Scalable, Flexible Data Privacy in the Cloud

"The views expressed in this presentation are generic in nature and do not reflect any endorsement by Motorola Mobility LLC."

Agenda Outline

- Data Privacy in the Cloud
- Security vs Privacy
- What is Anonymization?
- Anonymization Techniques
- Hadoop Anonymization Toolkit (HAT)
- Conclusions
- Q&A

Data Privacy in the Cloud (Opportunities and Challenges)

Privacy in the Cloud (Opportunities)

- Volume and granularity of data collection is exploding
- Data is available in public and private domains
- Applications that provide targeted, personalized and contextual experiences to customers have tremendous business value and competitive advantage

These opportunities can be realized if we solve privacy responsibly.

Privacy in the Cloud (Challenges)

- Data sharing is important but has to be done without revealing sensitive information
- Existing big data systems have PII vulnerabilities and pitfalls
- 87% of the U.S. population can be uniquely identified using gender, date of birth, and zip code attributes [3]

A big data solution is required to address these challenges in conjunction with meeting business needs

Security vs Privacy Protection

Authentication & Authorization safeguard against malicious data access

Personally identifiable information can still be at risk behind the firewall

What is Anonymization?

 Confidential data / sensitive information can be obscured in ways that maintains privacy while preserving the ability to derive useful insights*

Anonymization Techniques

Hiding

Hashing

Mapping

Editing

Hadoop Anonymization Toolkit (HAT)

- There is a gap in the existing big data ecosystem for a generic and extensible anonymization solution
- A need for a scalable solution that can help organizations solve their big data anonymization needs

HAT is a solution that addresses these needs.

HAT Main Objectives

- Configuration driven framework for simple and flexible composition of anonymization jobs
- Scalable to data size outbursts or fluctuations
- Adapts to schema changes and evolution
- Existing anonymization primitives can be extended or new ones added.

Anonymization in the Data Continuum

Modeling for Robust Anonymization

A Health Care Example

Identification by linking

K-Anonymity Concepts

- The goal is to make each record indistinguishable from a defined number (k) of other records
- In a k-anonymized dataset, each record is indistinguishable from at least k -1 other records with respect to certain "identifying" attributes
- In general the higher the value of k, the more data privacy is achieved

Health Care Example (cont.)

4 - Anonymous dataset

Background Knowledge Attack

Homogeneity Attack

L-Diversity

- k-Anonymity can create groups that leak information due to lack of diversity in the sensitive attribute.
- In addition to k-anonymity, the data should also ensure "diversity" – all tuples that share the same values of their quasi-identifiers should have diverse values for their sensitive attributes.
- The main idea behind \(\ell\)-diversity is that the values of the sensitive attributes are well-represented in each group to protect data privacy

Anonymization Measures

A combination of these measures is usually required for robust anonymization of data

HAT I/O Schemas and Configuration

- JSON input and output
- JSON expressions → what fields to obfuscate
- Obfuscation types
- Support for repeated elements

```
Output

{
    "name": "user1", ]
    "zip_code": "95***",
    "age": "2*",
    "favorite_color": "Orange"
}
```


Anonymization Data Flow

Hashing Salts Table

Unique per value

Unique per type

Groups of elements sharing same salt

Mapping Data Flow (cont.)

Input Record:

http://docs.oracle.com/javase/6/docs/api/java/util/UUID.html http://en.wikipedia.org/wiki/SHA-1

Conclusions

- Collecting, mining and analyzing large amounts of data has become a necessity in the current world
- Protecting privacy / PII is an important responsibility
- HAT provides a scalable and extensible anonymization solution to address your data privacy needs

Q&A

References

- [1] L. Sweeney. k-anonymity: a model for protecting privacy. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 10 (5), 2002; 557-570
- [2] Ashwin Machanavajjhala, Johannes Gehrke, Daniel Kifer, Muthuramakrishnan Venkitasubramaniam: l-Diversity: Privacy Beyond k-Anonymity.ICDE 2006: 24
- [3] Uniqueness of Simple Demographics in the U.S. Population LIDAP-WP4 Carnegie Mellon University, Laboratory for International Data Privacy, Pittsburgh, PA: 2000 (1000) by Latanya Sweeney
- [4] Privacy Technology Focus Group Report by U.S. Department of Justice https://it.ojp.gov/documents/privacy_technology_focus_group_full_report.pdf

