour with Greg Rahn @ the Cloudera Booth 10/29/2013 11:00am
— 11:30am EDT (30 minutes) Room: 3rd Floor, Mercury Ballroom, ...

Just how fast is Impala?

How fast is Impala?

Impala faster on 19 of 21 queries
Lower is better

500 -
400 -
w
2300
o
3
N
c
5
S 200 -
q['3'1 Q(IJZ q"33 q(IJél q"SS q['Jb' q(lJ? q[IJB q(IJQ q‘IxO q1IT q;z q;’j q1l«'1 q‘|15 q1l6 q%? q;8 q1|9 qIIZO qé‘l
5 : 3 TR 3 Query
DeWitt Clause” prohibits using
M[REDACTED]MImpala

DBMS vendor name

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

http://en.wikipedia.org/wiki/David_DeWitt

Practical Performance

Pre-execution Checklist

*Data types
*Partitioning
*File Format

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Data Type Choices

Define integer columns as INT/BIGINT
* Operations on INT/BIGINT more efficient than STRING

|II |II

*Convert “external” data to good “internal” types on load
-e.g. CAST date strings to TIMESTAMPS

*This avoids expensive CASTs in queries later

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Partitioning

“The fastest 1/0 is the one that never takes place.”

*Understand your query filter predicates

* For time-series data, this is usually the date/timestamp column

* Use this/these column(s) for a partition key(s)

Validate queries leverage partition pruning using EXPLAIN

*You can have too much of a good thing
* A few thousand partitions per table is probably OK
* Tens of thousands partitions is probably too much

» Partitions/Files should be no less than a few hundred MBs

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Partition Pruning in EXPLAIN

explain

select count(*) Note the partition count
from sales fact and missing “predicates”
where sold_date in('2000-01-01"', '2000-01-02"); filter due to parse time

partition pruning

— Partition Pruning (partitioned table)

0:SCAN HDFS
table=grahn.sales_fact #partitions=2 size=803.15MB

tuple 1ds: 0

— Filter Predicate (non-partitioned table)

O0:SCAN HDFS
table=grahn.sales_fact #partitions=1l size=799.42MB

predicates: sold_date IN ('2000-01-01', '2000-01-02')
tuple 1ds: 0

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

File Format Choices

“ ,"'N o

-CIONAIRE

SPECIALSEDITION'S

\¥ \41'

T IR YNY ST

Press START

B 4 B i | ¢ ==
Which HDFS file format offers the best performance for
Impala queries?

Which HDFS file format offers the best performance for
Impala queries?

Why use Parquet Columnar Format for HDFS?

: : File | -
*Well defined open format - http://parquet.io/ [Magic Number (4 bytes): "PART
" . . Row group 0
* Works in Impala, Pig, Hive & Map/Reduce r—
Page O
*1/0 reduction by only reading necessary columns |
epetition levels
Definition levels
»Columnar layout compresses/encodes better _

*Supports nested data by shredding columns ' :%

* Uses techniques used by Google’s ColumnlO

‘Impala loads use Snappy compression by default /\/

*Gzip available: set PARQUET_COMPRESSION_CODEC=gzip; vt 0

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

http://parquet.io/

Quick Note on Compression

*Shappy

* Faster compression/decompression speeds

* Less CPU cycles
* Lower compression ratio
*Gzip/Zlib
* Slower compression/decompression speeds

* More CPU cycles
* Higher compression ratio

*I1t’s all about trade-offs

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

It’s all about the compression codec

AR Hortonworks graphic fails to
call out that different codecs are

used. Gzip compresses better than
Snappy, but we all knew
that.

285 GB 505 GB mpals
- (14%: Smaller] 221GB ez iretmbmrabr

(62% Smaller) 131 GB arranges columns
(78% Smaller) adjacent within the

file for compression
& fast access

Encoded with Encoded with Encoded with Encoded with
Text RCFile Parquet ORCFile

Source: http://hortonworks.com/blog/orcfile-in-hdp-2-better-compression-better-performance/

Compressed Compressed

with Gzip

with Snappy

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

http://hortonworks.com/blog/orcfile-in-hdp-2-better-compression-better-performance/

TPC-DS 500GB Scale Factor

Using the same
% of Original Size - Lower is Better compression codec

produces

] comparable results

32.3%

Snappy

<88 W Parquet
B ORCFile

26.9%
Gzip .

27.4%

0 0.088 0.175 0.263 0.35

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

18

Dremel made simple with Parquet

Wednesday, September 11, 2013 | By Julien Le Dem (@J_) [16:04 UTC]

Columnar storage is a popular technique to optimize analytical
workloads in parallel RDBMs. The performance and
compression benefits for storing and processing large amounts
of data are well documented in academic literature as well as
several commercial analytical databases.

The goal is to keep I/0 to a minimum by reading from a disk only the data required for
the query. Using Parquet at Twitter, we experienced a reduction in size by one third on
our large datasets. Scan times were also reduced to a fraction of the original in the
common case of needing only a subset of the columns. The principle is quite simple:
instead of a traditional row layout, the data is written one column at a time. While
turning rows into columns is straightforward given a flat schema, it is more challenging
when dealing with nested data structures.

We recently introduced Parqguet, an open source file format for Hadoop that provides
columnar storage. Initially a joint effort between Twitter and Cloudera, it now has many
other contributors including companies like Criteo. Parquet stores nested data
structures in a flat columnar format using a technique outlined in the Dremel paper
from Google. Having implemented this model based on the paper, we decided to
provide a more accessible explanation. We will first describe the general model used to

Query Execution

Left-Deep Join Tree

listed first in the FROM clause

*Joins are done in the order

*The largest™ table should be / \
X R4

tables are listed in FROM
clause / \
*Filter early - most selective [X] R3

joins/tables first / \
v1.2.1 will do JOIN ordering
RT RZ

Copyright © 2013 Cloudera Inc. All rights reserved.

Two Types of Hash Joins

Default hash join type is BROADCAST (aka replicated)
* Each node ends up with a copy of the right table(s)*

- Left side, read locally and streamed through local hash join(s)

* Best choice for “star join”, single large fact table, multiple small dims

* Alternate hash join type is SHUFFLE (aka partitioned)
* Right side hashed and shuffled; each node gets ~1/Nth the data
» Left side hashed and shuffled, then streamed through join
* Best choice for “large table JOIN large table”
* Only available if ANALYZE was used to gather table/column stats*

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Hinting Joins

select ...
from large_fact
jolin [broadcast] small_dim

select ...
from large_fact
join [shuffle] large_dim

*square brackets required

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Determining Join Type From EXPLAIN

explain explain
select select
s_state, c_preferred_cust_flag,
count(*) count(*)
from store_sales from store_sales
join store on (ss_store_sk = s_store_sk) join customer on (ss_customer_sk = c_customer_sk)
group by group by
s_state; c_preferred_cust_flag;
2:HASH JOIN 2:HASH JOIN

join op: INNER JOIN (BROADCAST)
hash predicates:

ss_store_sk = s_store_sk
tuple 1ds: 0 1

join op: INNER JOIN (PARTITIONED)
hash predicates:

ss_customer_sk = c_customer_sk
tuple 1ds: 0 1

Q) e — — — — —

--=-=4:EXCHANGE | -=-=5:EXCHANGE
tuple 1ds: 1 | tuple 1ds: 1
|
:SCAN HDFS 4: EXCHANGE
table=tpcds.store_sales tuple 1ds: 0
tuple 1ds: 0

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Memory Requirements for Joins & Aggregates

*Impala does not “spill” to disk -- pipelines are in-memory
*Operators’ mem usage need to fit within the memory limit
This is not the same as “all data needs to fit in memory”

 Buffered data generally significantly smaller than total accessed data

* Aggregations’ mem usage proportional to number of groups
 Applies for each in-flight query (sum of total)
*Minimum of 128GB of RAM is recommended for impala nodes

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Understanding Operators & Data Flow

Data is streamed directly
between operators

* A producer can only send data
as fast as the consumer can
Ingest It

A “slow” operator may slow
down the entire pipeline

X
/N
M} R4

/\

]R3

/N
R1__R2

Copyright © 2013 Cloudera Inc. All rights reserved.

cloudera

How to use ANALYZE in the Hive shell

Table Stats
*analyze table unpartitioned tab compute statistics;
*analyze table partitioned tab partition(partition key) compute statistics;
*Column Stats
*analyze table unpartitioned tab compute statistics for columns ¢1,c2,...
*analyze table partitioned tab partition(partition key)

compute statistics for columns ¢1,c2,...

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Query Execution Walkthrough

select
s state,
1 brand,
count ()
from store sales
joln store on (ss_store sk = s _store_ sk)
join 1tem on (ss_1item sk = 1_1item_sk)
where ss_list price between 100.0 and 200.0
and s state in ('CA', 'NY')
and 1_brand = 'corpbrand #5°
group by
1,2:

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved. e G

Logical Execution Plan

/ (4:HASH JOIN

[(results)

. ;\

“T5:AGGREGATE ™\
output: COUNT(*) \

/ tuple ids: 3

group by: s_state, i2\brand

/

join op: INNER JOIN (BROADCAST)
hash predicates:

ss_item_sk = i_item_sk
tuple ids: 0 1 2

\.

/

(2:HASH JOIN ‘ J3:SCAN HDFS
join op: INNER JOIN (BROADCAST) /] table=tpcds.item #partitions=1 size=34.03MB compact
hash predicates: predicates: i_brand = 'corpbrand #5'
ss_store_sk = s_store_sk tuple ids: 2
tuple ids: O 1 §
4
7 4
(0:SCAN HI\FS | \i:SCAN HDFS \

table=tpgds.store_sales #partitions=1823 size=31.56GB
predicatey: ss_list_price >= 100.0, ss_list_prig€ <= 200.0
tuple ids: @

\ table=tpcds.store #partitions=1 size=117.75KB compact
edicates: s_state IN ('CA', 'NY'")
tupds: 1

Copyright © 2013 Cloudera Inc. All rights reserved.

cloudera

Ask Bigger Questions

Query Execution Plan

5:AGGREGATE
output: COUNT(*)
group by: s_state, i_brand

4:HASH JOIN
join op: INNER JOIN (BROADCAST)
hash predicates:

ss_item_sk = 1i_item_sk

--=-=7:EXCHANGE
tuple 1ids: 2

2:HASH JOIN
join op: INNER JOIN (BROADCAST)
hash predicates:

ss_store_sk = s_store_sk

---=-6:EXCHANGE
tuple 1ds: 1

O0:SCAN HDFS
table=tpcds.store_sales #partitions=1823 size=311.56GB
predicates: ss_list_price >= 100.0, ss_list_price <= 200.0

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Impala Debug Web Pages

version

impalad version 1.1.1 RELEASE (build 83d5868f005966883a918a819a449f636a5b3d5f)
Built on Fri, 23 Aug 2013 17:52:25 PST

Hardware Info

Cpu Info:

Model: Intel(R) Xeon(R) CPU
Cores: 16

L1 Cache:
LZ2 Cache:
L3 Cache:

Hardware
ssse3
sse4_1
sse4_2
popcnt

Mem Info: 94.47 GB

Disk Info:

Num disks 15:
sda (rotational=true)
sdb (rotational=true)
sdc (rotational=true)
sde (rotational=true)
sdf (rotational=true)

32.00 KB

256.00 KB

12.00 MB

Supports:

L5630 @ 2.13GHz

X N
| C n mO0525.mtv.cloudera.com:25000/queries OISR ¢ |

Cloudera Impala

-
-
—
—
—

m pala / /backends /catalog /logs /memz /metrics /queries /sessions /varz

Queries

This page lists all registered queries, i.e., those that are not closed nor cancelled.
1 queries in flight

User Default Statement Query Start Time Backend State # rows Profile Action
Db Type Progress fetched
grahn tpcds select i_item_id, s_state, QUERY 2013-10-21 174 /2131 RUNNING O
avg(ss_quantity) aggi, 18:00:08.022875000 (8.16518%)

avg(ss_list_price) agg2,
avg(ss_coupon_amt) agg3,
avg(ss_sales_price) agg4 from
store_sales join store on
(store_sales.ss_store_sk =
store.s_store_sk) join
customer_demographics on
(store_sales.ss_cdemo_sk =
customer_demographics.cd_demo_sk)
join item on (store_sales.ss_item_sk =
item.i_item_sk) where 1=1 and s_state
in (‘WI', 'CA', 'TX', 'FL', '"WA', "'TN’)
and cd_gender = 'F' and
cd_marital_status = 'W' and
cd_education_status = 'Primary’

Query Locations

Location

mO0523.mtv.cloudera.com:22000
mO0521.mtv.cloudera.com:22000
m0519.mtv.cloudera.com:22000
m0525.mtv.cloudera.com:22000

mO0517.mtv.cloudera.com:22000

Finished Queries

User Default Db Statement
grahn default use tpcds

grahn tpcds select i_item_id, s_state,
avg(ss_quantity) aggi,
avg(ss_list_price) agg2,
avg(ss_coupon_amt) agg3,
avg(ss_sales_price) agg4 from

Query

DDL

QUERY

Number of Fragments

1

Start Time

2013-10-21
16:42:44.956126000

2013-10-21
16:39:07.710767000

End Time

2013-10-21
16:42:44.961133000

2013-10-21
16:40:41.146307000

Backend State
Progress

N/A FINISHED
2131/ FINISHED

2131 (
100%)

rows

fetched)

100

Profile

What is the hardware doing?

&«

35

collect!

C nh

X

collectl.sourceforge.net

Collectl

Latest Version: 3.6.9 October 18 2013

warning: I'm declaring sexpr and nvidia deprecated and will remove them from the kit in 2014

Home | Architecture | Features | Documentation | Releases | FAQ | Support | News | Acknowledgements

There are a number of times in which you find yourself needing performance data. These can include benchmarking, monitoring a system’'s general heath or trying to determine what
your system was doing at some time in the past. Sometimes you just want to know what the system is doing right now. Depending on what you're doing, you often end up using different
tools, each designed to for that specific situation.

Unlike most monitoring tools that either focus on a small set of statistics, format their output in only one way, run either interatively or as a daemon but not both, collectl tries to do it all.
You can choose to monitor any of a broad set of subsystems which currently include buddyinfo, cpu, disk, inodes, infiniband, lustre, memory, network, nfs, processes, quadrics, slabs,
sockets and tcp.

The following is an example taken while writing a large file and running the collectl command with no arguments. By default it shows cpu, network and disk stats in brief format. The key
point of this format is all output appears on a single line making it much easier to spot spikes or other anomalies in the output:

[mjs@poker] collectl

A CPU-===—=—— D e ——— DiskS===—mcmeeeea D e ——— Network—-——————e—-- >

#cpu sys inter ctxsw KBRead Reads KBWrit Writes netKBi pkt-in netKBo pkt-out
37 37 382 188 0 0 27144 254 45 68 3 21
25 25 366 180 20 4 31280 296 0 1 0 0
25 25 368 183 0 0 31720 275 2 20 0 1

In this example, taken while writing to an NFS mounted filesystem, collectl displays interrupts, memory usage and nfs activity with timestamps. Keep in mind that you can mix and match
any data and in the case of brief format you simply need to have a window wide enough to accommodate your output.

[mjs@poker] collectl -sjmf -oT

e Int-————===- D e ——— Memory--————————-- D NFS Totals--—---- >
#Time Cpu0 Cpul Cpu2 Cpu3 Free Buff Cach Inac Slab Map Reads Writes Meta Comm
08:36:52 1001 66 0 0 2G 201M 609M 363M 219M 106M 0 0 5 0
08:36:53 999 1657 0 0 2G 201M 1G 918M 252M 106M 0 12622 0 2
08:36:54 1001 7488 0 0 1G 201M 1G 1G 286M 106M 0 20147 0 2

You can also display the same information in verbose format, in which case you get a single line for each type of data at the expense of more screen real estate, as can be seen in this
example of network data during NFS writes. Note how you can actually see the network traffic stall while waiting for the server to physically write the data.

[mjs@poker] collectl -sn --verbose -oT

NETWORK SUMMARY (/sec)

KBIn PktIn SizeIn MultI CmpI ErrIn KBOut PktOut SizeO CmpO ErrOut
08:46:35 3255 41000 81 0 0 0 112015 78837 1454 0 0
08:46:36 0 9 70 0 0 0 29 25 1174 0 0
08:46:37 0 2 70 0 0 0 0 2 134 0 0

&«

36

collectl Utilities

C nh

o W

collectl-utils.sourceforge.net

Collectl Utilities

Latest Version: 4.7.1, March 20, 2013

newrcolgui will be removed from kit in 2014 - you should use colmux!
newiThe version numbering has now changed so collectl-utils, colplot and colmux are all the same

The focus of collectl has always been efficient performance data collection and its display on a single machine. This set of utilities have been developed to enhace the use of collectl in 2
dimensions:

« graphics
« multi-system support

Graphics

Colplot is a web-based plotting utility that uses gnuplot to generate plots against collectl-generated files that have been generated in plot format. The sample plot on the collectl home
page was generated with colplot.

There are over 70 standard plots and a definition language that allows you to define your own if none of the existing ones meet your needs. If there are files for more than one system,
colplot will generate separate plots for each system. Colplot also has an option that allows it to periodically redisplay the plots, which means if the files you point it to are being updated in
real-time, colplot can show a dynamic plot. It can also save plots as invidual png files, as pdf files if ghostscript is installed or even email them to you. There is also a command line
interface that will run on an X-enabled terminal.

Colgui is a utility whose focus is to display reasonably dense real-time graphics for one or more systems by starting collectl and directing it to send its output back to itself. Colgui requires
perl-tk to build the graphics, which unfortunately is not the most efficient way to do this and so I'm officially declaring it end-of-/ife and will be removing it from the kit some time after
2014. While it seems to work reasonably well for less than 10 or 20 systems and could actually be a good starting point for someone who might like to build their own implementation, I
personally haven't used it in years, especially after writing colmux. In fact, if you want to try building your own implementation colmux is a much better starting point and if you ask, I'll
be happy to help get you started.

I've tried real hard to keep the quality of collectl and the utilities up to the highest quality by eating my own dog food and use collectl, colmux and colplot literally every day to see what's
happening with all the servers in HP's Public Cloud. I just don't find colgui all that useful anymore and fear my lack of use will lead to longer term problems and really don't want to spend
any time trying to support it. Since the main bulk of its code is actually shared with colplot, there's a good chance it will continue to work just fine, but as I said try colmux and I think
you'll find it much more useful.

Multi-system Support

As already described above, both colplot and colgui support multiple systems and for looking at many types of data, particularly of a historical nature, colplot is really the only way to go.
However, there are times when you want to look at what's going on (or went on in the past) on your cluster and want to see real numbers.

How many times is top the very first utility you run to see what's happening on your system? Colmux can do just that for an entire cluster of systems, supporing the ability to run virtually
any collectl command in a top-like fashion, complete with sorting by any column. Sometimes you may be only interested in looking at one or two types of data as a single row of
numbers, watching for changes in behaviors between lines. Colmux supports this form of output as well.

Like colgui, this utility starts collectl running on a number of systems and directs them to send their output back but rather than display graphics it can either sort the results by a column
of your choice, displaying only as many lines as will fit in your terminal window OR display columns of text for that small number of user-specifiied data elements. By displaying this data
in these two compact forms it makes it very easy to see a high-level view of what all systems in your cluster are doing and if any misbehave they're very easy to identify.

updated Feb 22, 2011

&«

37

Colmux

C nh

o W

collectl-utils.sourceforge.net/colmux.htmi

Colmux

newrColmux Tutorial!

Introduction

Have you ever seen an nfs server getting beaten up but didn't know which of the many hundreds of clients were doing the beating? Or have you wondered if an application was leaking
memory when it ran but there was no easy way to observe all the memory on all the nodes at the same time? Or how about whether or not a few disks in a large farm had slow access
times and so were slowing down all the disks? It has always been easy to observe all of these types of behaviors with collectl one node at a time, or even plot the data after the fact with
colplot. But observing cluster-wide activity in real-time has never been that easy, until now.

As its name implies, colmux is a collectl multiplexor, which allows one to collect data from multiple systems and treat it as a single data stream, essentially extending collectl's functionality

to a set of hosts rather than a single one. Colmux has been tested on clusters of over 1000 nodes but one should also take note that this will put a heavier load on the system on which
colmux is running.

Colmux runs in 2 distinct modes: Real-Time and Playback. In real-time mode, colmux actually communicates with instances of collectl running on remote systems which in turn are
collecting real-time performance metrics. In playback mode colmux also communicates with a remote copy of collectl but in this case collectl is playing back a data file collected some
time in the past.

Colmux can also provide its output in 2 distinct formats: single-line and multi-line. In single-line format colmux reports the multiplexed data from all systems on a single line by allowing
the user to choose a small number of variables to display, based on both the display width and the number of systems. While it is possibly to handle more than a couple of dozen
systems, (see the example at the bottom of this page), one rarely does so because of the screen width or their ability to read 1-point font. However it is also possible to redirect the
output to a file for off-line viewing, via a text editor or a spreadsheet.

Colmux has been extensively tested on versions of collectl from V3.3.6 forward and there have been some additional enhancements made to V3.5.0, which is the recommended minimal
version. You should first make sure all the systems of interest have the latest versions of collectl installed or at least those at V3.3.6 or newer.

Colmux also provides the ability for dynamic interaction with the keyboard arrow keys if the optional perl module Term::ReadKey has been installed. To see if this is the case and that
colmux can find it run with -v and you should see the following:

colmux -v
colmux: 3.0 (Term::ReadKey: V2.30)

Restriction
Colmux requires passwordless ssh between it and all hosts it is monitoring

Using colmux

Although colmux does not have any required switches, -command is one of the two most important as you use it to tell collectl what switches to use when running. Colmux will then take
care of multiplexing the command out to multiple instances of collectl either running them in real-time or playback mode. The other key switch, also not required but typically used, is -
address because it identifies the remote system(s) on which to run colmux. The default addess is that of the host colmux is running on.

The inclusion of a playback filename in the collectl command instructs colmux to run in playback mode and the use of colmux's -cols switch tells it to produce output in single-line format.
By using various combinations of these switches you can get colmux to run in any 4 distinct modes as shown in the following table:

Real-Time|Playback

Single-line|-cols -command "-p filename" -cols

Multi-line |default -command "-p filename"

Let's discuss these 4 options separately to give a better feel for what they actually mean and when you might use them. Note that the 2 operational modes have nothing to do with the
way the data is displayed and the 2 formats have nothing to do with the way the data is collected - in other words a complete separation between form and function.

Real-Time Mode

Using collectl + colmux (text files)

$ colmux -address m05[10-14] -command "-scdn --dskopts 1 -1 2" -column host -reverse
Mon Oct 21 19:49:09 2013 Connected: 5 of 5

7~--CPU[HYPER] ----- S mmm—mmmmm - Disks--=--===-=---ou--- L Network---------- >
#Host fcpu \sys inter k ‘ Size KBWrit Writes Size KBIn PktIn KBOut PktOut
ne510(40 | 8 21850 128 22 2 15 2511 1842 146 563
mo511 30 | 5 16607 134 0 ® © 267 541 2003 1507
me512] 42 | 8 21956 128 38 2 19 2392 1763 198 566
mo513\ 40 | 8 22608 128 0 ® 0 2331 1718 210 580
mo514 \ 43/ 9 33925 129 18 1 18 996 1644 5571 4188

Returned 100 row(s) 1in 283.22s /O maxed out at 1GB/s per node

Copyright © 2013 Cloudera Inc. All rights reserved. CIOUdera

Using collectl + colmux (parquet format)

$ colmux -address m05[10-14] -command "-scdn --dskopts 1 -1 2" -column host -reverse
Mon Oct 21 19:59:43 2013 Connected: 5 of 5

#Host [fcpu \sys 1nter
ne510[59 | 2 13362
mo511] 60 | 3 15997
mo512| 59 | 3 14019
mo513| 59 | 2 13917
mo514 \ 56/ 2 14555

Returned 100 row(s) in 96.62s

~--CPU[HYPER]

ctxsw/KBRead \ Reads Size KBWrit Writes Size
5054] 155648 \ 1219 128 28 3 11
5188 323776 | 2524 128
51876 217086 | 1701 128
5127) 204420 J 1610 127
52411\252984/ 1981 128

O O O O
O O O O
o O O O

Less than 1/3 the I/O thanks to

Parquet format
3x query speedup

Copyright © 2013 Cloudera Inc. All rights reserved.

KBIn
32
74
44
38
78

--=-=-Network---
PktIn KBOut
38 10
77 22
51 17
46 13
99 21

PktOut
47
85
64
55
89

cloudera

Quick Review

Impala Performance Checklist

*Choose appropriate data types
*Leverage partition pruning
*Adopt Parquet format

*Gather table & column stats

- OraerJOINS-optimatly Automaticinvl.2.1
Validate JOIN type

Monitor hardware resources

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Test drive Impala

‘Impala Community:

* Download: http://cloudera.com/impala
* Github: https://github.com/cloudera/impala

* User group: impala-user on groups.cloudera.org

cloudera

Ask Bigger Questions

Copyright © 2013 Cloudera Inc. All rights reserved.

http://cloudera.com/impala
https://github.com/cloudera/impala
https://groups.google.com/a/cloudera.org/forum/?fromgroups%23!forum/impala-user
http://groups.cloudera.org

) Cloudera VM - Hadoop, made easy. - Mozilla Firefox - 0 X
File Edit View History Bookmarks Tools Help
(i Cloudera VM - Hadoop, made e... | < |

Computer |
\. v file:///home/cloudera/Documents/quick-hadoop/index.html

LR &) Most Visitedv [iCloudera | Cloudera Manager | Hue | :HDFS NameNode ! Hadoop JobTracker | HBase Master | :Solr

cloudera’'s Home

~ & cloudera

Hadoop,,made easy.

- -

Use Hadoop Administer Hadoop

Query Apache Hive and Cloudera Impala, Setup and monitor the health of the
search and customize Apache Solr, browse cluster, start and stop services like HDFS,
and manipulate files and directories in the Job Tracker, update and deploy

Hadoop Distributed File System (HDFS), configurations, search logs, perform
create and run Apache Pig scripts, audits, analyse performance graphs and
visually manage Apache Oozie metrics...

¥ workflow/coordinator/bundle
applications, create, submit and browse
MapReduce jobs...

qr

(' Cloudera Manager

43

SELECT questions FROM audience;

\
3\

