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Overview
§ Demo	



§ Motivations	



§ Successes and Failures	



§ Lessons



IN CASE THE INTERNET DIDN’T WORK, 
PRETEND YOU SAW SOMETHING COOL

DEMO



Motivations
§ Interactive data warehouses	



§ Answer BI questions	



- How much revenue was generated last quarter broken down by a demographic	



- How many unique male visitors my website last month?	



- Not dumping an entire data set	



- Not querying for an individual event	



§ Cost effective (we are a startup after all)



Technical Challenges
§ Ad-hoc queries	



§ Arbitrarily slice ’n dice, and drill into data	



§ Immediate insights	



§ Scalability	



§ Availability	



§ Low operational overhead



Where We Stand Today
§ Over 10 trillion events	



§ ~40PB of raw data	



§ Over 200TB of compressed query-able data	



§ Ingesting over 300,000 events/second on average	



§ Average query time 500ms	



§ 90% queries under 1 second	



§ 99% queries under 10 seconds 



How Did We Get There?



What We Tried
§ RDBMS (MySQL, Postgres)



RDBMS - The Setup
§ Common setup for data warehousing	



- Star Schema	



- Aggregate Tables	



- Query Caches



RDBMS - Results

Naive benchmark scan rate ~5.5M rows / second / core 

1 day of summarized aggregates 60M+ rows 

1 query over 1 week, 16 cores ~5 seconds 

Page load with 20 queries over a 
week of data

long time



What We Tried
§ RDBMS (MySQL, Postgres)



What We Tried
§ RDBMS (MySQL, Postgres)	



§ NoSQL Key/Value stores (HBase, Cassandra)



NoSQL - The Setup
§ Pre-aggregate all dimensional combinations	



§ Store results in a NoSQL store

ts	

 gender age revenue
1 M 18 $0.15

1 F 25 $1.03

1 F 18 $0.01

Key Value
1 revenue=$1.19

1,M revenue=$0.15

1,F revenue=$1.04

1,18 revenue=$0.16

1,25 revenue=$1.03

1,M,18 revenue=$0.15

1,F,18 revenue=$0.01

1,F,25 revenue=$1.03



NoSQL - Results
§ Queries were fast	



- range scan on primary key	



§ Inflexible	



- not aggregated, not available	



§ Not continuously updated	



§ Processing scales exponentially	



- Example: ~500k records	



- 11 dimensions : 4.5 hours on a 15-node Hadoop cluster	



- 14 dimensions: 9 hours on a 25-node Hadoop cluster



What We Tried
§ RDBMS (MySQL, Postgres)	



§ NoSQL Key/Value stores (HBase, Cassandra)



What We Tried
§ RDBMS (MySQL, Postgres)	



§ NoSQL Key/Value stores (HBase, Cassandra)	



§ ???



What We Learned
§ Problem with RDBMS: scans are slow	



§ Problem with NoSQL: computationally intractable	
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§ Tackling the RDBMS issue seems easier





What is Druid?
§ Low Latency Ingestion	



§ Fast Aggregations 	



§ Arbitrary Slice-n-dice Capabilities	



§  Highly Available	



§ Approximate & Exact calculations



Early Druid Architecture

Broker 
Node

Historical 
Node

Historical 
Node

Historical 
Node

Broker 
Node

QueriesHadoopData (S3)



Why is Druid the Right Tool?
§ Immutable data	



- Read consistency	



- Multiple threads can scan the same underlying data	



- Ideal for append-heavy, transactional data	



§ Column orientation	



- Load/scan only those columns needed for a query	



§ Search indexes (inverted indexes) to only scan what it needs



In-memory is Overrated
§ All in-memory – fast and simple	



§ Keeping all data in memory is expensive	



§ Percentage of data queried at any given time is small

RAM95% queries



Memory Map It
§ Memory management is hard, let the OS handle paging	



§ Flexible configuration – control how much to page	



§ Use SSDs to mitigate the performance impact (still cheaper than RAM)	



§ Cost vs. Performance becomes a simple dial

RAMSSD



Compression is Your Friend

§ Paging out data that isn’t queried saves cost	



§ Memory is still critical for performance	



§ Cost of scaling CPU << cost of adding RAM	



§ On-the-fly decompression is fast with recent algorithms (LZF, Snappy, LZ4)



Low latency vs. High throughput

§ Batch ingestion is accurate and efficient but slow	



§ Streaming (“real-time”) ingestion is less accurate but fast	



- Reduces cost of frequent batch processing	



§ Immutable data made it easy to combine the two ingestion methods	



§ Now commonly referred to as lambda-architecture

Streaming

Batch λ



Later Druid Architecture

Broker 
Node

Historical 
Node

Historical 
Node

Real-time 
Node

Broker 
Node

Queries

Batch

Real-time 
Node

Streaming

Handover



Scaling is Hard

§ Data doubles every 2 months	



§ More Data = More Nodes = More Failures	



§ Throwing money at the problem only a short term solution	



§ Some piece always fails to scale	



§ Startup means daily operations handled by dev team



Not All Data is Created Equal 

§ Users really care about recent data	



§ Users still want to run quarterly reports	



§ Large queries create bottlenecks and resource contention



Smarter Rebalancing

§ Constantly rebalance to keep workload uniform	



§ Greedily rebalance based on cost heuristics	



§ Avoid co-locating recent or overlapping data 	



§ Favor co-locating data for different customers	



§ Distribute data likely to be queried simultaneously



Create Data Tiers

§ COLD 	

 high disk to cpu, and disk to ram ratio for old data	



§ HOT 	

	

 low disk to cpu and low disk to ram for new data



Create Query Tiers

§ Separate query nodes for long and short running queries	



§ Prioritize shorter queries

Broker Broker Broker 



Scaling Upgrades

§ Make every piece of the system redundant	



§ Make components stateless	



§ Fail-over stateful components

DOWNTIME



Scaling Upgrades

DOWNTIME

§ Shared nothing architecture	



§ Maintain backwards compatibility	



§ Allow upgrading components independently



It’s OK to be Slow (sometimes)

§ Replication can become expensive	



§ Not willing to sacrifice availability	



§ Tradeoff performance for cost during failures	



§ Move replica to cold tier	



§ Keep a single replica for hot



Simplify Operations

§ Data migrations are painful	



§ Separate resources for	



- permanent data storage	



- data processing	
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§ Machines become dispensable	



§ Easy to try out / upgrade to new hardware	



§ Smarter loading / unloading / archiving of data	



§ Reduced operational complexity



Multitenancy is Harder 

§ Everyone wants a good experience	



§ Behavior is not uniform across customers	



§ 20% of customers take 80% of resources



Addressing Multitenancy
§ Bound Resources	



§ Keep units of computation small	



§ Constantly yield resources	



§ Prefer fast approximate answers to slow exact ones	



§ HyperLogLog sketches	



§ Approximate top-k	



§ Approximate histograms



Monitoring
§ Collecting lots of data without having the tools to analyze it is useless	



§ Use Druid to monitor Druid!	



§ > 10TB of metrics data in Druid	



§ Often hard to tell where problems are coming from	



§ Interactive exploration of metrics allows us to pinpoints problems quickly	



§ Granularity down to the individual query or server level	



§ Gives both the big picture and the detailed breakdown	



§ Demo!



Take Aways
§ Pick the right tool	



§ Pick the tool optimized for the types of queries you will make	



§ Tradeoffs are everywhere	



§ Performance vs. cost (in-memory, tiering, compression)	



§ Latency vs. throughput (streaming vs. batch ingestion)	



§ Use cases should define engineering (understand query patterns)	



§ Monitor everything



More About Druid
§ Open sourced 2 years ago	



§ 10+ Production Deployments	



- Ad-tech	



- Network traffic analysis	



- Operations Monitoring	



- Activity stream analysis



Thank You

@druidio druid.io #druid-dev

metamarkets.com


