
1

Shift into High Gear:
Dramatically Improve
Hadoop and NoSQL

M. C. Srivas, CTO/Co-founder

2

My Background

 Search
– map-reduce, bigtable

 Chief Architect
– now Netapp

 AFS
– ran AFS team
– now

3

 ‘09 ‘11 07 06

publishes
MapReduce
paper

(struggling with Nutch)
Copies MR paper,
calls it Hadoop

Uses Hadoop

Uses
Hadoop

uses Hadoop

DOW drops
from 14,300
to 6,800

MapR founded

‘13 ‘12

Launches ultra-reliable

MapR
partners with

Breaks all world
records!

MapR History

2500 nodes
Largest
non-Web
installation

MapR M7
Fastest NoSQL
on the planet

4

MapR Distribution for Apache Hadoop

Analytics Operations OLTP
M

a
n
a
g
e
m

e
n
t

Batch Interactive Real Time

Data Platform

NoSQL

Hardening, Testing, Integrating,

Innovating, Contributing as part

of the

Apache Open Source Community

Web 2.0 Tools Enterprise Apps Vertical Apps

99.999%

HA

Data

Protection

Disaster

Recovery

Enterprise

Integration

Scalability &

Performance
Multi-Tenancy

5

 100% Apache Hadoop

 With significant enterprise-
grade enhancements

 Comprehensive
management

 Industry-standard
interfaces

 Higher performance

MapR Distribution for Apache Hadoop

6

The Cloud Leaders Pick MapR

Google chose MapR to
provide Hadoop on

Google Compute Engine

Amazon EMR is the largest
Hadoop provider in revenue

and # of clusters

MapR partnership with Canonical and Mirantis
provides advantages for OpenStack deployments

7

What Makes MapR so Reliable?

8

1. Make the storage reliable
– Recover from disk and node failures

2. Make services reliable
– Services need to checkpoint their state rapidly

– Restart failed service, possibly on another node

– Move check-pointed state to restarted service, using (1) above

3. Do it fast
– Instant-on … (1) and (2) must happen very, very fast

– Without maintenance windows
• No compactions (e.g., Cassandra, Apache HBase)

• No “anti-entropy” that periodically wipes out the cluster (e.g., Cassandra)

How to Make a Cluster Reliable

9

 No NVRAM

 Cannot assume special connectivity
– No separate data paths for "online" vs. replica traffic

 Cannot even assume more than 1 drive per node
– No RAID possible

 Use replication, but …
– Cannot assume peers have equal drive sizes

– Drive on first machine is 10x larger than drive on other?

 No choice but to replicate for reliability

Reliability with Commodity Hardware

10

Replication is easy, right?
All we have to do is send the same bits to the master and replica

Reliability via Replication

Clients

Primary
Server

Replica

Normal replication, primary forwards

Clients

Primary
Server

Replica

Cassandra-style replication

11

When the replica comes back, it is stale

– It must be brought up-to-date

– Until then, exposed to failure

But Crashes Occur…

Clients

Primary
Server

Replica remains stale until
"anti-entropy" process

kicked off by administrator

Primary re-syncs replica

Clients

Primary
Server

Replica Replica

Who
 re-syncs?

12

 HDFS solves the problem a third way

 Makes everything read-only
– static data, trivial to re-sync

 Single writer, no reads allowed while writing

 File close is the transaction that allows readers to see data
– Unclosed files are lost

– Cannot write any further to closed file

Unless it’s HDFS …

13

 Single writer, no reads allowed while writing

 File close is the transaction that allows readers to see data
– Unclosed files are lost

– Cannot write any further to closed file

 Realtime not possible with HDFS
– To make data visible, must close file immediately after writing

– Too many files is a serious problem with HDFS (a well documented
limitation)

 HDFS therefore cannot do NFS, ever
– No “close” in NFS … can lose data any time

HDFS design goal

14

 Full read/write, “update-in-place” support

 Issue: re-sync the replica when it comes back

To support normal apps, need RW

Clients

Primary
Server

Replica remains stale until
"anti-entropy" process

kicked off by administrator

Primary re-syncs replica

Clients

Primary
Server

Replica Replica

Who
 re-syncs?

15

 24 TB / server
– @ 1000MB/s = 7 hours

– Practical terms, @ 200MB/s = 35 hours

 Did you say you want to do this online?
– Throttle re-sync rate to 1/10th

– 350 hours to re-sync (= 15 days)

 What is your Mean Time To Data Loss (MTTDL)?
– How long before a double disk failure?

– A triple disk failure?

How Long to Re-sync?

16

Use dual-ported
disk to side-step
this problem

Traditional Solutions

Clients

Primary
Server

Replica

Dual Ported
Disk Array

Raid-6 with idle spares

Servers use
NVRAM

COMMODITY HARDWARE LARGE SCALE CLUSTERING

Large Purchase Contracts, 5-year spare-parts plan

17

Forget Performance Too?

SAN/NAS

data data data

data data data

daa data data

data data data

function

RDBMS

Traditional Architecture

data

function

data

function

data

function

data

function

data

function

data

function

data

function

data

function

data

function

data

function

data

function

data

function

Hadoop

function

App

function

App

function

App

Geographically dispersed also?

B

o

t

t

l

e

n

e

c

k

s

18

 Chop the data on each node to few 1000s of pieces
– Pieces are called containers

 Spread replicas of each container across the cluster

What MapR Does

19

Why Does It Improve Things?

20

 100-node cluster

 Each node holds 1/100th of every node's data

 When a server dies, entire cluster re-syncs the dead node's data

MapR Replication Example

21

 99 nodes re-sync'ing in parallel
– 99x number of drives

– 99x number of Ethernet ports

 Each is re-sync'ing 1/100th of the
data

MapR Re-sync Speed

 Net speed up is about 100x
– 3.5 hours vs. 350

 MTTDL is 100x better

22

 Mean Time To Data Loss (MTTDL) is far better
– Improves as cluster size increases

 Does not require idle spare drives
– Rest of cluster has sufficient spare capacity to absorb one node’s data

– On a 100-node cluster, 1 node’s data == 1% of cluster capacity

 Utilizes all resources
– no wasted “master-slave” nodes

– no wasted idle spare drives … all spindles put to use

 Better reliability with less resources
– on commodity hardware!

MapR Reliability

23

Why Is This So Difficult?

24

 Writes are synchronous
– Visible immediately

 Data is replicated in a "chain"
fashion
– Utilizes full-duplex network

 Meta-data is replicated in a
"star" manner
– Response time better

MapR's Read-write Replication

client1
client2

clientN

client1
client2

clientN

25

Container Balancing

 As data size increases, writes
spread more (like dropping a
pebble in a pond)

 Larger pebbles spread the
ripples farther

 Space balanced by moving
idle containers

• Servers keep a bunch of containers "ready to go”

• Writes get distributed around the cluster

26

MapR Container Re-sync

 MapR is 100% random write
– uses distributed transactions

 On a complete crash,
all replicas diverge from
each other

 On recovery, which one
should be master?

Complete
crash

27

MapR Container Re-sync

 MapR can detect exactly where
replicas diverged
– even at 2000 MB/s update rate

 Re-sync means
– roll-back each to divergence point
– roll-forward to converge with chosen

master

 Done while online
– with very little impact on normal

operations

New master
after crash

28

 Re-sync traffic is “secondary”

 Each node continuously measures RTT to all its peers

 More throttle to slower peers
– Idle system runs at full speed

 All automatically

MapR Does Automatic Re-sync Throttling

29

But Where Do Containers Fit In?

30

 Each container contains

 Directories & files

 Data blocks

 Replicated on servers

 Automatically managed

MapR's Containers

Files/directories are sharded and placed into
containers

Containers are 16-
32 GB segments of
disk, placed on
nodes

31

MapR’s Architectural Params

 Unit of I/O
– 4K/8K (8K in MapR)

 Unit of Chunking (a map-
reduce split)
– 10-100's of megabytes

 Unit of Resync (a replica)
– 10-100's of gigabytes

– container in MapR

– automatically managed

KB
i/o

10^3
map-red

10^6
resync

10^9
admin

HDFS 'block'

 Unit of Administration (snap,
repl, mirror, quota, backup)
– 1 gigabyte - 1000's of terabytes

– volume in MapR

– what data is affected by my
missing blocks?

32

Where & How Does MapR Exploit This
Unique Advantage?

33

E F E F E F

NameNode NameNode NameNode

MapR's No NameNode HATM Architecture

HDFS Federation MapR (Distributed Metadata)

• Multiple single points of failure
• Limited to 50-200 million files
• Performance bottleneck
• Commercial NAS required

• HA w/automatic failover
• Instant cluster restart
• Up to 1T files (> 5000x advantage)
• 10-20x higher performance
• 100% commodity hardware

NAS
appliance

NameNode NameNode NameNode

A B C D E F

DataNode DataNode DataNode

DataNode DataNode DataNode

A F C D E D

B C E B

C F B F

A B

A D

E

34

Relative Performance and Scale

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 1000 2000 3000 4000 5000 6000

Fi
le

 c
re

at
es

/s

Files (M)
0 100 200 400 600 800 1000

MapR

Other distribution

Benchmark: 100-byte files
Hardware: 10 nodes
 2 x 4 cores
 24 GB RAM
 12 x 1 TB 7200 RPM
 1 GigE NIC

0

50

100

150

200

250

300

350

400

0 0.5 1 1.5

Fi
le

 c
re

at
es

/s

Files (M)

Other distribution
MapR Other Advantage

Rate (creates/s) 14-16K 335-360 40x

Scale (files) 6B 1.3M 4615x

35

Where & How Does MapR Exploit This
Unique Advantage?

36

MapR’s NFS Allows Direct Deposit

Connectors not needed
No extra scripts or clusters to deploy and maintain

Random Read/Write

Compression

Distributed HA

Web

Server

…

Database

Server

Application

Server

37

Where & How Does MapR Exploit This
Unique Advantage?

38

MapR Volumes & Snapshots

100K volumes are OK,
create as many as

desired!

Volumes dramatically simplify data
management

• Replication control
• Mirroring
• Snapshots
• Data placement control
• Ultra-strong security

• Certificates (ie, like https)
• Kerberos v5

100K volumes are OK,
create as many as

desired!

 /projects

 /tahoe

 /yosemite

 /user

 /msmith

 /bjohnson

39

Where & How Does MapR Exploit This
Unique Advantage?

40

MapR M7 Tables

 Binary compatible with Apache HBase
– no recompilation needed to access M7 tables

– just set CLASSPATH

 M7 tables accessed via pathname
– openTable("hello") … uses HBase

– openTable("/hello") … uses M7

– openTable("/user/srivas/hello") … uses M7

41

 M7 tables integrated into storage
– always available on every node

 Unlimited number of tables

 No compactions
– update in place

 Instant-on
– Zero recovery time

 5-10x better performance

 Consistent low latency
– At 95th & 99th percentiles

M7 Tables

MapR M7

42

YCSB 50-50 Mix (throughput)

M7 (ops/sec) Other HBase 0.94.9
(ops/sec)

Other HBase 0.94.9
latency (usec)

M7 Latency (usec)

43

YCSB 50-50 mix (latency)

Other latency (usec) M7 Latency (usec)

45

Where & How Does MapR Exploit This
Unique Advantage?

46

 ALL Hadoop components have High Availability
– e.g. YARN

 ApplicationMaster (old JT) and TaskTracker record their state in
MapR

 On node-failure, AM recovers its state from MapR
– Works even if entire cluster restarted

 All jobs resume from where they were
– Only from MapR

 Allows preemption
– MapR can preempt any job, without losing its progress

– ExpressLane™ feature in MapR exploits it

MapR Makes Hadoop Truly HA

47

MapR Does MapReduce (Fast!)

TeraSort Record
1 TB in 54 seconds

1003 nodes

MinuteSort Record
1.5 TB in 59 seconds

2103 nodes

48

MapR Does MapReduce (Faster!)

TeraSort Record
1 TB in 54 seconds

1003 nodes

MinuteSort Record
1.5 TB in 59 seconds

2103 nodes
1.65

300

49

Where & How Can
YOUR CODE Exploit This

Unique Advantage?

50

Exploit MapR’s Unique Advantages

 ALL your code can easily be scale-out HA
– Save service-state in MapR

– Save data in MapR

 Use Zookeeper to notice service failure

 Restart anywhere, data+state will move there
automatically

 That’s what we did!

 Only from MapR: HA for Impala, Hive, Oozie,
Storm, MySQL, SOLR/Lucene, HCatalog, Kafka, …

51

MapR: Unlimited Hadoop

Reliable Compute Dependable Storage

Build cluster brick by brick, one node at a time
 Use commodity hardware at rock-bottom prices

 Get enterprise-class reliability: instant-restart,
snapshots, mirrors, no single-point-of-failure, …

 Export via NFS, ODBC, Hadoop and other standard
protocols

52

Thank you!

srivas@maprtech.com

www.mapr.com

mailto:srivas@maprtech.com

