[?1votal

A NEW PLATFORM FOR ANEW ERA

Ailey Crow
Sr Data Scientist
Image Processing Using SQL on Hadoop

\Eoo.wwm‘_QU;O;.UOCO‘_DGC

e

N g ‘—K"
2 -

3
e 5
5
\i

-
.
N

S e
3

&

7.0 ’,. : "“‘-i.',.;.“ \ :
AT RN G

Pivotal

An image is_simply an array of pixels

Billions of Data Points (a.k.a. Big Data)

T A e
- - READING SMART METERS
o2 y FACEBOOK UPLOADS EVERY 15 MINUTES
s ‘ a 250 MILLION IS

- PHOTOS EACH DAY 3000X MORE
DATA INTENSIVE

Mobile Sensors Video Surveillance

OIL RIGS GENERATE

25000

DATA POINTS
PER SECOND G

\ | |
Medical Imaging Oil Exploration Stock Market B

- &1 “
Pivotal

Billions of Data Points (i.e. Big Data)

» Scalable MPP architecture
— All nodes can scan and process in parallel
— Linear scalability by adding nodes

» Performance through automatic parallelization

— Automatically distributed tables across noe
* Analytics Optimized: N
- Analytlcs orlented query optlmlza’tlo/n\

Pivotal

Pivotal HD Architecture

SQL queries for structured data
/ GemFire XD — Real-Time
Database Services [)

HAWQ - Advanced
Database Services
ANSI SQL + Analytics ANSI SQL + In-Memory Spring

Pivotal HD]
Enterprise

AN

Resource SR
Management MADIib Algorithms istri f
& Workflow pistributed & 1y Ingestion Open MPI Command

Center

Virtual
Extensions

In-memory T . = . - -
Xtension Catalog Query Store ransactions § Processing Pig, Hive,
Framework § Services Optimizer Mahout
. IﬂaldooE Briver— Map
ic Pipelini arallel with Compaction
Dynamic Pipelining Y Reduce

HDFS

- Apache . Pivotal
The pipeline in this talk can be run on Pivotal Hadoop + HAWQ

Yarn

Zookeeper

Oozie

HAWQ — ANSI SQL + Enhanced Analytics

* True cost based optimizer leveraging 10
years of experience from Greenplum
Database

« SQL interface leverages a familiar, user-
' friendly, widely-adopted paradigm

Advanced tools (i.e. window functions)
HAWQ F_amiliar image processing tools available
via Procedural Languages
« PL/python, PL/R, PL/java, PL/C ...
* Images easily stored in HDFS

Pivotal

Representing an image in HAWQ

Structured: HAWQ enables rapid processing of multiple or extremely

Source Image: . . ; o=
large images in parallel without memory limitations

3

Col 8=
01 2 00
0 01
3 1 02
K 10

2

11
12
20
21
2 2

Translating image processing to simple SQL

Source |mage. Structured: HAWQ enables rapid processing of multiple or extremely
' ' large images in parallel without memory limitations

Col 33 g
(o] o .
° == * No data movement required
01 2 00
3 0 g ; * Simple SQL queries for data exploration
1
§ 2 :> 10
11 350K
12 300K
20
2 1 250K
2 2 200K

Count

150K
Distribution of pixel intensities

SELECT intsy, count(sx)

100K

50K

FROM tbl

GROUP BY lntsy 2011111140 1 1160180111001 1201140 ‘.IGO 180 200 220 240 260
150, 5 Blue Intensity

215, 4

Pivotal

Filtering with. pixel windows

Convolution with a kernel

Pivotal

ldentifying neighboring pixels in SQL

Source Image: Structured: Many operations in image processing focus on
Ny neighborhoods (windows) of pixels/voxels
Col 9 =
0 1 2 00 SQL Window Functions enable access to neighboring pixels
0 01
2 1 D :> 02 * Enables queries over ordered ‘windows’ of rows in a
¢ 2 10 table
11|
12
20
2 1
2 2

Neighboring pixel value

SELECT LEAD(intsy) OVER col_wdw
FROM tbl
WINDOW col_wdw (PARTITION BY col ORDER BY row)

18 More on window functions:
http://blog.pivotal.io/pivotal/products/time-series-analysis-1-introduction-to-window-functions

Window functions for image processing

Source Image: Structured: Many operations in image processing focus on

Ny neighborhoods (windows) of pixels/voxels
Col 9 =
0 1 2 00 SQL Window Functions enable access to neighboring pixels
0 01

2 1 :> 02 * Enables queries over ordered ‘windows’ of rows in a

X 2 10 table
11
1 ZE * Lead accesses the next row
20
2 1
2 2

Neighboring pixel value

SELECT LEAD(intsy) OVER col_wdw
FROM tbl
WINDOW col_wdw (PARTITION BY col ORDER BY row)

215 More on window functions:

http://blog.pivotal.io/pivotal/products/time-series-analysis-1-introduction-to-window-functions

Window functions for image processing

Source Image: Structured: Many operations in image processing focus on
neighborhoods (windows) of pixels/voxels

intsy

Col
SQL Window Functions enable access to neighboring pixels

* Enables queries over ordered ‘windows’ of rows in a
table

11

¢ | ead accesses the next row

* Lag accesses the preceding row

Row
N = O
NNN= 220 o o col

N =2 ON-=ON = O row

Neighboring pixel value

SELECT LAG (intsy) OVER col_wdw
FROM tbl
WINDOW col_wdw (PARTITION BY col ORDER BY row)

130 More on window functions:
http://blog.pivotal.io/pivotal/products/time-series-analysis-1-introduction-to-window-functions

Window functions for image processing

Source Image: Structured: Many operations in image processing focus on
neighborhoods (windows) of pixels/voxels

intsy

Col
01 2

0
s O =)
x 2

SQL Window Functions enable access to neighboring pixels

* Enables queries over ordered ‘windows’ of rows in a
table

O

¢ | ead accesses the next row

* Lag accesses the preceding row

NNN= 220 o o col
N =2 ON=ON = O row

* What about along the horizontal neighbors?

Neighboring pixel value

More on window functions:
http://blog.pivotal.io/pivotal/products/time-series-analysis-1-introduction-to-window-functions

Window functions for image processing

Source Image: Structured: Many operations in image processing focus on

Ny neighborhoods (windows) of pixels/voxels
Col S8 E
0 1 2 00 SQL Window Functions enable access to neighboring pixels
0 10

z 1 m :> 20 * Enables queries over ordered ‘windows’ of rows in a

€ 2 0 1E table
11
2 1 * Lead accesses the next row
02
12 * Lag accesses the preceding row
2 2

* Access additional pixels with additional windows

Neighboring pixel value

SELECT LAG (intsy) OVER row_wdw
FROM tbl
WINDOW row_wdw (PARTITION BY row ORDER BY col)

150 More on window functions:

http://blog.pivotal.io/pivotal/products/time-series-analysis-1-introduction-to-window-functions

Window functions for image processing

Source Image: Structured: Many operations in image processing focus on

Ny neighborhoods (windows) of pixels/voxels
Col S8 E
0 1 2 00 SQL Window Functions enable access to neighboring pixels
0 10

z 1 Dj :> 20 * Enables queries over ordered ‘windows’ of rows in a

€ 2 01 table
11
2 1E * Lead accesses the next row
02
12 * Lag accesses the preceding row
2 2

* Access additional pixels with additional windows

Neighboring pixel value

SELECT LEAD (intsy) OVER row_wdw
FROM tbl
WINDOW row_wdw (PARTITION BY row ORDER BY col)

215 More on window functions:

http://blog.pivotal.io/pivotal/products/time-series-analysis-1-introduction-to-window-functions

Window functions for image processing

Source Image: Neighboring pixel values (no diagonals)

Col SELECT row, col,
012 array [intsy,
LAG (intsy) OVER(col_wdw
LEAD (intsy) OVER(col_wdw
LAG (intsy) OVER(row_wdw
LEAD (intsy) OVER(row_wdw

Row
N = O

N— N N
- - - -

] intsy_wdw
FROM tbl
WINDOW col_wdw AS (PARTITION BY col ORDER BY row),
row_wdw AS (PARTITION BY row ORDER BY col),

1,1, [215, 150, 215, 150, 215]

Window functions for image processing

Source Image: Neighboring pixel values (no diagonals)

Col SELECT row, col,
01 2 array [intsy,

0 LAG (intsy) OVER(col_wdw),
z 1| [:] LEAD (intsy) OVER(col_wdw),
e - LAG (intsy) OVER(row_wdw),
LEAD (intsy) OVER(row_wdw),
What about
8-connected
kernels?] intsy_wdw

FROM tbl
WINDOW col_wdw AS (PARTITION BY col ORDER BY row),
row_wdw AS (PARTITION BY row ORDER BY col),

1,1, [215, 150, 215, 150, 215]

Window functions for image processing

Source Image: Neighboring pixel values (no diagonals)
Col SELECT row, col,
01 2 array [intsy,
0 LAG (intsy) OVER(col_wdw),
z 1 [D LEAD (intsy) OVER(col_wdw),
€ LAG (intsy) OVER(row_wdw),
diag1: row-col LEAD (intsy) OVER(row_wdw),
diag2: row+col
giagtco_ diagi=gl diagiz:2
7
ool 0 ot ool 2 1 i
L diag1: 0 diag1: -1 diag1: -2 intsy_wdw
diag1=Tw| diag2 0 diag2: 1 diag2: 2 FROM tbl
diag2+ o0 oo 1 o2 WINDOW col_wdw AS (PARTITION BY col ORDER BY row),
diagi=2x_| doc 1 i iy row_wdw AS (PARTITION BY row ORDER BY col),
diag2= 1 ot Pt o2
diag1: 2 diag1: 1 diag1: 0
diag2: 2 diag2: 3 diag2: 4
) 1,1, [215, 150, 215, 150, 215]

diag2= 2 diag2=3 diag2= 4

Window functions for image processing

Source Image: Neighboring pixel values (no diagonals)
Col SELECT row, col,
01 2 array [intsy,
(] LAG (intsy) OVER(col_wdw),
z 1| D LEAD (intsy) OVER(col_wdw),
o .
2 9 LAG (intsy) OVER(row_wdw),
LEAD (intsy) OVER(row_wdw),
LAG (intsy) OVER(diagl_wdw),
LEAD (intsy) OVER(diagl_wdw),
diagi=o_ d@915g! diagiS2 LAG (intsy) OVER(diag2_wdw),
—— 7 — — LEAD (intsy) OVER(diag2_wdw)
diag1= dia(;[::g dia(;°1l::j1 diacg°1|::?2] lntsy—WdW
1891=1w_| diag2:0 diag2: 1 diag2: 2 FROM tbl
diag2+ o0 oo 1 o2 WINDOW col_wdw AS (PARTITION BY col ORDER BY row),
diag1=2 i ol s row_wdw AS (PARTITION BY row ORDER BY col),
row: 2 row: 2 row: 2 diagl_wdw AS (PARTITION BY (row-col) ORDER BY col),
diag2=1 | et o e diag2_wdw AS (PARTITION BY (row+col) ORDER BY col)
diag2: 2 diag2: 3 diag2: 4
) 1,1, [215, 150, 215, 150, 215, 150, 215, 150, 150]

diag2= 2 diag2=3 diag2= 4

Smoothing (noise removal)

o — orig!inal B
o I S v g ENE e Make each pixel intensity value similar to its
50 p . -.v’;-' s COI
s o SR et neighbors by averaging the intensity values in the 012 3
100 TR/ 7%,4"-1”"' X . .
et Sl B surrounding neighborhood.
v O e !
sor M '-‘s?,"f.-'-'d:?. T 0 ‘
P JE. = b,‘:{' ; E
o e it * Smoothing using a uniform box filter: s 1] N
250_‘ //35_"'/;;' “"‘.‘ 2 ;:
LT . . 3
T SELECT row, col, madlib.array_mean(intsy_wdw)
0 50 100 150 200 250
FROM (
S);Togthedl _ SELECT row, col, array [intsy,
T N “:;; LAG (intsy) OVER(col_wdw), LEAD (intsy) OVER(col_wdw),
50 pe o e LAG (intsy) OVER(row_wdw), LEAD (intsy) OVER(row_wdww),
A IR 20 (kY LAG (intsy) OVER(diagl_wdw), LEAD (intsy) OVER(diagl_wdw),
100K -,’.S,’_'_g";g:;,‘;, AR LAG (intsy) OVER(diag2_wdw), LEAD (intsy) OVER(diag2_wdw)
o P b vw t
200 e SR Y A WINDOW col_wdw AS (PARTITION BY col ORDER BY row),
o ‘,bh s -
B S S row_wdw AS (PARTITION BY row ORDER BY col),
il PSS e diagl_wdw AS (PARTITION BY (row-col) ORDER BY col),
AN, L N T diag2_wdw AS (PARTITION BY (row+col) ORDER BY col)

0 50 100 150‘ 200 250

Smoothing (noise removal)

o — orig!inal I
o I S v g ENE e Make each pixel intensity value similar to its
50 p . -.v’;-' s COI
s o SR et neighbors by averaging the intensity values in the 012 3
100 TR/ 7%,4"-1”"' X . .
et Sl B surrounding neighborhood.
v O e !
150 - RE G KL G OG- 0 |
s ot SR N Vo . : . : 3 E
o e it * Smoothing using a uniform box filter: s 1] N
250_‘ //35_"'/;;' “"‘.‘ 2 ;:
i DI AR . : 3
7, T A SELECT row, col, madlib.array_mean(intsy_wdw)
l“ F 1 1 1
0 50 100 150 200 250
FROM (
S);Togthedl _ SELECT row, col, array [intsy,
T N “:;; LAG (intsy) OVER(col_wdw), LEAD (intsy) OVER(col_wdw),
50 pe o e LAG (intsy) OVER(row_wdw), LEAD (intsy) OVER(row_wdww),
A IR 20 (kY LAG (intsy) OVER(diagl_wdw), LEAD (intsy) OVER(diagl_wdw),
100K -,’.S,’_'_g";g:;,‘;, AR LAG (intsy) OVER(diag2_wdw), LEAD (intsy) OVER(diag2_wdw)
o P b vw t
200 e SR Y A WINDOW col_wdw AS (PARTITION BY col ORDER BY row),
o ‘,bh s -
B S S row_wdw AS (PARTITION BY row ORDER BY col),
il PSS e diagl_wdw AS (PARTITION BY (row-col) ORDER BY col),
RN NN T diag2_wdw AS (PARTITION BY (row+col) ORDER BY col)

0 50 100 150‘ 200 250

Smoothing (noise removal) ﬁ

original
0 "—"/)1 T IS <‘6
o S g CRLs * Make each pixel intensity value similar to its cor
50 P =N LA o
(s Rdgey neighbors by averaging the intensity values in the
5 e e B T Y 012 3
100 Lo s A N g AR di ighborhood
B Wt S g AV surrounding neignbornood.
150} "*?"‘: Wb "’sf.“?.-'?&:?.' N 0 :
G e - - : - 3 E
200 --»t..s,;; A * Smoothing using a Gaussian filter: 8 ; :
o o] ettt =
I o NSO
250} A W i R
P, \\ LN ‘Q‘. S y .
% o\.n_.'o,-‘, i:'-:" " SELECT row, col, madlib.array_dot(intsy_wdw, 3
0 50 100 150 200 250 arrayl[.2,.125,.125,.125,.125,.075,.075,.075,.075])
FROM (
o smoothed SELECT row, col, array [intsy,
B _-,.',J$ 3 \}::’(\ LAG (intsy) OVER(col_wdw), LEAD (intsy) OVER(col_wdw),
S0P o "*,-."q'~/:'-?< LAG (intsy) OVER(row_wdw), LEAD (intsy) OVER(row_wdww),
e B 3 (e LAG (intsy) OVER(diagl_wdw), LEAD (intsy) OVER(diagl_wdw),
100f e .._S.’?o;.,"_‘;, b o>y LAG (intsy) OVER(diag2_wdw), LEAD (intsy) OVER(diag2_wdw)
T e e) . 'l .
1o} B ES e e U] intsy_wdw
oo SRRV FROM tbl
200 L0 SRS \ | WINDOW col_wdw AS (PARTITION BY col ORDER BY row),
» ,./i.:’b;-;‘;"’-" = | row_wdw AS (PARTITION BY row ORDER BY col),
B D W e diagl_wdw AS (PARTITION BY (row-col) ORDER BY col),
Fin e el diag2_wdw AS (PARTITION BY (row+col) ORDER BY col)

Image Processing Pipeline
For Object Counting

Image Processing Pipeline
For Object Counting

el -~y b _—
O -~ 1 e -
n-ss",b;}"; .“:q‘.‘ -
" Al * o at -
YeTSionn B EEEP YSowe ®
- LR - e
i ik e N aw
, < . - < -
Original Smoothing Thresholding .
Image name | # Cells &Q'-’ ~
Tma_001.jpg 359 ::: e X \
) ﬁ"" LY &
Tma_002.jpg 1892 Ve Q.q“ e
Q
Tma_003.jpg 871 S ?Q > [sa)
v ~

Object Counting Object Detection Cleanup

Pivotal

Thresholding (select pixels of interest)

smoothed

° S Wr e Select pixels of interest as those with intensity col
100} e below a threshold value. ©
0123
ol * Thresholding based on average intensity: 0
2 1
400} S § 9
IR MR NS SELECT *, 3
600 BTSSP T e SN B CASE WHEN (intsy < ave_intsy) THEN 1 ELSE @ END PoIl
FROM (
SELECT * FROM tbl
JOIN
(SELECT im_id, avg(intsy) ave_intsy FROM tbl)a 0123
USING (im_id))t 0
- Ol BN |
d B
3 NN

More on automated thresholding (Otsu’s):
http://blog.pivotal.io/big-data-pivotal/features/data-science-how-to-massively-parallel-in-database-image-processing-part-2

Thresholding (select pixels of interest)

smoothed

0

» Select pixels of interest as those with intensity
below a threshold value.

Col
012 3

100 |-

200

» Thresholding based on average intensity:

300

Row

400}

W N -0

DR MRS SELECT *,
600 EhaeS T CASE WHEN (intsy < ave_intsy) THEN 1 ELSE @ END Pol @

FROM (
SELECT * FROM tbl
JOIN
(SELECT im_id, avg(intsy) ave_intsy FROM tbl
GROUP BY im_id)a
USING (im_id))t
DISTRIBUTED BY (im_id);

-
N RN

100 200 300 400 500 600 More on automated thresholding (Otsu’s):
http://blog.pivotal.io/big-data-pivotal/features/data-science-how-to-massively-parallel-in-database-image-processing-part-2

Morphological Operations (Cleanup)

* Morphological operations add or remove pixels of interest
based on their neighborhood:

Erosion: For each pixel, if any neighbors have value 0, assign value 0

Dilation: For each pixel, if any neighbors have value 1, assign value 1

Opening: Erosion followed by a dilation

Closing: Dilation followed by an erosion

e Erosion:

SELECT row, col, least(intsy,
LAG (intsy) OVER(col_wdw), LEAD (intsy
LAG (intsy) OVER(row_wdw), LEAD (intsy
LAG (intsy) OVER(diagl_wdw), LEAD (intsy
LAG (intsy) OVER(diag2_wdw), LEAD (intsy
)
FROM tbl
WINDOW col_wdw AS
row_wdw AS
diagl_wdw AS
diag2_wdw AS

OVER(col_wdw),

OVER(row_wdww),
OVER(diagl_wdw),
OVER(diag2_wdw)

~_— — ~— ~—

(PARTITION BY col ORDER BY row),
(PARTITION BY row ORDER BY col),
(PARTITION BY (row-col) ORDER BY col),
(PARTITION BY (row+col) ORDER BY col)

Morphological Operations (Cleanup)

* Morphological operations add or remove pixels of interest
based on their neighborhood:

Erosion: For each pixel, if any neighbors have value 0, assign value 0

Dilation: For each pixel, if any neighbors have value 1, assign value 1

Opening: Erosion followed by a dilation

Closing: Dilation followed by an erosion

e Dilation:

SELECT row, col, greatest(intsy,

LAG (intsy) OVER(col_wdw), LEAD (intsy) OVER(col_wdw),
LAG (intsy) OVER(row_wdw), LEAD (intsy) OVER(row_wdww),
LAG (intsy) OVER(diagl_wdw), LEAD (intsy) OVER(diagl_wdw),
LAG (intsy) OVER(diag2_wdw), LEAD (intsy) OVER(diag2_wdw)
)

FROM tbl

WINDOW col_wdw PARTITION BY col ORDER BY row

AS (),
row_wdw AS (PARTITION BY row ORDER BY col),
diagl_wdw AS (PARTITION BY (row-col) ORDER BY col),
diag2_wdw AS (PARTITION BY (row+col) ORDER BY col)

Object Detection (Connected Components)

closed
- = -

* To identify groups of pixels as an object,
we will consider each pixel as a node and
connections between pixels of interest as
vertices on a graph

* We can then leverage the connected
components graph algorithm to identify
groups of connected (neighboring) pixels
of interest

e Connected Components: identifying
subgraphs where for each pair of nodes in
each subgraph there is at least one path

connecting them.

0 100 200 300 400 500 600

Representing an image as a graph

1. First identify all connections between

pixels of interest as vertices on a graph

SELECT u, v FROM (
SELECT id u, PoI,
LAG (id) OVER(col_wdw) v,
i SIS v LAG (PoI) OVER(col_wdw) PoI_Neigh
300 [y e FROM tbl
e, Bl p L 3. WINDOW col_wdw AS (PARTITION BY col ORDER BY row)
WHERE PoI = 1 AND PoI_Neigh = 1

closed
- = -

Representing an image as a graph

1. First identify all connections between
pixels of interest as vertices on a graph

SELECT u, v FROM (
SELECT id u, PoI,
LAG (id) OVER(col_wdw) v,
LAG (PoI) OVER(col_wdw) PoI_Neigh
FROM tbl
WINDOW col_wdw AS (PARTITION BY col ORDER BY row)

UNION ALL

SELECT id u, PoI,

LAG (id) OVER(row_wdw) v,

LAG (PoI) OVER(row_wdw) PoI_Neigh
FROM tbl

WINDOW row_wdw AS (PARTITION BY row ORDER BY col)
WHERE PoI = 1 AND PoI_Neigh =1

closed

Representing an image as a graph

1. First identify all connections between
pixels of interest as vertices on a graph

SELECT u, v FROM (
SELECT id u, PoI,
LAG (id) OVER(col_wdw) v,
LAG (PoI) OVER(col_wdw) PoI_Neigh
FROM tbl
WINDOW col_wdw AS (PARTITION BY col ORDER BY row)

UNION ALL

SELECT id u, PoI,

LAG (id) OVER(row_wdw) v,

LAG (PoI) OVER(row_wdw) PoI_Neigh
FROM tbl

WINDOW row_wdw AS (PARTITION BY row ORDER BY col)
UNION ALL
SELECT id u, PoI,

LAG (id) OVER(diagl_wdw) v,

LAG (PoI) OVER(diagl_wdw) PoI_Neigh
FROM tbl

WINDOW diagl_wdw AS (PARTITION BY (row-col) ORDER BY col)
WHERE PoI = 1 AND PoI_Neigh =1

closed

Representing an image as a graph

1. First identify all connections between
pixels of interest as vertices on a graph

SELECT u, v FROM (
SELECT id u, PoI,
LAG (id) OVER(col_wdw) v,
LAG (PoI) OVER(col_wdw) PoI_Neigh
FROM tbl
WINDOW col_wdw AS (PARTITION BY col ORDER BY row)

UNION ALL

SELECT id u, PoI,

LAG (id) OVER(row_wdw) v,

LAG (PoI) OVER(row_wdw) PoI_Neigh
FROM tbl

WINDOW row_wdw AS (PARTITION BY row ORDER BY col)
UNION ALL
SELECT id u, PoI,

LAG (id) OVER(diagl_wdw) v,

LAG (PoI) OVER(diagl_wdw) PoI_Neigh
FROM tbl

WINDOW diagl_wdw AS (PARTITION BY (row-col) ORDER BY col)
UNION ALL

SELECT id u, PoI,

LAG (id) OVER(diag2_wdw) v,
LAG (PoI) OVER(diag2_wdw) PoI_Neigh
FROM tbl

WINDOW diag2_wdw AS (PARTITION BY (row+col) ORDER BY col)
WHERE PoI = 1 AND PoI_Neigh =1

closed

Object Detection (Connected Components)

closed
- = -

1. First identify all connections between
pixels of interest as vertices on a graph

2. Then leverage an optimized connected
components algorithm to identify objects
as subgraphs (groups of connected
pixels)

0 100 200 300 400 500 600

Detected Objects

-

Object Counting

_ _ * Object counting is then accomplished with a single
T simple SQL query
L) oA
.Q”,'QLQ.A‘. g
= f \.“ ».o?

SELECT count (%) FROM (
SELECT object

Image name # Cells FROM 't b 1 .

Tma_ 001 jpg 259 GROUP BY object)t
Tma_002.jpg 1892

Tma_003.jpg 871

Tma_003.jpg 619

Tma_004.jpg 759

Tma_005.jpg 1392

Tma_006.jpg 201

Object Counting

_ _ * Object counting is then accomplished with a single
' .-.‘.?:‘,"f ~ simple SQL query
L RS o~
@ ?ﬁ);”:; e . : :
:‘\.:‘- e How do we leverage a priori knowledge of object size?

SELECT count(x) FROM (
SELECT object, count(x) size_object

Image name # Cells FROM 't b 1 .

Trme,_ 001 g 25 GROUP BY object)t
Tma_002.jpg 1892

Tma_003.jpg 871

Tma_003.jpg 619

Tma_004.jpg 759

Tma_005.jpg 1392

Tma_006.jpg 201

Object Counting (with size exclusion)

_ * Object counting is then accomplished with a single
' .-.‘.‘-::'f N simple SQL query
Q‘Q. ? B
..”‘“ A‘. E H H H .
\.‘\.:‘- e » Exclude objects comprised of less than 500 pixels:

SELECT count(x) FROM (
SELECT object, count(x) size_object

Image name # Cells FROM tbl

Trme,_ 001 g a1 GROU? BY opject)t
WHERE size_object > 500;

Tma_002.jpg 1708

Tma_003.jpg 812

Tma_003.jpg 573

Tma_004.jpg 684

Tma_005.jpg 1199

Tma_006.jpg 156

Image Processing Pipeline
For Object Counting

el -~y b _—
O -~ 1 e -
n-ss",b;}"; .“:q‘.‘ -
" Al * o at -
YeTSionn B EEEP YSowe ®
- LR - e
i ik e N aw
, < . - < -
Original Smoothing Thresholding .
Image name | # Cells &Q'-’ ~
Tma_001.jpg 359 ::: e X \
) ﬁ"" LY &
Tma_002.jpg 1892 Ve Q.q“ e
Q
Tma_003.jpg 871 S ?Q > [sa)
v ~

Object Counting Object Detection Cleanup

Pivotal

Multi-dimensional Data (3D, video...

« Additional dimensions simply
require additional columns
and window functions

Image name Row Col 4 R_intsy G_intsy B_intsy
Tma_001.jpg 0 0 0 215 214 181
Tma_001.jpg 0 0 1 215 215 181
Tma_001.jpg 0 0 2 215 214 181

www.simonsfoundation.org

Pivotal

Image Processing on Hadoop

ﬁ%—:— Major Advantages of image processing using HAWQ
; :{s“ : » All processing is done in parallel
o * No data movement required
32‘:‘ * Image size is not a limiting factor for storage or processing
o

* Simple SQL interface — no java or map-reduce required

For more image processing projects at Pivotal go to:

http://blog.pivotal.io/data-science-pivotal

* Massively Parallel, In-Database Image Processing
R * Content-Based Image Retrieval using Hadoop & HAWQ

P * Video Analytics on Hadoop

Please join me at office hours at Table E at 3:25 for further discussion.
Pivotal

[?1votal

A NEW PLATFORM FOR ANEW ERA

Thank Youl!
Questions?

