An Independent Comparison of cresrain | aGregrann

#Strataconf + # HadoopWorld

Opﬁﬂ S()UI‘C@ SQL-OH—Had()()p 17 October 2014

https://twitter.com/GregRahn

SELECT about FROM speaker;

* Spent the past decade as a database performance engineer
* 8 years at Oracle running competitive customer RDBMS benchmarks

* 18 months at Cloudera working on Impala performance

* 1 <8 SQL, SQL engines, and benchmarking

Today's Menu
SOI'ALNTHEHADOORS

“ SQL + Hadoop - the past 2 years
* Project comparison

“ Technical analysis of some
published benchmarks

“ Benchmarking thoughts

[t all started 2 years ago...

+ Qctober 2012: Impala (beta) announced at Strata + Hadoop World

“ February 2013: Hortonworks announces “Stinger” initiative for Hive
* May 2013: Impala 1.0

June 2013: Facebook reveals Presto at Analytics @Scale

* November 2013: Facebook open sources Presto

« April 2014: Hive “Stinger” delivered (Hive 0.11, 0.12, 0.13)

« September 2014: Hortonworks announces Hive “Stinger.next”

“ QOctober 2014: Impala 2.0

Features Comparison

Hive

Originally developed by Facebook
SQL to MapReduce
Has been notoriously slow

Hortonworks currently leading
development effort (Stinger)

Project Stinger

Move from MapReduce to Tez

ORC file format & Vectorization
In-memory hash joins (broadcast join)
Window functions

Decimal, Varchar, Date

Limited subquery support

No anti-join support

source: http://hortonworks.com/blog/100x-faster-hive/

The Stinger Initiative: Making Apache Hive 100x Faster

Base Optimizations

Generate simplified DAGs
In-memory Hash Joins

Deep Analytics

SQL Compatible Types

SQL Compatible Windowing
More SQL Subgueries

Hive

Vector Query Engine

Optimized for modern
processor architectures

Buffer Caching

Cache accessed data
Optimized for vector engine

ORCFile

Column Store

High Compression
Predicate / Filter Pushdowns

Query Planner

Intelligent Cost-Based
Optimizer

Hive Query Server

Pre-warmed Containers
Low-latency dispatch

Express data processing
tasks more simply
Eliminate disk writes

YARN

Next-gen Hadoop data
processing framework

http://hortonworks.com/blog/100x-faster-hive/

source: http://web.cse.ohio-state.edu/hpcs/WWW/HTML/publications/papers/TR-14-2.pdf

Major Technical Advancements in Apache Hive

Yin Huai® Ashutosh Chauhan?
Owen O’Malley? Jitendra Pandey?

Alan Gates?
Yuan Yuan!

Gunther Hagleitner? Eric N. Hanson?
Rubao Lee! Xiaodong Zhang'

'The Ohio State University 2Hortonworks Inc. :Microsoft

tfhuai, yuanyu, liru, zhang}@cse.ohio-state.edu
2{fashutosh, gates, ghagleitner, owen, jitendra}@hortonworks.com
‘ehans@microsoft.com

ABSTRACT

Apache Hive is a widely used data warehouse system for Apache
Hadoop, and has been adopted by many organizations for various
big data analytics applications. Closely working with many users
and organizations, we have identified several shortcomings of Hive

in its file formats, query planning, and query execution, which are
key factors determining the performance of Hive. In order to make
Hive continuously satisfy the requests and requirements of process-
ing increasingly high volumes data in a scalable and efficient way,

than 100 developers have made technical efforts to improve Hive on

more than 3000 issues. With its rapid development pace, Hive has
been significantly updated by new innovations and research since

the original Hive paper [45] was published four years ago. We will
present its major technical advancements in this paper.
Hive was originally designed as a translation layer on top of

Hadoop MapReduce. It exposes its own dialect of SQL to users
and translates data manipulation statements (queries) to a directed

acyclic graph (DAG) of MapReduce jobs. With an SQL interface,

. R T T S T S S-S S T B & A PR B S &

http://web.cse.ohio-state.edu/hpcs/WWW/HTML/publications/papers/TR-14-2.pdf

Stinger.next Road Map

ACID transactions

Cost-based query optimization via

Apache Optig Calcite
Non-equi joins

More subquery support
Materialized views (DIMMQ)

LLAP (Live Long and Process)

Presto

Written in Java

Demon based, not MapReduce
Shares Hive Metastore
Leverages bytecode compilation
Connector based approach

Hive, Cassandra, Katka, RDBMS

Join data across data stores

Presto

Requires explicit joins (ANSI SQL-92
syntax)

Manual join ordering

Non-equi joins not supported

Large joins not a strong point
Distributed join (0.77 experimental)

Numerous built-in functions

Array /Map support

Presto

Approximate queries (BlinkDB)

Distinct-limit optimization
Window functions
Amazon S3 support

HyperLogLog (approx distinct)

http://blinkdb.org

Impala

* Open sourced by Cloudera, October 2012
* Does not build on top of MapReduce

* MPP engine for data in HDFS

* Execution engine written in C++ (LLVM)

* Leverages Parquet file format

“ Currently the fastest OSS SQL engine for
Hadoop

Impala 1.x Additions

* UDFs & UDAFs

* Admission Control — allows

prioritization and queueing of
queries

+ DECIMAL data type
+ Cost-based join reordering

“ In-memory HDFS caching

+ Window functions

Impala 2.0 Features

+ Subqueries in WHERE clause, but
not in the HAVING clause

* Disk-based joins
* CHAR & VARCHAR data types

Impala 2.1+ Road Map

* Nested data * UDTEs

+ MERGE * Intra-node parallelism for
aggregations and joins

ROLLUP, CUBE, GROUPING SET

“ Parquet enhancements including

+ Set operators - MINUS, INTERSECT index pages

“ Apache HBase CRUD * Amazon S3 integration

Analyzing Benchmark Reports

ATURE 17+

Technical themes
Revealing facts
Intense analysis
Critical thinking

ESRB CONTENT RATING www.esrh.org

AMPLab Big Data Benchmark

4

AR

source: https://amplab.cs.berkeley.edu/benchmark/

AMPLab big Data Benchmark

Multiple systems (Impala, Hive, Shark)
Runs in AWS with GitHub repo

Based on “A Comparison of Approaches to
Large-Scale Data Analysis” by Pavlo et al.

Very simple queries, some with very large
results

Uses common, not optimal, file format

Big Data Benchmark Introduction Workload Results Discussion FAQ Run Yourself

Click Here for the previous version of the benchmark

Introduction

Several analytic frameworks have been announced in the last year. Among them are inexpensive data-warehousing solutions based on traditional
Massively Parallel Processor (MPP) architectures (Redshift), systems which impose MPP-like execution engines on top of Hadoop (Impala, HAWQ)
and systems which optimize MapReduce to improve performance on analytical workloads (Shark, Stinger/Tez). This benchmark provides quantitative
and qualitative comparisons of five systems. It is entirely hosted on EC2 and can be reproduced directly from your computer.

» Redshift - a hosted MPP database offered by Amazon.com based on the ParAccel data warehouse. We tested Redshift on HDDs.
» Hive - a Hadoop-based data warehousing system. (v0.12)

« Shark - a Hive-compatible SQL engine which runs on top of the Spark computing framework. (v0.8.1)

» Impala - a Hive-compatible® SQL engine with its own MPP-like execution engine. (v1.2.3)

» Stinger/Tez - Tez is a next generation Hadoop execution engine currently in development (v0.2.0)

This remains a work in progress and will evolve to include additional frameworks and new capabilities. We welcome contributions.

What this benchmark is not

This benchmark is not intended to provide a comprehensive overview of the tested platforms. We are aware that by choosing default configurations
we have excluded many optimizations. The choice of a simple storage format, compressed SequenceFile, omits optimizations included in columnar
formats such as ORCFile and Parquet. For now, we've targeted a simple comparison between these systems with the goal that the results are
understandable and reproducible.

What is being evaluated?

This benchmark measures response time on a handful of relational queries: scans, aggregations, joins, and UDF's, across different data sizes. Keep in
mind that these systems have very different sets of capabilities. MapReduce-like systems (Shark/Hive) target flexible and large-scale computation,
supporting complex User Defined Functions (UDF's), tolerating failures, and scaling to thousands of nodes. Traditional MPP databases are strictly
SQL compliant and heavily optimized for relational queries. The workload here is simply one set of queries that most of these systems these can
complete.

Changes and Notes (February 2014)

« We changed the Hive configuration from Hive 0.10 on CDH4 to Hive 0.12 on HDP 2.0.6. As a result, direct comparisons between the current and
previous Hive results should not be made. It is difficult to account for changes resulting from modifications to Hive as opposed to changes in the
underlying Hadoop distribution.

« We have added Tez as a supported platform. It is important to note that Tez is currently in a preview state.

» Hive has improved its query optimization, which is also inherited by Shark. This set of queries does not test the improved optimizer.

+ We have changed the underlying filesystem from Ext3 to Ext4 for Hive, Tez, Impala, and Shark benchmarking.

https://amplab.cs.berkeley.edu/benchmark/

Orca SIGMOD 14 Paper

SIGMOD’14: June 22-27, 2014

December 13, 2013: 2nd Paper submission
September 16, 2013: 1st Paper submission
Paper users Impala 1.1.1 (July 2013)

December 2013: Impala 1.2.2 contained join
order optimization

source: http://www.pivotal.io/sites/default/files/SIGMODMay2014HAWQAdvantages.pdf

Orca SIGMOD " 14 Paper

Orca: A Modular Query Optimizer Architecture for Big Data

Mohamed A. Soliman*, Lyublena Antova*, Venkatesh Raghavan*, Amr El-Helw~,
Zhongxian Gu*, Entong Shen*, George C. Caragea*, Carlos Garcia-Alvarador,
Foyzur Rahman-, Michalis Petropoulos-, Florian Waast,
Sivaramakrishnan Narayanan?, Konstantinos Krikellas’, Rhonda Baldwin*

* Pivotal Inc.
Palo Alto, USA

* Datometry Inc.

ABSTRACT

The performance of analytical query processing in data man-
agement systems depends primarily on the capabilities of
the system’s query optimizer. Increased data volumes and
heightened interest in processing complex analytical queries
have prompted Pivotal to build a new query optimizer.

In this paper we present the architecture of Orca, the new
query optimizer for all Pivotal data management products,
including Pivotal Greenplum Database and Pivotal HAWQ.
Orca is a comprehensive development uniting state-of-the-
art query optimization technology with own original research
resulting in a modular and portable optimizer architecture.

In addition to describing the overall architecture, we high-
light several unique features and present performance com-
parisons against other systems.

Categories and Subject Descriptors

H.2.4 [Database Management|: Systems—Query pro-
cessing; Distributed databases

Keywords
Query Optimization, Cost Model, MPP, Parallel Processing

1. INTRODUCTION

Big Data has brought about a renewed interest in query
optimization as a new breed of data management systems
has pushed the envelope in terms of unprecedented scal-
ability, availability, and processing capabilities (cf. e.g.,
[9, 18, 20, 21]), which makes large datasets of hundreds of
terabytes or even petabytes readily accessible for analysis

" Google Inc. S Qubole Inc.

San Francisco, USA Mountain View, USA Mountain View, USA

Despite a plethora of research in this area, most exist-
ing query optimizers in both commercial and open source
projects are still primarily based on technology dating back
to the early days of commercial database development [22],
and are frequently prone to produce suboptimal results.

Realizing this significant gap between research and prac-
tical implementations, we have set out to devise an architec-
ture that meets current requirements, yet promises enough
headroom for future developments.

In this paper, we describe Orca, the result of our recent re-
search and development efforts at Greenplum/Pivotal. Orca
is a state-of-the-art query optimizer specifically designed for
demanding analytics workloads. It is distinguished from
other optimizers in several important ways:

Modularity. Using a highly extensible abstraction of meta-
data and system description, Orca is no longer confined
to a specific host system like traditional optimizers. In-
stead it can be ported to other data management sys-
tems quickly through plug-ins supported by its Meta-
data Provider SDK.

Extensibility. By representing all elements of a query and
its optimization as first-class citizens of equal foot-
ing, Orca avoids the trap of multi-phase optimization
where certain optimizations are dealt with as an af-
terthought. Multi-phase optimizers are notoriously
difficult to extend as new optimizations or query con-
structs often do not match the previously set phase
boundaries.

Multi-core ready. Orca deploys a highly efficient multi-
core aware scheduler that distributes individual fine-

http://www.pivotal.io/sites/default/files/SIGMODMay2014HAWQAdvantages.pdf

Orca SIGMOD 14 Paper

* Did the comparisons use the same: partitioning strategy? file format?

« “For [TPC-DS] query 46, 59 and 68, Impala and HAWQ have similar
pertormance.”

* “For queries where HAWQ has the most speedups, we find that Impala and
Stinger handle join orders as literally specified in the query...”

« *..for 14 queries Orca achieves a speed-up ratio of at least 1000x...”

Hortonworks Benchmarks

source: http://www.slideshare.net/alanfgates/strata-stingertalk-oct2013

Stinger Phase 3: Interactive Query In Hadoop

This slide fails to
call out very
important details in
this comparison.
Hive 0.10 does not
use partitioning on
the fact table (which
eliminates 80% of
the data for query
27) and it uses text
files for storage (not
RCFile) resulting in
the absolute worst
case performance
and thus provides TPC-DS Query 27 TPC-DS Query 82

inflated “times

faster” number. . .
. Hive 10 . Hive 0.11 (Phase 1) . Trunk (Phase 3)
All Results at Scale Factor 200 (Approximately 200GB Data)

Query 27: Pricing Analytics using Star Schema Join
Query 82: Inventory Analytics Joining 2 Large Fact Tables

190x
Improvement

200x
Improvement

Hortonworks © Hortonworks Inc. 2013. Page 12

http://www.slideshare.net/alanfgates/strata-stingertalk-oct2013

source: http://www.slideshare.net/hortonworks/apache-hive-013-performance-benchmarks
This comparison uses the same partitioning for both Query 82
versions but uses RCFile for Hive 0.10 and ORCFile

for Hive 0.13 (the “best of” for the given version). Find customers who tend to spend more money (net-paid) on-line than in
Although these results are on a 30TB, not 200GB stores.
data set, the “times factor” drops from 200x to 12x

for query 82, and 190x to 101x for query 27

' : X Factor
compared to the previously slide. These represent a : 12
more reasonable comparison between the two -
versions. —

Query 27 Hive 10 32.6 ,

0.00 1000.00 2000.00 3000.00 4000.00 5000.00 6000.00 7000.00 8000.00 9000.00 10000.00

For all items sold in stores located in six states during
average quantity, average list price, average list sales All Values in Seconds Ty
amount for a given gender, marital status, education a bage 1 O Horommerke I 2011 2014 Al Fahs Resec H;!?tz,.;vco',kg
demographic.
X Factor
Hive 13 | 99.05 101
L

Hive 10 | 9988.27

0.00 2000.00 4000.00 6000.00 8000.00 10000.00 12000.00

All Values in Seconds
MM

Page 7 © Hortonworks Inc. 2011 — 2014. All Rights Reserved HOftOﬂWOI’kS

http://www.slideshare.net/hortonworks/apache-hive-013-performance-benchmarks

SO L.-on-Hadoop:
Full Circle Back to Shared-Nothing Database Architectures

\/
) X g

4

4

source: http://www.vldb.org/pvldb/vol7/p1295-floratou.pdf

SO L-on-Hadoop: Full Circle Back

VLDB 2014

Researchers from IBM Almaden

No IBM product involved

Impala 1.2.2

Hive 0.13 + Tez 0.3.0
TPC-H/TPC-DS inspired workloads

SQL-on-Hadoop: Full Circle Back to Shared-Nothing
Database Architectures

Avrilia Floratou Umar Farooq Minhas Fatma Ozcan
IBM Almaden IBM Almaden IBM Almaden
Research Center Research Center Research Center
aflorat@us.ibm.com ufminhas@us.ibm.com fozcan@us.ibm.com

ABSTRACT

SQL query processing for analytics over Hadoop data has recently
gained significant traction. Among many systems providing some
SQL support over Hadoop, Hive is the first native Hadoop system
that uses an underlying framework such as MapReduce or Tez to
process SQL-like statements. Impala, on the other hand, represents
the new emerging class of SQL-on-Hadoop systems that exploit a
shared-nothing parallel database architecture over Hadoop. Both
systems optimize their data ingestion via columnar storage, and
promote different file formats: ORC and Parquet. In this paper,
we compare the performance of these two systems by conducting a
set of cluster experiments using a TPC-H like benchmark and two
TPC-DS inspired workloads. We also closely study the I/O effi-
ciency of their columnar formats using a set of micro-benchmarks.
Our results show that Impala is 3.3X to 4.4X faster than Hive on
MapReduce and 2.1X to 2.8X than Hive on Tez for the overall
TPC-H experiments. Impala is also 8.2X to 10X faster than Hive
on MapReduce and about 4.3X faster than Hive on Tez for the
TPC-DS inspired experiments. Through detailed analysis of exper-
imental results, we identify the reasons for this performance gap
and examine the strengths and limitations of each system.

1. INTRODUCTION

Enterprises are using Hadoop as a central data repository for all
their data coming from various sources, including operational sys-
tems, social media and the web, sensors and smart devices, as well
as their applications. Various Hadoop frameworks are used to man-
age and run deep analytics in order to gain actionable insights from
the data, including text analytics on unstructured text, log analysis

over semi-structured data, as well as relational-like SQL processing
aver ecemi-etrmctnired and etrmctnired data

Hadoop, which uses another framework such as MapReduce or Tez
to process SQL-like queries, leveraging its task scheduling and load
balancing features. Shark [7, 24] is somewhat similar to Hive in
that it uses another framework, Spark [8] as its runtime. In this
category, Impala [10] moved away from MapReduce to a shared-
nothing parallel database architecture. Impala runs queries using
its own long-running daemons running on every HDFS DataNode,
and instead of materializing intermediate results, pipelines them be-
tween computation stages. Similar to Impala, LinkedIn Tajo [20],
Facebook Presto [17], and MapR Dirill [4], also resemble parallel
databases and use long-running custom-built processes to execute
SQL queries in a distributed fashion.

In the second category, Hadapt [2] also exploits Hadoop schedul-
ing and fault-tolerance, but uses a relational database (PostgreSQL)
to execute query fragments. Microsoft PolyBase [11] and Pivotal
HAWQ [9], on the other hand, use database query optimization
and planning to schedule query fragments, and directly read HDFS
data into database workers for processing. Overall, we observe
a big convergence to shared-nothing database architectures among
the SQL-on-Hadoop systems.

In this paper, we focus on the first category of native SQL-on-
Hadoop systems, and investigate the performance of Hive and Im-
pala, highlighting their different design trade-offs through detailed
experiments and analysis. We picked these two systems due to their
popularity as well as their architectural differences. Impala and
Hive are the SQL offerings from two major Hadoop distribution
vendors, Cloudera and Hortonworks. As a result, they are widely
used in the enterprise. There are other SQL-on-Hadoop systems,
such as Presto and Tajo, but these systems are mainly used by com-
panies that created them, and are not as widely used. Impala is a
good representative of emerging SQL-on-Hadoop systems, such as
Presto. and Taio. which follow a shared-nothing database like ar-

N ——

http://www.vldb.org/pvldb/vol7/p1295-floratou.pdf

Figure 7
removes explicit
partition key
filters resulting
in more data to
scan & join. Due
to Impala being
more efficient,
the Impala
“times faster
than Hive”
number actually
increases in Fig.

7 compared to
Fig. 6.

More details in
section 3.7 in the

paper.

ution Time (secs)

S888888

CC
2

Ex

(secs)

Time

Execution

o 8

28888888

o 8

... S TFver VIR | o
O 01 Hive=Tez | -
.. Olmpala |
- .|
19 27 34 42 43 46 52 53 55 59 63 65 68 73 79 89 98 ss_max

TPC-DS Inspired Query

Figure 6: TPC-DS inspired Workload 1

.. s HveeMR |-
.. m Hive-Tez |
__ Olmpala | ...

— 1 - — [
19 27 34 42 43 46 52 53 55 59 63 65 68 73 79 89
TPC-DS Inspired Query

3 7

Figure 7: TPC-DS inspired Workload 2

Cloudera Benchmarks

source: http://blog.cloudera.com/blog/2014/09/new-benchmarks-for-sgl-on-hadoop-impala-1-4-widens-the-performance-gap/

Cloudera Benchmarks

Based on TPC-DS (GitHub repo)
+ Single fact table

* Queries add partition key pruning
predicates

Three perf blog posts this year [1, 2, 3]

Multi-user workloads use the “interactive”
group queries

Will be interesting to see Impala 2.0
benchmarks

Queries per Hour

2,500

2,000 -

1,500

1,000

500

Query Throughput/Impala Throughput Times More Than
(Higher bars are better)

2,333

266
106

Impala Spark SQL Hive-on-Tez Presto

8.7x

https://github.com/cloudera/impala-tpcds-kit
http://blog.cloudera.com/blog/2014/01/impala-performance-dbms-class-speed/
http://blog.cloudera.com/blog/2014/05/new-sql-choices-in-the-apache-hadoop-ecosystem-why-impala-continues-to-lead/
http://blog.cloudera.com/blog/2014/09/new-benchmarks-for-sql-on-hadoop-impala-1-4-widens-the-performance-gap/
http://blog.cloudera.com/blog/2014/09/new-benchmarks-for-sql-on-hadoop-impala-1-4-widens-the-performance-gap/

T'houghts on Benchmarks

What are we actually comparing?

—
-

éj,

Professor Zapinsky proved that the squid is more intelligent than
the housecat when posed with puzzles under similar conditions

+ Software versions

+ File format

Read the Fine Print

* Hardware configuration
“ # of nodes

* RAM

“ Storage

“ Networking

* Partitioning

Benchmarking vs. Benchmarketing

Gregorio’s Benchmarketing Theorem

Given any benchmarketing claim ¢, there exists at least
one workload w or at least one query g that will prove
claim ¢ correct.

0‘0

Closing Thoughts On Benchmarks
Wqun Do lt!

Most benchmark]|eting] reports are lossy

No benchmark is perfect, so get over it

Take what is given to you and learn from it, if possible
Use simple experiments to prove simple things

Be aware of unknown unknowns

[f you modify standard benchmarks (TPC-H / TPC-DS)
* Very, very, very, clearly state so

“ Share your modifications on GitHub

Nothing bests your queries on your data

.

WAR PRODUCTION CO-ORDINATING COMMITTEE

/* Thank You */

SELECT question

FROM audience

WHERE 1sAwesome(question);

W @GregRahn

https://twitter.com/GregRahn
https://twitter.com/GregRahn

References

* http:/ /hortonworks.com /blog /100x-faster-hive /

« http:/ /web.cse.ohio-state.edu/hpcs / WWW /HTML / publications /papers / TR-14-2.pdf

« http:/ /hortonworks.com/blog/stinger-next-enterprise-sql-hadoop-scale-apache-hive /

* https:/ /code.facebook.com /videos /1418527681712988 / introducing-presto-analytics-scale-2013 /

* https:/ /www.facebook.com /notes/facebook-engineering / presto-interacting-with-petabytes-of-data-at-facebook / 10151786197628920

* http:/ /www.slideshare.net/dain1/presto-meetup-20140514-34731104

* http:/ /blog.cloudera.com /blog /2014 /08 / whats-next-for-impala-focus-on-advanced-sql-functionality /

* http:/ /blog.cloudera.com /blog /2014 /10/new-in-cdh-5-2-more-sql-functionality-and-compatibility-for-impala-2-0 /

« https:/ /amplab.cs.berkeley.edu /benchmark/

*« http:/ /www.pivotal.io/sites / default/ files / SIGMODMay2014HAWQAdvantages.pdf

« http:/ /www.slideshare.net/alanfgates / strata-stingertalk-oct2013

* http:/ /www.slideshare.net/hortonworks /apache-hive-013-performance-benchmarks

« https:/ / github.com / cartershanklin / hive-testbench /

« http:/ /www.vldb.org/pvldb/vol7 /p1295-floratou.pdf

« http:/ /blog.cloudera.com/blog/2014/01/impala-performance-dbms-class-speed /

« http:/ /blog.cloudera.com /blog/2014 /05 /new-sql-choices-in-the-apache-hadoop-ecosystem-why-impala-continues-to-lead /

« http:/ /blog.cloudera.com/blog/2014 /09 /new-benchmarks-for-sql-on-hadoop-impala-1-4-widens-the-performance-gap /

« https:/ /github.com /cloudera /impala-tpcds-kit

http://hortonworks.com/blog/100x-faster-hive/
http://web.cse.ohio-state.edu/hpcs/WWW/HTML/publications/papers/TR-14-2.pdf
http://hortonworks.com/blog/stinger-next-enterprise-sql-hadoop-scale-apache-hive/
https://code.facebook.com/videos/1418527681712988/introducing-presto-analytics-scale-2013/
https://www.facebook.com/notes/facebook-engineering/presto-interacting-with-petabytes-of-data-at-facebook/10151786197628920
http://www.slideshare.net/dain1/presto-meetup-20140514-34731104
http://blog.cloudera.com/blog/2014/08/whats-next-for-impala-focus-on-advanced-sql-functionality/
http://blog.cloudera.com/blog/2014/10/new-in-cdh-5-2-more-sql-functionality-and-compatibility-for-impala-2-0/
https://amplab.cs.berkeley.edu/benchmark/
http://www.pivotal.io/sites/default/files/SIGMODMay2014HAWQAdvantages.pdf
http://www.slideshare.net/alanfgates/strata-stingertalk-oct2013
http://www.slideshare.net/hortonworks/apache-hive-013-performance-benchmarks
https://github.com/cartershanklin/hive-testbench/
http://www.vldb.org/pvldb/vol7/p1295-floratou.pdf
http://blog.cloudera.com/blog/2014/01/impala-performance-dbms-class-speed/
http://blog.cloudera.com/blog/2014/05/new-sql-choices-in-the-apache-hadoop-ecosystem-why-impala-continues-to-lead/
http://blog.cloudera.com/blog/2014/09/new-benchmarks-for-sql-on-hadoop-impala-1-4-widens-the-performance-gap/
https://github.com/cloudera/impala-tpcds-kit

