
A NEW PLATFORM FOR A NEW ERA

Ailey Crow
Sr Data Scientist

Image Processing Using SQL on Hadoop

2 © Copyright 2013 Pivotal. All rights reserved.

ne
ur

on
ed

.w
or

dp
re

ss
.c

om
/

3 © Copyright 2013 Pivotal. All rights reserved.

Ti
ss

ue
pa

th
ol

og
y.

co
m

4 © Copyright 2013 Pivotal. All rights reserved.

An image is simply an array of pixels

5 © Copyright 2013 Pivotal. All rights reserved.

Billions of Data Points (a.k.a. Big Data)

Oil Exploration Medical Imaging

Video Surveillance Mobile Sensors

Stock Market Gene Sequencing

Smart Grids Social Media

FACEBOOK UPLOADS
250 MILLION
PHOTOS EACH DAY

COST TO SEQUENCE
ONE GENOME
HAS FALLEN FROM
$100M IN 2001
TO $10K IN 2011

READING SMART METERS
EVERY 15 MINUTES

IS
3000X MORE
DATA INTENSIVE

OIL RIGS GENERATE

25000
DATA POINTS
PER SECOND

6 © Copyright 2013 Pivotal. All rights reserved.

Billions of Data Points (i.e. Big Data)

•  Scalable MPP architecture
–  All nodes can scan and process in parallel
–  Linear scalability by adding nodes

•  Performance through automatic parallelization
–  Automatically distributed tables across nodes

•  Analytics Optimized:
–  Analytics-oriented query optimization
–  Analytics in-database (no data movement required)

7 © Copyright 2013 Pivotal. All rights reserved.

Pivotal HD Architecture

HDFS

HBase Pig, Hive,
Mahout

Map
Reduce

Sqoop Flume

Resource

Management
& Workflow

Yarn

Zookeeper

Apache Pivotal

Command
Center
Configure,

Deploy, Monitor,
Manage

Spring XD

Pivotal HD
Enterprise

Spring

Xtension
Framework

Catalog
Services

Query
Optimizer

Dynamic Pipelining

ANSI SQL + Analytics

HAWQ – Advanced
Database Services

Distributed
In-memory

Store

Query
Transactions

Ingestion
Processing

Hadoop Driver –
Parallel with Compaction

ANSI SQL + In-Memory

GemFire XD – Real-Time
Database Services

MADlib Algorithms

Oozie

Virtual
Extensions

Graphlab,
Open MPI

SQL queries for structured data

The pipeline in this talk can be run on Pivotal Hadoop + HAWQ

8 © Copyright 2013 Pivotal. All rights reserved.

HAWQ – ANSI SQL + Enhanced Analytics
•  True cost based optimizer leveraging 10

years of experience from Greenplum
Database

•  SQL interface leverages a familiar, user-
friendly, widely-adopted paradigm

•  Advanced tools (i.e. window functions)
•  Familiar image processing tools available

via Procedural Languages
•  PL/python, PL/R, PL/java, PL/C …

•  Images easily stored in HDFS

9 © Copyright 2013 Pivotal. All rights reserved.

Representing an image in HAWQ
HAWQ enables rapid processing of multiple or extremely
large images in parallel without memory limitations

Source Image:

0 0
0 1
0 2
1 0
1 1
1 2
2 0
2 1
2 2

co
l

ro
w

in

ts
y

Col

R
ow

Structured:

0 1 2
0
1
2

10 © Copyright 2013 Pivotal. All rights reserved.

Translating image processing to simple SQL
Source Image:

Function Distribution of pixel intensities

SQL SELECT intsy, count(*) !
FROM tbl !
GROUP BY intsy!

Output 150, 5
215, 4

0 0
0 1
0 2
1 0
1 1
1 2
2 0
2 1
2 2

co
l

ro
w

in

ts
y

Col

R
ow

Structured:

0 1 2
0
1
2

HAWQ enables rapid processing of multiple or extremely
large images in parallel without memory limitations

�  No data movement required

�  Simple SQL queries for data exploration

11 © Copyright 2013 Pivotal. All rights reserved.

Filtering with pixel windows

Convolution with a kernel

12 © Copyright 2013 Pivotal. All rights reserved.

Identifying neighboring pixels in SQL
Many operations in image processing focus on
neighborhoods (windows) of pixels/voxels

SQL Window Functions enable access to neighboring pixels

�  Enables queries over ordered ‘windows’ of rows in a
table

Source Image:

Function Neighboring pixel value

SQL SELECT LEAD(intsy) OVER col_wdw!
FROM tbl !
WINDOW col_wdw (PARTITION BY col ORDER BY row) !

Output 215

0 0
0 1
0 2
1 0
1 1
1 2
2 0
2 1
2 2

co
l

ro
w

in

ts
y

Col

R
ow

Structured:

0 1 2
0
1
2

More on window functions:
http://blog.pivotal.io/pivotal/products/time-series-analysis-1-introduction-to-window-functions

13 © Copyright 2013 Pivotal. All rights reserved.

0 1 2
0
1
2

Window functions for image processing
Many operations in image processing focus on
neighborhoods (windows) of pixels/voxels

SQL Window Functions enable access to neighboring pixels

�  Enables queries over ordered ‘windows’ of rows in a
table

�  Lead accesses the next row

Source Image:

Function Neighboring pixel value

SQL SELECT LEAD(intsy) OVER col_wdw!
FROM tbl !
WINDOW col_wdw (PARTITION BY col ORDER BY row) !

Output 215

0 0
0 1
0 2
1 0
1 1
1 2
2 0
2 1
2 2

co
l

ro
w

in

ts
y

Col

R
ow

Structured:

More on window functions:
http://blog.pivotal.io/pivotal/products/time-series-analysis-1-introduction-to-window-functions

14 © Copyright 2013 Pivotal. All rights reserved.

Window functions for image processing
Many operations in image processing focus on
neighborhoods (windows) of pixels/voxels

SQL Window Functions enable access to neighboring pixels

�  Enables queries over ordered ‘windows’ of rows in a
table

�  Lead accesses the next row

�  Lag accesses the preceding row

Source Image:

More on window functions:
http://blog.pivotal.io/pivotal/products/time-series-analysis-1-introduction-to-window-functions

Function Neighboring pixel value

SQL SELECT LAG (intsy) OVER col_wdw!
FROM tbl !
WINDOW col_wdw (PARTITION BY col ORDER BY row) !

Output 150

0 0
0 1
0 2
1 0
1 1
1 2
2 0
2 1
2 2

co
l

ro
w

in

ts
y

Col

R
ow

Structured:

0 1 2
0
1
2

15 © Copyright 2013 Pivotal. All rights reserved.

Window functions for image processing
Many operations in image processing focus on
neighborhoods (windows) of pixels/voxels

SQL Window Functions enable access to neighboring pixels

�  Enables queries over ordered ‘windows’ of rows in a
table

�  Lead accesses the next row

�  Lag accesses the preceding row

�  What about along the horizontal neighbors?

Source Image:

More on window functions:
http://blog.pivotal.io/pivotal/products/time-series-analysis-1-introduction-to-window-functions

Function Neighboring pixel value

SQL

Output

0 0
0 1
0 2
1 0
1 1
1 2
2 0
2 1
2 2

co
l

ro
w

in

ts
y

Col

R
ow

Structured:

0 1 2
0
1
2

16 © Copyright 2013 Pivotal. All rights reserved.

Window functions for image processing
Many operations in image processing focus on
neighborhoods (windows) of pixels/voxels

SQL Window Functions enable access to neighboring pixels

�  Enables queries over ordered ‘windows’ of rows in a
table

�  Lead accesses the next row

�  Lag accesses the preceding row

�  Access additional pixels with additional windows

Source Image:

More on window functions:
http://blog.pivotal.io/pivotal/products/time-series-analysis-1-introduction-to-window-functions

Function Neighboring pixel value

SQL SELECT LAG (intsy) OVER row_wdw!
FROM tbl !
WINDOW row_wdw (PARTITION BY row ORDER BY col) !

Output 150

0 0
1 0
2 0
0 1
1 1
2 1
0 2
1 2
2 2

co
l

ro
w

in

ts
y

Col

R
ow

Structured:

0 1 2
0
1
2

17 © Copyright 2013 Pivotal. All rights reserved.

Window functions for image processing
Many operations in image processing focus on
neighborhoods (windows) of pixels/voxels

SQL Window Functions enable access to neighboring pixels

�  Enables queries over ordered ‘windows’ of rows in a
table

�  Lead accesses the next row

�  Lag accesses the preceding row

�  Access additional pixels with additional windows

Source Image:

More on window functions:
http://blog.pivotal.io/pivotal/products/time-series-analysis-1-introduction-to-window-functions

Function Neighboring pixel value

SQL SELECT LEAD (intsy) OVER row_wdw!
FROM tbl !
WINDOW row_wdw (PARTITION BY row ORDER BY col) !

Output 215

0 0
1 0
2 0
0 1
1 1
2 1
0 2
1 2
2 2

co
l

ro
w

in

ts
y

Col

R
ow

Structured:

0 1 2
0
1
2

18 © Copyright 2013 Pivotal. All rights reserved.

Window functions for image processing
Source Image:

Col

R
ow

0 1 2
0
1
2

Function Neighboring pixel values (no diagonals)

SQL SELECT row, col, !
 array [intsy, !
 LAG (intsy) OVER(col_wdw), !
 LEAD (intsy) OVER(col_wdw), !
 LAG (intsy) OVER(row_wdw), !
 LEAD (intsy) OVER(row_wdw), !
!
!
!
!
] intsy_wdw!
FROM tbl!
WINDOW col_wdw AS (PARTITION BY col ORDER BY row), !
 row_wdw AS (PARTITION BY row ORDER BY col), !
!
!

Output 1, 1, [215, 150, 215, 150, 215]

19 © Copyright 2013 Pivotal. All rights reserved.

Window functions for image processing
Source Image:

Col

R
ow

0 1 2
0
1
2

Function Neighboring pixel values (no diagonals)

SQL SELECT row, col, !
 array [intsy, !
 LAG (intsy) OVER(col_wdw), !
 LEAD (intsy) OVER(col_wdw), !
 LAG (intsy) OVER(row_wdw), !
 LEAD (intsy) OVER(row_wdw), !
!
!
!
!
] intsy_wdw!
FROM tbl!
WINDOW col_wdw AS (PARTITION BY col ORDER BY row), !
 row_wdw AS (PARTITION BY row ORDER BY col), !
!
!

Output 1, 1, [215, 150, 215, 150, 215]

What about
8-connected

kernels?

20 © Copyright 2013 Pivotal. All rights reserved.

Window functions for image processing
Source Image:

Col

Function Neighboring pixel values (no diagonals)

SQL SELECT row, col, !
 array [intsy, !
 LAG (intsy) OVER(col_wdw), !
 LEAD (intsy) OVER(col_wdw), !
 LAG (intsy) OVER(row_wdw), !
 LEAD (intsy) OVER(row_wdw), !
!
!
!
!
] intsy_wdw!
FROM tbl!
WINDOW col_wdw AS (PARTITION BY col ORDER BY row), !
 row_wdw AS (PARTITION BY row ORDER BY col), !
!
!

Output 1, 1, [215, 150, 215, 150, 215]

R
ow

0 1 2
0
1
2

diag1: row-col
diag2: row+col

21 © Copyright 2013 Pivotal. All rights reserved.

Window functions for image processing
Source Image:

Col

Function Neighboring pixel values (no diagonals)

SQL SELECT row, col, !
 array [intsy, !
 LAG (intsy) OVER(col_wdw), !
 LEAD (intsy) OVER(col_wdw), !
 LAG (intsy) OVER(row_wdw), !
 LEAD (intsy) OVER(row_wdw), !
 LAG (intsy) OVER(diag1_wdw), !
 LEAD (intsy) OVER(diag1_wdw), !
 LAG (intsy) OVER(diag2_wdw), !
 LEAD (intsy) OVER(diag2_wdw) !
] intsy_wdw!
FROM tbl!
WINDOW col_wdw AS (PARTITION BY col ORDER BY row), !
 row_wdw AS (PARTITION BY row ORDER BY col), !
diag1_wdw AS (PARTITION BY (row-col) ORDER BY col), !
diag2_wdw AS (PARTITION BY (row+col) ORDER BY col) !

Output 1, 1, [215, 150, 215, 150, 215, 150, 215, 150, 150]

R
ow

0 1 2
0
1
2

22 © Copyright 2013 Pivotal. All rights reserved.

Smoothing (noise removal)
�  Make each pixel intensity value similar to its

neighbors by averaging the intensity values in the
surrounding neighborhood.

�  Smoothing using a uniform box filter:

0 1 2 3
0
1
2
3

Col

R
ow

0 1 2 3
0
1
2
3 SELECT row, col, madlib.array_mean(intsy_wdw) !

!
FROM (!
 SELECT row, col, array [intsy, !
 LAG (intsy) OVER(col_wdw), LEAD (intsy) OVER(col_wdw), !
 LAG (intsy) OVER(row_wdw), LEAD (intsy) OVER(row_wdww), !
 LAG (intsy) OVER(diag1_wdw), LEAD (intsy) OVER(diag1_wdw), !
 LAG (intsy) OVER(diag2_wdw), LEAD (intsy) OVER(diag2_wdw) !
] intsy_wdw!
 FROM tbl!
 WINDOW col_wdw AS (PARTITION BY col ORDER BY row), !
 row_wdw AS (PARTITION BY row ORDER BY col), !
 diag1_wdw AS (PARTITION BY (row-col) ORDER BY col), !
 diag2_wdw AS (PARTITION BY (row+col) ORDER BY col) !

23 © Copyright 2013 Pivotal. All rights reserved.

Smoothing (noise removal)
�  Make each pixel intensity value similar to its

neighbors by averaging the intensity values in the
surrounding neighborhood.

�  Smoothing using a uniform box filter:

0 1 2 3
0
1
2
3

Col

R
ow

0 1 2 3
0
1
2
3 SELECT row, col, madlib.array_mean(intsy_wdw) !

!
FROM (!
 SELECT row, col, array [intsy, !
 LAG (intsy) OVER(col_wdw), LEAD (intsy) OVER(col_wdw), !
 LAG (intsy) OVER(row_wdw), LEAD (intsy) OVER(row_wdww), !
 LAG (intsy) OVER(diag1_wdw), LEAD (intsy) OVER(diag1_wdw), !
 LAG (intsy) OVER(diag2_wdw), LEAD (intsy) OVER(diag2_wdw) !
] intsy_wdw!
 FROM tbl!
 WINDOW col_wdw AS (PARTITION BY col ORDER BY row), !
 row_wdw AS (PARTITION BY row ORDER BY col), !
 diag1_wdw AS (PARTITION BY (row-col) ORDER BY col), !
 diag2_wdw AS (PARTITION BY (row+col) ORDER BY col) !

24 © Copyright 2013 Pivotal. All rights reserved.

Smoothing (noise removal)

SELECT row, col, madlib.array_dot(intsy_wdw, !
 array[.2,.125,.125,.125,.125,.075,.075,.075,.075]) !
FROM (!
 SELECT row, col, array [intsy, !
 LAG (intsy) OVER(col_wdw), LEAD (intsy) OVER(col_wdw), !
 LAG (intsy) OVER(row_wdw), LEAD (intsy) OVER(row_wdww), !
 LAG (intsy) OVER(diag1_wdw), LEAD (intsy) OVER(diag1_wdw), !
 LAG (intsy) OVER(diag2_wdw), LEAD (intsy) OVER(diag2_wdw) !
] intsy_wdw!
 FROM tbl!
 WINDOW col_wdw AS (PARTITION BY col ORDER BY row), !
 row_wdw AS (PARTITION BY row ORDER BY col), !
 diag1_wdw AS (PARTITION BY (row-col) ORDER BY col), !
 diag2_wdw AS (PARTITION BY (row+col) ORDER BY col) !

�  Make each pixel intensity value similar to its
neighbors by averaging the intensity values in the
surrounding neighborhood.

�  Smoothing using a Gaussian filter:

0 1 2 3
0
1
2
3

Col

R
ow

0 1 2 3
0
1
2
3

.2 .125 .125

.125 .075 .075

.125 .075 .075

25 © Copyright 2013 Pivotal. All rights reserved.

Image Processing Pipeline
For Object Counting

26 © Copyright 2013 Pivotal. All rights reserved.

Image Processing Pipeline
For Object Counting

Original Smoothing Thresholding

Cleanup Object Detection Object Counting

Image name # Cells

Tma_001.jpg 359

Tma_002.jpg 1892

Tma_003.jpg 871

… …

27 © Copyright 2013 Pivotal. All rights reserved.

Thresholding (select pixels of interest)
�  Select pixels of interest as those with intensity

below a threshold value.

�  Thresholding based on average intensity:
0 1 2 3

0
1
2
3

Col

R
ow

0 1 2 3
0
1
2
3 SELECT *, !

CASE WHEN (intsy < ave_intsy) THEN 1 ELSE 0 END PoI!
FROM (!
 SELECT * FROM tbl!
 JOIN !
 (SELECT im_id, avg(intsy) ave_intsy FROM tbl)a !
!
 USING (im_id))t !

More on automated thresholding (Otsu’s):
 http://blog.pivotal.io/big-data-pivotal/features/data-science-how-to-massively-parallel-in-database-image-processing-part-2

0 1 2 3
0
1
2
3

0 1 2 3
0
1
2
3

28 © Copyright 2013 Pivotal. All rights reserved.

Thresholding (select pixels of interest)
�  Select pixels of interest as those with intensity

below a threshold value.

�  Thresholding based on average intensity:

SELECT *, !
CASE WHEN (intsy < ave_intsy) THEN 1 ELSE 0 END PoI!
FROM (!
 SELECT * FROM tbl!
 JOIN !
 (SELECT im_id, avg(intsy) ave_intsy FROM tbl!
 GROUP BY im_id)a !
 USING (im_id))t !
DISTRIBUTED BY (im_id);

More on automated thresholding (Otsu’s):
 http://blog.pivotal.io/big-data-pivotal/features/data-science-how-to-massively-parallel-in-database-image-processing-part-2

0 1 2 3
0
1
2
3

Col

R
ow

0 1 2 3
0
1
2
3

0 1 2 3
0
1
2
3

0 1 2 3
0
1
2
3

29 © Copyright 2013 Pivotal. All rights reserved.

Morphological Operations (Cleanup)
�  Morphological operations add or remove pixels of interest

based on their neighborhood:
–  Erosion: For each pixel, if any neighbors have value 0, assign value 0
–  Dilation: For each pixel, if any neighbors have value 1, assign value 1
–  Opening: Erosion followed by a dilation
–  Closing: Dilation followed by an erosion

�  Erosion:

SELECT row, col, least(intsy, !
 LAG (intsy) OVER(col_wdw), LEAD (intsy) OVER(col_wdw), !
 LAG (intsy) OVER(row_wdw), LEAD (intsy) OVER(row_wdww), !
 LAG (intsy) OVER(diag1_wdw), LEAD (intsy) OVER(diag1_wdw), !
 LAG (intsy) OVER(diag2_wdw), LEAD (intsy) OVER(diag2_wdw) !
) !
FROM tbl!
WINDOW col_wdw AS (PARTITION BY col ORDER BY row), !
 row_wdw AS (PARTITION BY row ORDER BY col), !
 diag1_wdw AS (PARTITION BY (row-col) ORDER BY col), !
 diag2_wdw AS (PARTITION BY (row+col) ORDER BY col) !

30 © Copyright 2013 Pivotal. All rights reserved.

Morphological Operations (Cleanup)
�  Morphological operations add or remove pixels of interest

based on their neighborhood:
–  Erosion: For each pixel, if any neighbors have value 0, assign value 0
–  Dilation: For each pixel, if any neighbors have value 1, assign value 1
–  Opening: Erosion followed by a dilation
–  Closing: Dilation followed by an erosion

�  Dilation:

SELECT row, col, greatest(intsy, !
 LAG (intsy) OVER(col_wdw), LEAD (intsy) OVER(col_wdw), !
 LAG (intsy) OVER(row_wdw), LEAD (intsy) OVER(row_wdww), !
 LAG (intsy) OVER(diag1_wdw), LEAD (intsy) OVER(diag1_wdw), !
 LAG (intsy) OVER(diag2_wdw), LEAD (intsy) OVER(diag2_wdw) !
) !
FROM tbl!
WINDOW col_wdw AS (PARTITION BY col ORDER BY row), !
 row_wdw AS (PARTITION BY row ORDER BY col), !
 diag1_wdw AS (PARTITION BY (row-col) ORDER BY col), !
 diag2_wdw AS (PARTITION BY (row+col) ORDER BY col) !

31 © Copyright 2013 Pivotal. All rights reserved.

Object Detection (Connected Components)

0 1 2 3
0
1
2
3

Col

R
ow

0 1 2 3
0
1
2
3

�  To identify groups of pixels as an object,
we will consider each pixel as a node and
connections between pixels of interest as
vertices on a graph

�  We can then leverage the connected
components graph algorithm to identify
groups of connected (neighboring) pixels
of interest

�  Connected Components: identifying
subgraphs where for each pair of nodes in
each subgraph there is at least one path
connecting them.

32 © Copyright 2013 Pivotal. All rights reserved.

0 1 2 3
0
1
2
3

Col

R
ow

0 1 2 3
0
1
2
3

Representing an image as a graph
1.  First identify all connections between

pixels of interest as vertices on a graph
SELECT u, v FROM (!
 SELECT id u, PoI, !
 LAG (id) OVER(col_wdw) v, !
 LAG (PoI) OVER(col_wdw) PoI_Neigh!
 FROM tbl!
 WINDOW col_wdw AS (PARTITION BY col ORDER BY row) !
WHERE PoI = 1 AND PoI_Neigh = 1 !

 !

33 © Copyright 2013 Pivotal. All rights reserved.

0 1 2 3
0
1
2
3

Col

R
ow

0 1 2 3
0
1
2
3

Representing an image as a graph
1.  First identify all connections between

pixels of interest as vertices on a graph
SELECT u, v FROM (!
 SELECT id u, PoI, !
 LAG (id) OVER(col_wdw) v, !
 LAG (PoI) OVER(col_wdw) PoI_Neigh!
 FROM tbl!
 WINDOW col_wdw AS (PARTITION BY col ORDER BY row) !
 UNION ALL !

 SELECT id u, PoI, !
 LAG (id) OVER(row_wdw) v, !
 LAG (PoI) OVER(row_wdw) PoI_Neigh!
 FROM tbl!
 WINDOW row_wdw AS (PARTITION BY row ORDER BY col) !
WHERE PoI = 1 AND PoI_Neigh = 1 !

 !

34 © Copyright 2013 Pivotal. All rights reserved.

0 1 2 3
0
1
2
3

Col

R
ow

0 1 2 3
0
1
2
3

Representing an image as a graph
1.  First identify all connections between

pixels of interest as vertices on a graph
SELECT u, v FROM (!
 SELECT id u, PoI, !
 LAG (id) OVER(col_wdw) v, !
 LAG (PoI) OVER(col_wdw) PoI_Neigh!
 FROM tbl!
 WINDOW col_wdw AS (PARTITION BY col ORDER BY row) !
 UNION ALL !

 SELECT id u, PoI, !
 LAG (id) OVER(row_wdw) v, !
 LAG (PoI) OVER(row_wdw) PoI_Neigh!
 FROM tbl!
 WINDOW row_wdw AS (PARTITION BY row ORDER BY col) !
 UNION ALL !

 SELECT id u, PoI, !
 LAG (id) OVER(diag1_wdw) v, !
 LAG (PoI) OVER(diag1_wdw) PoI_Neigh!
 FROM tbl!
 WINDOW diag1_wdw AS (PARTITION BY (row-col) ORDER BY col) !
WHERE PoI = 1 AND PoI_Neigh = 1 !

 !

35 © Copyright 2013 Pivotal. All rights reserved.

Representing an image as a graph

0 1 2 3
0
1
2
3

Col

R
ow

0 1 2 3
0
1
2
3

1.  First identify all connections between
pixels of interest as vertices on a graph
SELECT u, v FROM (!
 SELECT id u, PoI, !
 LAG (id) OVER(col_wdw) v, !
 LAG (PoI) OVER(col_wdw) PoI_Neigh!
 FROM tbl!
 WINDOW col_wdw AS (PARTITION BY col ORDER BY row) !
 UNION ALL !

 SELECT id u, PoI, !
 LAG (id) OVER(row_wdw) v, !
 LAG (PoI) OVER(row_wdw) PoI_Neigh!
 FROM tbl!
 WINDOW row_wdw AS (PARTITION BY row ORDER BY col) !
 UNION ALL !

 SELECT id u, PoI, !
 LAG (id) OVER(diag1_wdw) v, !
 LAG (PoI) OVER(diag1_wdw) PoI_Neigh!
 FROM tbl!
 WINDOW diag1_wdw AS (PARTITION BY (row-col) ORDER BY col) !
 UNION ALL !
 SELECT id u, PoI, !
 LAG (id) OVER(diag2_wdw) v, !
 LAG (PoI) OVER(diag2_wdw) PoI_Neigh!
 FROM tbl!
 WINDOW diag2_wdw AS (PARTITION BY (row+col) ORDER BY col) !
WHERE PoI = 1 AND PoI_Neigh = 1 !

 !

36 © Copyright 2013 Pivotal. All rights reserved.

Object Detection (Connected Components)

0 1 2 3
0
1
2
3

Col

R
ow

0 1 2 3
0
1
2
3

1.  First identify all connections between
pixels of interest as vertices on a graph

2.  Then leverage an optimized connected
components algorithm to identify objects
as subgraphs (groups of connected
pixels)

37 © Copyright 2013 Pivotal. All rights reserved.

Object Counting

Image name # Cells

Tma_001.jpg 359

Tma_002.jpg 1892

Tma_003.jpg 871

Tma_003.jpg 619

Tma_004.jpg 759

Tma_005.jpg 1392

Tma_006.jpg 201

… …

�  Object counting is then accomplished with a single
simple SQL query

SELECT count(*) FROM (!
 SELECT object!
 FROM tbl!
 GROUP BY object)t !

38 © Copyright 2013 Pivotal. All rights reserved.

Object Counting

Image name # Cells

Tma_001.jpg 359

Tma_002.jpg 1892

Tma_003.jpg 871

Tma_003.jpg 619

Tma_004.jpg 759

Tma_005.jpg 1392

Tma_006.jpg 201

… …

�  Object counting is then accomplished with a single
simple SQL query

�  How do we leverage a priori knowledge of object size?

SELECT count(*) FROM (!
 SELECT object, count(*) size_object !
 FROM tbl!
 GROUP BY object)t !

39 © Copyright 2013 Pivotal. All rights reserved.

Object Counting (with size exclusion)

�  Object counting is then accomplished with a single
simple SQL query

�  Exclude objects comprised of less than 500 pixels:

SELECT count(*) FROM (!
 SELECT object, count(*) size_object !
 FROM tbl!
 GROUP BY object)t !
WHERE size_object > 500; !

Image name # Cells

Tma_001.jpg 321

Tma_002.jpg 1708

Tma_003.jpg 812

Tma_003.jpg 573

Tma_004.jpg 684

Tma_005.jpg 1199

Tma_006.jpg 156

… …

40 © Copyright 2013 Pivotal. All rights reserved.

Image Processing Pipeline
For Object Counting

Original Smoothing Thresholding

Cleanup Object Detection Object Counting

Image name # Cells

Tma_001.jpg 359

Tma_002.jpg 1892

Tma_003.jpg 871

… …

41 © Copyright 2013 Pivotal. All rights reserved.

Multi-dimensional Data (3D, video…)

Image name Row Col Z R_intsy G_intsy B_intsy

Tma_001.jpg 0 0 0 215 214 181

Tma_001.jpg 0 0 1 215 215 181

Tma_001.jpg 0 0 2 215 214 181

•  Additional dimensions simply
require additional columns
and window functions

www.simonsfoundation.org

42 © Copyright 2013 Pivotal. All rights reserved.

Image Processing on Hadoop
Major Advantages of image processing using HAWQ
�  All processing is done in parallel
�  No data movement required
�  Image size is not a limiting factor for storage or processing
�  Simple SQL interface – no java or map-reduce required

For more image processing projects at Pivotal go to:

http://blog.pivotal.io/data-science-pivotal

�  Massively Parallel, In-Database Image Processing

�  Content-Based Image Retrieval using Hadoop & HAWQ

�  Video Analytics on Hadoop

Please join me at office hours at Table E at 3:25 for further discussion.

A NEW PLATFORM FOR A NEW ERA

Additional Line 18 Point Verdana

Thank You!
Questions?

