
Stories from the Trenches 
The Challenges of Building an Analytics Stack

!

!

!

Fangjin Yang · Xavier Léauté	


Druid Committers	


Software Engineers



Overview
§ Demo	


§ Motivations	


§ Successes and Failures	


§ Lessons



IN CASE THE INTERNET DIDN’T WORK, 
PRETEND YOU SAW SOMETHING COOL

DEMO



Motivations
§ Interactive data warehouses	


§ Answer BI questions	


- How much revenue was generated last quarter broken down by a demographic	


- How many unique male visitors my website last month?	


- Not dumping an entire data set	


- Not querying for an individual event	


§ Cost effective (we are a startup after all)



Technical Challenges
§ Ad-hoc queries	


§ Arbitrarily slice ’n dice, and drill into data	


§ Immediate insights	


§ Scalability	


§ Availability	


§ Low operational overhead



Where We Stand Today
§ Over 10 trillion events	


§ ~40PB of raw data	


§ Over 200TB of compressed query-able data	


§ Ingesting over 300,000 events/second on average	


§ Average query time 500ms	


§ 90% queries under 1 second	


§ 99% queries under 10 seconds 



How Did We Get There?



What We Tried
§ RDBMS (MySQL, Postgres)



RDBMS - The Setup
§ Common setup for data warehousing	


- Star Schema	


- Aggregate Tables	


- Query Caches



RDBMS - Results

Naive benchmark scan rate ~5.5M rows / second / core 

1 day of summarized aggregates 60M+ rows 

1 query over 1 week, 16 cores ~5 seconds 

Page load with 20 queries over a 
week of data

long time



What We Tried
§ RDBMS (MySQL, Postgres)



What We Tried
§ RDBMS (MySQL, Postgres)	


§ NoSQL Key/Value stores (HBase, Cassandra)



NoSQL - The Setup
§ Pre-aggregate all dimensional combinations	


§ Store results in a NoSQL store

ts	
 gender age revenue
1 M 18 $0.15

1 F 25 $1.03

1 F 18 $0.01

Key Value
1 revenue=$1.19

1,M revenue=$0.15

1,F revenue=$1.04

1,18 revenue=$0.16

1,25 revenue=$1.03

1,M,18 revenue=$0.15

1,F,18 revenue=$0.01

1,F,25 revenue=$1.03



NoSQL - Results
§ Queries were fast	


- range scan on primary key	


§ Inflexible	


- not aggregated, not available	


§ Not continuously updated	


§ Processing scales exponentially	


- Example: ~500k records	


- 11 dimensions : 4.5 hours on a 15-node Hadoop cluster	


- 14 dimensions: 9 hours on a 25-node Hadoop cluster



What We Tried
§ RDBMS (MySQL, Postgres)	


§ NoSQL Key/Value stores (HBase, Cassandra)



What We Tried
§ RDBMS (MySQL, Postgres)	


§ NoSQL Key/Value stores (HBase, Cassandra)	


§ ???



What We Learned
§ Problem with RDBMS: scans are slow	


§ Problem with NoSQL: computationally intractable	
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§ Tackling the RDBMS issue seems easier





What is Druid?
§ Low Latency Ingestion	


§ Fast Aggregations 	


§ Arbitrary Slice-n-dice Capabilities	


§  Highly Available	


§ Approximate & Exact calculations



Early Druid Architecture

Broker 
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Historical 
Node

Historical 
Node

Historical 
Node

Broker 
Node

QueriesHadoopData (S3)



Why is Druid the Right Tool?
§ Immutable data	


- Read consistency	


- Multiple threads can scan the same underlying data	


- Ideal for append-heavy, transactional data	


§ Column orientation	


- Load/scan only those columns needed for a query	


§ Search indexes (inverted indexes) to only scan what it needs



In-memory is Overrated
§ All in-memory – fast and simple	


§ Keeping all data in memory is expensive	


§ Percentage of data queried at any given time is small

RAM95% queries



Memory Map It
§ Memory management is hard, let the OS handle paging	


§ Flexible configuration – control how much to page	


§ Use SSDs to mitigate the performance impact (still cheaper than RAM)	


§ Cost vs. Performance becomes a simple dial

RAMSSD



Compression is Your Friend

§ Paging out data that isn’t queried saves cost	


§ Memory is still critical for performance	


§ Cost of scaling CPU << cost of adding RAM	


§ On-the-fly decompression is fast with recent algorithms (LZF, Snappy, LZ4)



Low latency vs. High throughput

§ Batch ingestion is accurate and efficient but slow	


§ Streaming (“real-time”) ingestion is less accurate but fast	


- Reduces cost of frequent batch processing	


§ Immutable data made it easy to combine the two ingestion methods	


§ Now commonly referred to as lambda-architecture

Streaming

Batch λ



Later Druid Architecture
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Scaling is Hard

§ Data doubles every 2 months	


§ More Data = More Nodes = More Failures	


§ Throwing money at the problem only a short term solution	


§ Some piece always fails to scale	


§ Startup means daily operations handled by dev team



Not All Data is Created Equal 

§ Users really care about recent data	


§ Users still want to run quarterly reports	


§ Large queries create bottlenecks and resource contention



Smarter Rebalancing

§ Constantly rebalance to keep workload uniform	


§ Greedily rebalance based on cost heuristics	


§ Avoid co-locating recent or overlapping data 	


§ Favor co-locating data for different customers	


§ Distribute data likely to be queried simultaneously



Create Data Tiers

§ COLD 	
 high disk to cpu, and disk to ram ratio for old data	


§ HOT 	
	
 low disk to cpu and low disk to ram for new data



Create Query Tiers

§ Separate query nodes for long and short running queries	


§ Prioritize shorter queries

Broker Broker Broker 



Scaling Upgrades

§ Make every piece of the system redundant	


§ Make components stateless	


§ Fail-over stateful components

DOWNTIME



Scaling Upgrades

DOWNTIME

§ Shared nothing architecture	


§ Maintain backwards compatibility	


§ Allow upgrading components independently



It’s OK to be Slow (sometimes)

§ Replication can become expensive	


§ Not willing to sacrifice availability	


§ Tradeoff performance for cost during failures	


§ Move replica to cold tier	


§ Keep a single replica for hot



Simplify Operations

§ Data migrations are painful	


§ Separate resources for	


- permanent data storage	


- data processing	
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§ Machines become dispensable	


§ Easy to try out / upgrade to new hardware	


§ Smarter loading / unloading / archiving of data	


§ Reduced operational complexity



Multitenancy is Harder 

§ Everyone wants a good experience	


§ Behavior is not uniform across customers	


§ 20% of customers take 80% of resources



Addressing Multitenancy
§ Bound Resources	


§ Keep units of computation small	


§ Constantly yield resources	


§ Prefer fast approximate answers to slow exact ones	


§ HyperLogLog sketches	


§ Approximate top-k	


§ Approximate histograms



Monitoring
§ Collecting lots of data without having the tools to analyze it is useless	


§ Use Druid to monitor Druid!	


§ > 10TB of metrics data in Druid	


§ Often hard to tell where problems are coming from	


§ Interactive exploration of metrics allows us to pinpoints problems quickly	


§ Granularity down to the individual query or server level	


§ Gives both the big picture and the detailed breakdown	


§ Demo!



Take Aways
§ Pick the right tool	


§ Pick the tool optimized for the types of queries you will make	


§ Tradeoffs are everywhere	


§ Performance vs. cost (in-memory, tiering, compression)	


§ Latency vs. throughput (streaming vs. batch ingestion)	


§ Use cases should define engineering (understand query patterns)	


§ Monitor everything



More About Druid
§ Open sourced 2 years ago	


§ 10+ Production Deployments	


- Ad-tech	


- Network traffic analysis	


- Operations Monitoring	


- Activity stream analysis



Thank You

@druidio druid.io #druid-dev

metamarkets.com


