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Outline
• Evolution of ETL in the context of analytics!
• traditional systems!
• Hadoop today!

• Cloudera’s vision for ETL: no ETL!
• with qualifications
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Traditional ETL
• Extract: physical extraction from source data store!
• could be an RDBMS acting as an operational data store!
• or log data materialized as json!

• Transform:!
• data cleansing and standardization!
• conversion of naturally complex/nested data into a flat relational 

schema!
• Load: the targeted analytic DBMS converts the transformed data into 

its binary format (typically columnar)
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Traditional ETL
• Three aspects to the traditional ETL process:!

1. semantic transformation such as data standardization/cleansing  
-> makes data more queryable, adds value!

2. representational transformation: from source to target schema 
(from complex/nested to flat relational) 
-> “lateral” transformation that doesn’t change semantics, 
    adds operational overhead!

3. data movement: from source to staging area to target system 
-> adds yet more operational overhead
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Traditional ETL
• The goals of “analytics with no ETL”:!
• simplify aspect 1!
• eliminate aspects 2 and 3
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ETL with Hadoop Today
• A typical ETL workflow with Hadoop looks like this:!
• raw source data initially lands in HDFS (examples: text/xml/json log files)!
• that data is mapped into a table to make it queryable: 
CREATE TABLE RawLogData (…) ROW FORMAT DELIMITED FIELDS 
LOCATION ‘/raw-log-data/‘;!

• the target table is mapped to a different location: 
CREATE TABLE LogData (…) STORED AS PARQUET LOCATION ‘/log-
data/‘; 

• the raw source data is converted to the target format: 
INSERT INTO LogData SELECT * FROM RawLogData; 

• the data is then available for batch reporting/analytics (via Impala, Hive, Pig, 
Spark) or interactive analytics (via Impala, Search)



‹#›‹#›

ETL with Hadoop Today
• Compared to traditional ETL, this has several advantages:!
• Hadoop acts as a centralized location for all data: raw source data 

lives side by side with the transformed data!
• data does not need to be moved between multiple platforms/clusters!
• data in the raw source format is queryable as soon as it lands, 

although at reduced performance, compared to an optimized 
columnar data format!

• all data transformations are expressed through the same platform 
and can reference any of the Hadoop-resident data sources (and 
more)
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ETL with Hadoop Today
• However, even this still has drawbacks:!
• new data needs to be loaded periodically into the target table, and 

doing that reliably and within SLAs can be a challenge!
• you now have two tables: 

one with current but slow data  
another with lagging but fast data
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A Vision for Analytics with No ETL
• Goals:!
• no explicit loading/conversion step to move raw data into a target 

table!
• a single view of the data that is!
• up-to-date!
• (mostly) in an efficient columnar format
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A Vision for Analytics with No ETL
• Elements of an ETL-light analytic stack:!
• support for complex/nested schemas 

-> avoid remapping of raw data into a flat relational schema!
• background and incremental data conversion  

-> retain in-place single view of entire data set, with most data 
being in an efficient format!

• bonus: schema inference and schema evolution  
-> start analyzing data as soon as it arrives, regardless of its 
complexity
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Support for Complex Schemas in Impala
• Standard relational: all columns have scalar values: 

CHAR(n), DECIMAL(p, s), INT, DOUBLE, TIMESTAMP, etc.!
• Complex types: structs, arrays, maps 

in essence, a nested relational schema!
• Supported file formats: 

Parquet, json, XML, Avro!
• Design principle for SQL extensions: maintain SQL’s way of dealing 

with multi-valued data



‹#›‹#›

Support for Complex Schemas in Impala
• Example: 
CREATE TABLE Customers (  
  cid BIGINT,  
  address STRUCT {  
    street STRING,  
    zip INT  
  },  
  orders ARRAY<STRUCT {  
    oid BIGINT,  
    total DECIMAL(9, 2),  
    items ARRAY< STRUCT {  
      iid BIGINT, qty INT, price DECIMAL(9, 2) }>  
  }>  
)
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Support for Complex Schemas in Impala
• Total revenue with items that cost more than $10: 
SELECT SUM(i.price * i.qty)  
FROM Customers.orders.items i  
WHERE i.price > 10!

• Customers and order totals in zip 94611: 
SELECT c.cid, o.total  
FROM Customers c, c.orders o  
WHERE c.address.zip = 94611



‹#›‹#›

Support for Complex Schemas in Impala
• Customers that have placed more than 10 orders: 
SELECT c.cid  
FROM Customers c  
WHERE COUNT(c.orders) > 10  
(shorthand for:  
WHERE (SELECT COUNT(*) FROM c.orders) > 10)!

• Number of orders and average item price per customer: 
SELECT c.cid, COUNT(c.orders), 
AVG(c.orders.items.price)  
FROM Customers c
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Background Format Conversion
• Sample workflow:!
• create table for data: 
CREATE TABLE LogData (…) WITH CONVERSION TO PARQUET;!

• load data into table:  
LOAD DATA INPATH ‘/raw-log-data/file1’ INTO LogData  
SOURCE FORMAT SEQUENCEFILE; 

• Pre-requisite for incremental conversion: 
multi-format tables and partitions!
• currently: each table partition has a single file format!
• instead: allow a mix of file formats (separated into format-specific 

subdirectories) 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Background Format Conversion
• Conversion process!
• atomic: the switch from the source to the target data files is atomic 

from the perspective of a running query (but any running query 
sees the full data set) !

• redundant: with option to retain original data!
• incremental: Impala’s catalog service detects new data files that are 

not in the target format automatically
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Schema Inference and Schema Evolution
• Schema inference from data files is useful to reduce the barrier to 

analyzing complex source data!
• as an example, log data often has hundreds of fields!
• the time required to create the DDL manually is substantial!

• Example: schema inference from structured data files!
• available today: 
CREATE TABLE LogData LIKE PARQUET ‘/log-data.pq’!

• future formats: XML, json, Avro
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Schema Inference and Schema Evolution
• Schema evolution:!
• a necessary follow-on to schema inference: every schema evolves over time; 

explicit maintenance is as time-consuming as the initial creation!
• algorithmic schema evolution requires sticking to generally safe schema 

modifications: adding new fields!
• adding new top-level columns!
• adding fields within structs!

• Example workflow: 
LOAD DATA INPATH ‘/path’ INTO LogData SOURCE FORMAT JSON WITH 
SCHEMA EXPANSION;!
• scans data to determine new columns/fields to add!
• synchronous: if there is an error, the ‘load’ is aborted and the user notified
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Conclusion
• Hadoop offers a number of advantages over traditional multi-platform ETL 

solutions:!
• availability of all data sets on a single platform!
• data becomes accessible through SQL as soon as it lands!

• However, this can be improved further:!
• a richer analytic SQL that is extended to handle nested data!
• an automated background conversion process that preserves an up-to-

date view of all data while providing BI-typical performance!
• simple automation of initial schema creation and subsequent maintenance 

that makes dealing with large, complex schemas less labor-intensive
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