
Stories from the Trenches
The Challenges of Building an Analytics Stack

!

!

!

Fangjin Yang · Xavier Léauté	

Druid Committers	

Software Engineers

Overview
§ Demo	

§ Motivations	

§ Successes and Failures	

§ Lessons

IN CASE THE INTERNET DIDN’T WORK,
PRETEND YOU SAW SOMETHING COOL

DEMO

Motivations
§ Interactive data warehouses	

§ Answer BI questions	

- How much revenue was generated last quarter broken down by a demographic	

- How many unique male visitors my website last month?	

- Not dumping an entire data set	

- Not querying for an individual event	

§ Cost effective (we are a startup after all)

Technical Challenges
§ Ad-hoc queries	

§ Arbitrarily slice ’n dice, and drill into data	

§ Immediate insights	

§ Scalability	

§ Availability	

§ Low operational overhead

Where We Stand Today
§ Over 10 trillion events	

§ ~40PB of raw data	

§ Over 200TB of compressed query-able data	

§ Ingesting over 300,000 events/second on average	

§ Average query time 500ms	

§ 90% queries under 1 second	

§ 99% queries under 10 seconds

How Did We Get There?

What We Tried
§ RDBMS (MySQL, Postgres)

RDBMS - The Setup
§ Common setup for data warehousing	

- Star Schema	

- Aggregate Tables	

- Query Caches

RDBMS - Results

Naive benchmark scan rate ~5.5M rows / second / core

1 day of summarized aggregates 60M+ rows

1 query over 1 week, 16 cores ~5 seconds

Page load with 20 queries over a
week of data

long time

What We Tried
§ RDBMS (MySQL, Postgres)

What We Tried
§ RDBMS (MySQL, Postgres)	

§ NoSQL Key/Value stores (HBase, Cassandra)

NoSQL - The Setup
§ Pre-aggregate all dimensional combinations	

§ Store results in a NoSQL store

ts	
 gender age revenue
1 M 18 $0.15

1 F 25 $1.03

1 F 18 $0.01

Key Value
1 revenue=$1.19

1,M revenue=$0.15

1,F revenue=$1.04

1,18 revenue=$0.16

1,25 revenue=$1.03

1,M,18 revenue=$0.15

1,F,18 revenue=$0.01

1,F,25 revenue=$1.03

NoSQL - Results
§ Queries were fast	

- range scan on primary key	

§ Inflexible	

- not aggregated, not available	

§ Not continuously updated	

§ Processing scales exponentially	

- Example: ~500k records	

- 11 dimensions : 4.5 hours on a 15-node Hadoop cluster	

- 14 dimensions: 9 hours on a 25-node Hadoop cluster

What We Tried
§ RDBMS (MySQL, Postgres)	

§ NoSQL Key/Value stores (HBase, Cassandra)

What We Tried
§ RDBMS (MySQL, Postgres)	

§ NoSQL Key/Value stores (HBase, Cassandra)	

§ ???

What We Learned
§ Problem with RDBMS: scans are slow	

§ Problem with NoSQL: computationally intractable	

!

!

!

!

!

!

!

§ Tackling the RDBMS issue seems easier

What is Druid?
§ Low Latency Ingestion	

§ Fast Aggregations 	

§ Arbitrary Slice-n-dice Capabilities	

§ Highly Available	

§ Approximate & Exact calculations

Early Druid Architecture

Broker
Node

Historical
Node

Historical
Node

Historical
Node

Broker
Node

QueriesHadoopData (S3)

Why is Druid the Right Tool?
§ Immutable data	

- Read consistency	

- Multiple threads can scan the same underlying data	

- Ideal for append-heavy, transactional data	

§ Column orientation	

- Load/scan only those columns needed for a query	

§ Search indexes (inverted indexes) to only scan what it needs

In-memory is Overrated
§ All in-memory – fast and simple	

§ Keeping all data in memory is expensive	

§ Percentage of data queried at any given time is small

RAM95% queries

Memory Map It
§ Memory management is hard, let the OS handle paging	

§ Flexible configuration – control how much to page	

§ Use SSDs to mitigate the performance impact (still cheaper than RAM)	

§ Cost vs. Performance becomes a simple dial

RAMSSD

Compression is Your Friend

§ Paging out data that isn’t queried saves cost	

§ Memory is still critical for performance	

§ Cost of scaling CPU << cost of adding RAM	

§ On-the-fly decompression is fast with recent algorithms (LZF, Snappy, LZ4)

Low latency vs. High throughput

§ Batch ingestion is accurate and efficient but slow	

§ Streaming (“real-time”) ingestion is less accurate but fast	

- Reduces cost of frequent batch processing	

§ Immutable data made it easy to combine the two ingestion methods	

§ Now commonly referred to as lambda-architecture

Streaming

Batch λ

Later Druid Architecture

Broker
Node

Historical
Node

Historical
Node

Real-time
Node

Broker
Node

Queries

Batch

Real-time
Node

Streaming

Handover

Scaling is Hard

§ Data doubles every 2 months	

§ More Data = More Nodes = More Failures	

§ Throwing money at the problem only a short term solution	

§ Some piece always fails to scale	

§ Startup means daily operations handled by dev team

Not All Data is Created Equal

§ Users really care about recent data	

§ Users still want to run quarterly reports	

§ Large queries create bottlenecks and resource contention

Smarter Rebalancing

§ Constantly rebalance to keep workload uniform	

§ Greedily rebalance based on cost heuristics	

§ Avoid co-locating recent or overlapping data 	

§ Favor co-locating data for different customers	

§ Distribute data likely to be queried simultaneously

Create Data Tiers

§ COLD 	
 high disk to cpu, and disk to ram ratio for old data	

§ HOT 	
	
 low disk to cpu and low disk to ram for new data

Create Query Tiers

§ Separate query nodes for long and short running queries	

§ Prioritize shorter queries

Broker Broker Broker

Scaling Upgrades

§ Make every piece of the system redundant	

§ Make components stateless	

§ Fail-over stateful components

DOWNTIME

Scaling Upgrades

DOWNTIME

§ Shared nothing architecture	

§ Maintain backwards compatibility	

§ Allow upgrading components independently

It’s OK to be Slow (sometimes)

§ Replication can become expensive	

§ Not willing to sacrifice availability	

§ Tradeoff performance for cost during failures	

§ Move replica to cold tier	

§ Keep a single replica for hot

Simplify Operations

§ Data migrations are painful	

§ Separate resources for	

- permanent data storage	

- data processing	

!

§ Machines become dispensable	

§ Easy to try out / upgrade to new hardware	

§ Smarter loading / unloading / archiving of data	

§ Reduced operational complexity

Multitenancy is Harder

§ Everyone wants a good experience	

§ Behavior is not uniform across customers	

§ 20% of customers take 80% of resources

Addressing Multitenancy
§ Bound Resources	

§ Keep units of computation small	

§ Constantly yield resources	

§ Prefer fast approximate answers to slow exact ones	

§ HyperLogLog sketches	

§ Approximate top-k	

§ Approximate histograms

Monitoring
§ Collecting lots of data without having the tools to analyze it is useless	

§ Use Druid to monitor Druid!	

§ > 10TB of metrics data in Druid	

§ Often hard to tell where problems are coming from	

§ Interactive exploration of metrics allows us to pinpoints problems quickly	

§ Granularity down to the individual query or server level	

§ Gives both the big picture and the detailed breakdown	

§ Demo!

Take Aways
§ Pick the right tool	

§ Pick the tool optimized for the types of queries you will make	

§ Tradeoffs are everywhere	

§ Performance vs. cost (in-memory, tiering, compression)	

§ Latency vs. throughput (streaming vs. batch ingestion)	

§ Use cases should define engineering (understand query patterns)	

§ Monitor everything

More About Druid
§ Open sourced 2 years ago	

§ 10+ Production Deployments	

- Ad-tech	

- Network traffic analysis	

- Operations Monitoring	

- Activity stream analysis

Thank You

@druidio druid.io #druid-dev

metamarkets.com

