

OREILLY CIOUDERA

strataconf.com #strataconf #hadoopworld

Unlocking Big Data at CERN

Matthias Braeger CERN, Manish Devgan Software AG (Terracotta) 4:15pm Thursday, 10/16/2014 Hadoop in Action Location: 1 C03/1 C04

Speakers & Agenda

- Big Data @ CERN
- In-Memory Data Management
- In-Memory @ CERN

Matthias Braeger Software Engineer CERN matthias.braeger@cern.ch

Manish Devgan Product Management Software AG (Terracotta) manish.devgan@softwareag.com

Log data

Metadata of physics data

Configuration data

Physics data (>100 PB)

Documents

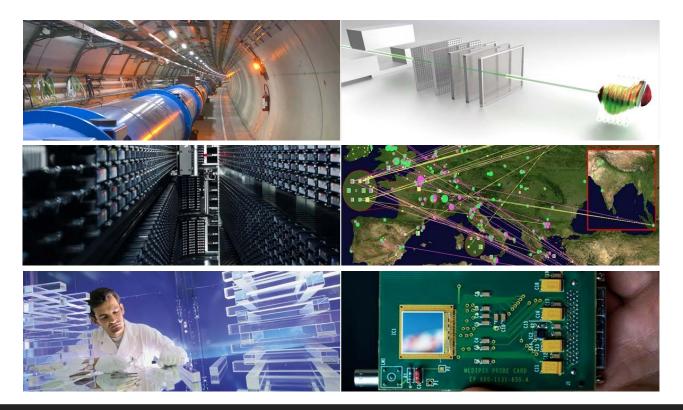
Sensor Data of technical installations

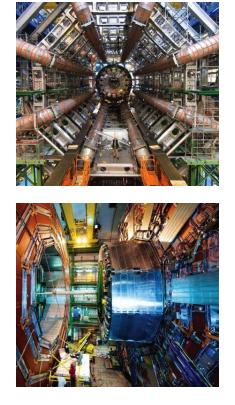
Media data

Others

European Organization for Nuclear Research

- Founded in 1954 (60 years ago!)
- 21 Member States
- ~ 3'360 Staff, fellows, students...
- ~ 10'000 Scientists from 113 different countries
- Budget: 1 billion CHF/year





From Physics to Industry

ATLAS

CMS

Alice

LHCb

LHC

The worlds biggest machine

ATLAS

Generated 30 Petabytes in 2012 > 100 PB in total!

ALICE

Geneva

LHCb

Strata+Hadoop

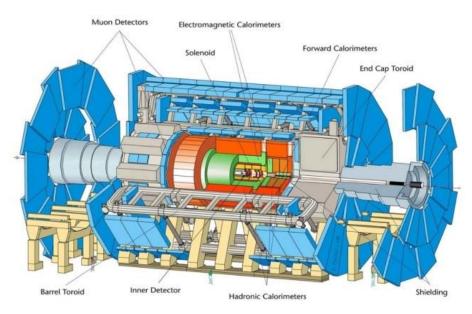
LHC - Large Hadron Collider

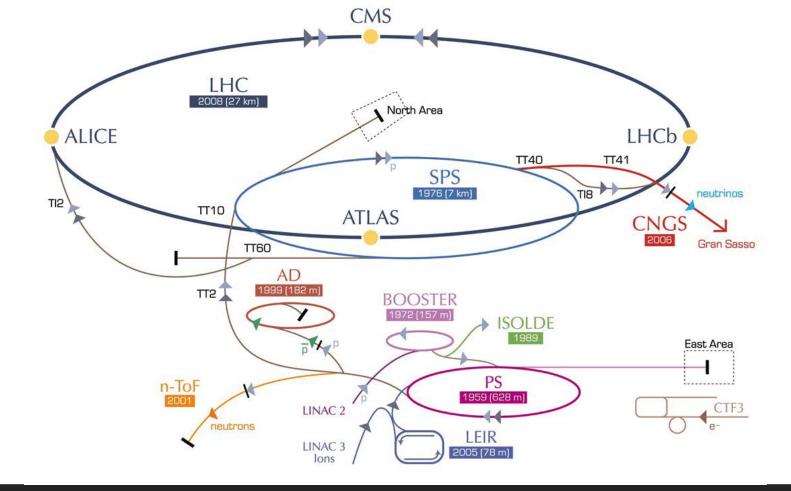
27km ring of superconducting magnets

```
Started operation in 2010 with 3.5 + 3.5 TeV,
4 + 4 TeV in 2012
```

Since early 2013 in Long Shutdown 1 (machine upgrade)

Restart early 2015 at 6.5 + 6.5 TeV




Some ATLAS facts

- 25m diameter, 46m length, 7'000 tons
- 100 million channels
- 40MHz collision rate (~ 1 PB/s)
- Run 1: 300 Hz event rate after filtering
- Run 2: up to 1 kHz

Is Hadoop used for storing the ~30 PB/year of physics data ?

No ;-(

Experimental data are mainly stored on tape

CERN uses Hadoop for storing the metadata of the experimental data

Physics Data Handling

- <u>Run 1:</u> 30 PB per year demanding 100'000 processors with peaks of 20 GB/s writing to tape spread across 80 tape drives
- <u>Run 2:</u> > 50 PB per year

CERN's Computer Center (1st floor)

Physics Data Handling

2013 already more than 100 PB stored in total!

- > 88 PB on 55'000 tapes
- > 13 PB on disk
- > 150 PB free tape storage waiting for Run 2



CERN's tape robot

Physics Data Handling

- Cost of tape storage is a lot less than disk storage
- No electricity consumption when tapes are not being accessed
- Tape storage size = Data + Copy Hadoop storage size = Data + 2 Copies
- No requirement to have all recorded physics data available within seconds

CERN's tape robot

HBASE @ CERN

3 HBase Clusters

- CASTOR Cluster with ~10 servers
 - ~ 100 GB of Logs per day
 - > 108 TB of Logs in total
- ATLAS Cluster with ~20 servers
 - Event index Catalogue for experimental Data in the Grid
- Monitoring Cluster with ~10 servers
 - Log events from CERN Computer Center

Metadata from physics event

Metadata are created upon recording of the physics event

Examples 1:

- Tape Storage event log
 - On which tape is my file stored?
 - Is there a copy on disk?
 - List me all events for a given tape or drive
 - Was the tape repacked?

Example 1: Tape Storage event log

CASTOR DLF	×	(+						
🗲 🛞 c2adm01.ce	ern.ch/logviewer/file	e_id/1650701				7	7 C 🛛 🛃 -	Startpage HTTPS - Deutsch 👂 🏠 🛍 🦊 🎓 🚳 🗸
ile ID : NSFILEID Request ID : REQID					Tape ID :	TPVID Search Res	set	🔂 🏓
uery : File ID ==	1650701							
ow 10 💌 er	htries Show / hid	e columns				Search	columns	Treat as regexp : String or Regexp Search Reset
owing 21 to 30	of 58 entries							First Previous 1 2 3 4 5 Next Last
Timestamp 🔻	Instance : Hostname	Daemon 🔶	$\textbf{PID} \doteqdot$	TID 👙	Message text 🍦	Request ID 🔶	Tape ID ≑	Payload
2014-09-21 8:23:33.241785	c2repack : c2repacksrv401	stagerd	6296	6322	Request processed	889d0b88-8882-430d- 92c6-85755aecba54	-	Username=lcasbr/cem.ch/delphiltape/13716/Filename=lcasbr/cem.ch/delphiltape/13716/13716.32.al Processing Time=0.020840 Groupname=c3 SUBREQID=dfaab238-2258-346d-e043-9208100a9ddc Type=StagePrepartoCetRequest
2014-09-21 8:23:33.231082	c2repack : c2repacksrv401	nsd	7093	7102	Processing complete	26874859-8025-4955- bff5-94a4dda5cee5	-	Classid=0 OwnerGid=1028 Gid=0 Cwd= Function=openx. ProcessingTime=0.008 ClientHost=c2repacksrv401.cem.ch Username=root Mask=c22 Flags=0 Mode=0 Path=/castoricem.ch/delphi /tape/Y13716Y13716.32.al OwnerUid=44410 Uid=0 Secure=No MSHOSTMAILE=castoms Rufcode=0
2014-09-21 18:23:32.645303	c2repack : c2repacksrv401	tapegatewayd	0	6321	setFileRecalled: db updates after full recall completed	0396aa45-87dd- 67d2-e053-9208100a8e08	<u>140840</u>	fseq=7168 filePath=lxfsrk63a02.cem.ch./srv/castor/01/01 /1650701@castoms.2473192168 IP=137.138.222.144 HostName=tpsrv219.cem.ch recalITime=6426642 mountTransactionid=33463531 NSHOSTNAME-castoms Port=52026
2014-09-21 8:23:32.640482	c2repack : c2repacksrv401	nsd	0	6321	checkRecallInNS: created missing checksum in the namespace	0396aa45-87dd- 67d2-e053-9208100a8e08	140840	checksumType=adler32 fseq=7168 checksumValue=1212814334 mountTransactionId=35463531 NSHOSTNAME=castorns copyNb=1
2014-09-21 18:23:12.114035	c2repack : c2repacksrv401	tapegatewayd	6401	6527	Worker: file to recall retrieved from db	-	140840	blockid=002A05D9 eGid=1028 copyNb=1 nblkomts=0 HostName+psrv219.cem.ch nbRetriesWithinklount=0 tseq=7168 IP=137.138.222.144 mountTransactionid=35463331 file Size=78130320 path=Hstrk53402.cem.ch:srv/castor01010 1/1550701@castorms.2473192168 file Transactionid=2473192169 NSHOSTNAME=castorms creationTime=1404889970 tapebridgeTransid=3326 eUid=444110 Port=51591
2014-07-09 09:13:17.656325	c2repack : c2repacksrv301	stagerd	7439	7467	Request processed	889d0b88-8882-430d- 92c6-85755aecba54	-	Username=tapeops SvcClass= NSHOSTNAME=castorns Filename=/castor/cern.ch/delphi/tape/Y13716/Y13716.32.al ProcessingTime=0.028825 Groupname=c3 SUBREQID=tdaa628-2263-346-0403-9208100a9ddc Type=StagePrepareToGetRequest
adm01.cern.ch/log	viewer/tape_id/I4084	10 stagerd	0	7464	createRecallCandidate: create new MigrationJob to migrate	889d0b88-8882-430d- 92c6-85755aecba54		RecallGroup=default RequestType=StagePrepareToGetRequest NSHOSTNAME=castorns SUBREQID=fdaa6238-2258-346d- e043-9208100a9ddc FileName=/castor/cern.ch/delohi/taoe/Y13716

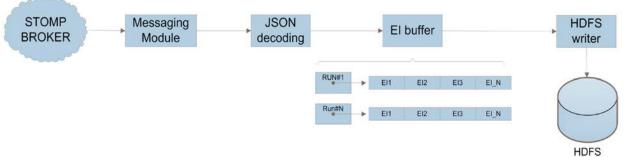
Example 1: Tape Storage event log

Metadata from physics event

Metadata are created upon recording of the physics event

Examples 2:

- Information about
 - Event number
 - run number
 - timestamp
 - luminosity block number
 - trigger that selected the event, etc.



Example 2: ATLAS EventIndex catalogue

Prototype of an event-level metadata catalogue for all ATLAS events

- In_2011 and 2012, ATLAS produced 2 billion real events and 4 billion simulated events
- Migration from former solution by the end of this year

Data are read from the brokers, decoded and stored into Hadoop.

Example 2: ATLAS EventIndex catalogue

The major use cases of the EventIndex project are:

 Event picking: give me the reference (pointer) to "this" event in "that" format for a given processing cycle.

Production consistency checks:

technical checks that processing cycles are complete (event counts match).

Event service:

give me the references (pointers) for "this" list of events, or for the events satisfying given selection criteria

A lot of ongoing research for treating Big Data

Big Data "at-rest"

Oracle DB + Hadoop + for advanced analytics
 {swirl}: Learn R, in R (http://swirlstats.com)

Big Data "in-motion"

- Complex Event Processing (CEP), e.g. Esper
- In-Memory frameworks built on JCache (JSR-107)

In-Memory

Speakers & Agenda

- Big Data @ CERN
- In-Memory Data Management
- In-Memory @ CERN

Matthias Braeger Software Engineer CERN matthias.braeger@cern.ch

Manish Devgan Product Management Software AG (Terracotta) manish.devgan@softwareag.com

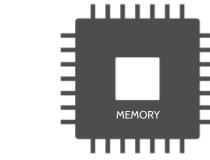
Growth of Data

Transactions, Sensors, Logs, M2M, ...

The value of *real* time

Latency Matters

Uptime, SLAs, HA



Performance and Scale

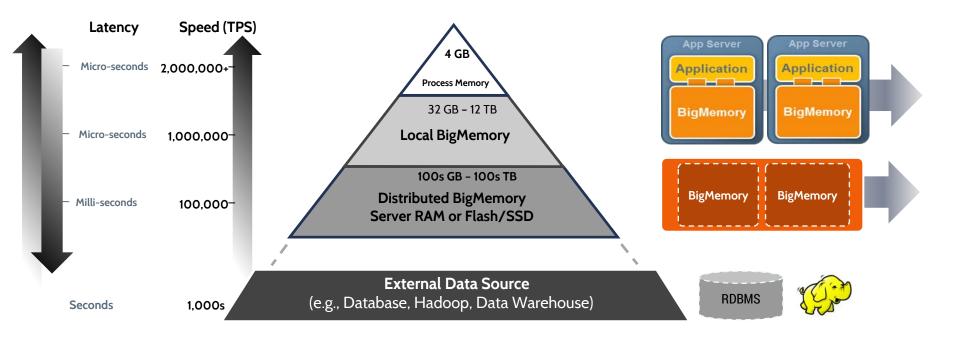
The Shift

90% of Data in Disk-based Databases 90% of Data in In-Memory

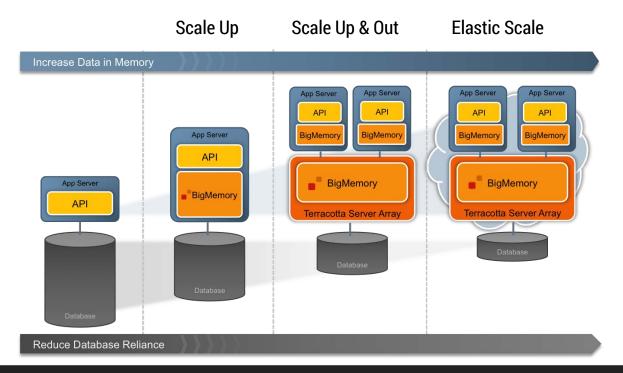
Why now?

Steep drop in price of RAM Explosion in volume and velocity of data

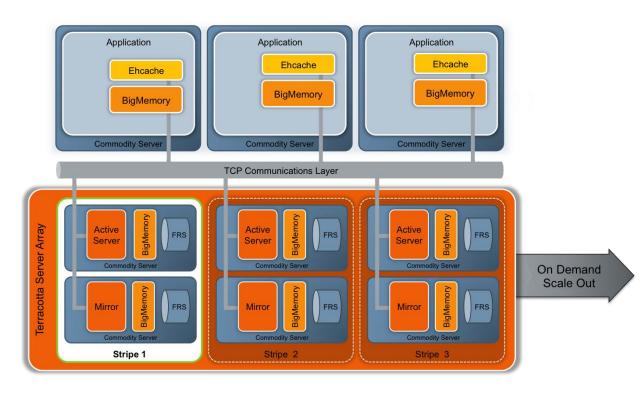
In-Memory Data Platforms


- Scale of NoSQL
- Low latency of In-Memory databases
- Reliability & Fault Tolerance
- Transactional Guarantees

Fast Big Data



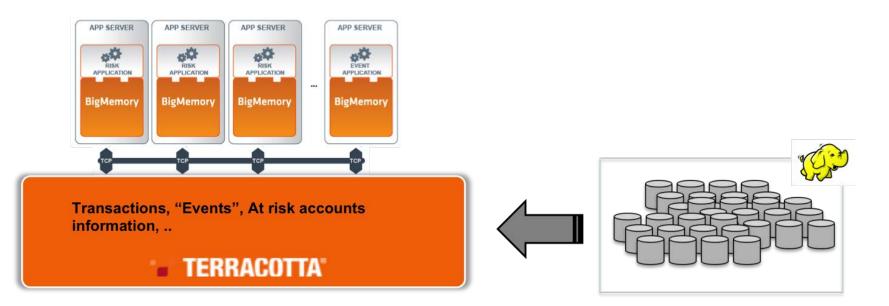
Tiered Storage


Scale with data and processing needs

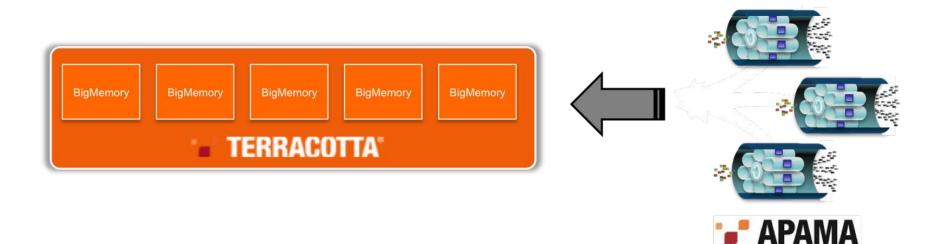
Strata+Hadoop

HA, Extreme Resiliency

- Active Mirror
- No Single point of failure
- Fast Restartable Storage (SSD/Flash)


Use cases

Influencing operations and decisions


In-Memory Data Fabric: Operationalize Hadoop*

Streaming insights into In-Memory Operational Store

In-Memory Data Fabric: Streaming Analytics

High Speed resilient data access across shared time windows

Speakers & Agenda

- Big Data @ CERN
- In-Memory Data Management
- In-Memory @ CERN

Matthias Braeger Software Engineer CERN matthias.braeger@cern.ch

Manish Devgan Product Management Software AG (Terracotta) manish.devgan@softwareag.com

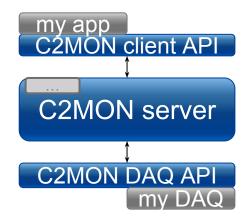
Access Control

Network and Hardware Controls

Cryogenics

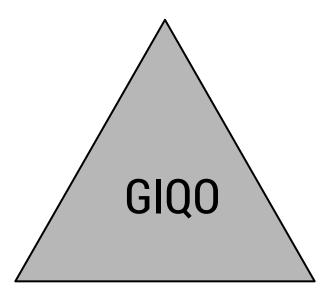
Safety Systems

Electricity

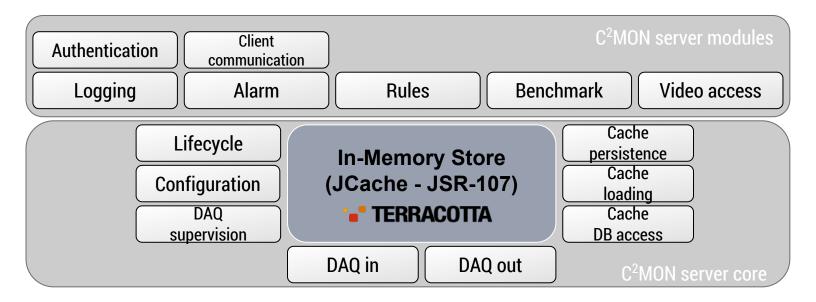


C2MON - CERN Control and Monitoring Platform

- Allows the rapid implementation of high-performance monitoring solutions
- Modular and scalable at all layers
- Optimized for High Availability & big data volume
- Based on In-Memory solution


Currently used by two big systems at CERN: TIM & DIAMON

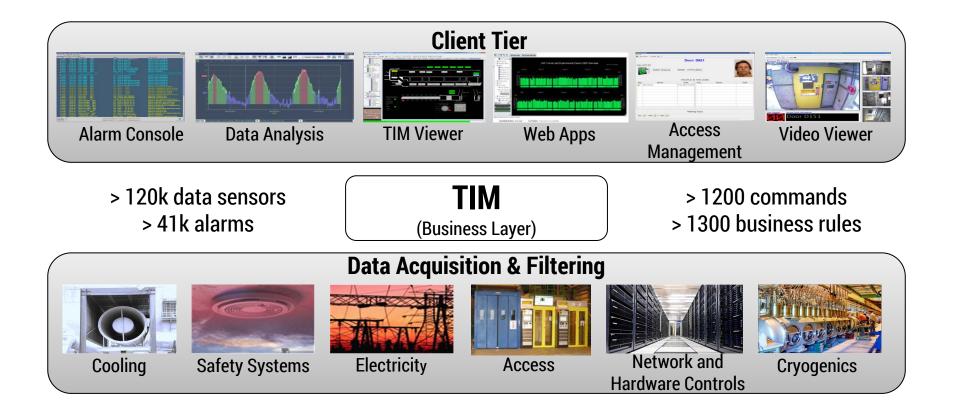
http://cern.ch/c2mon



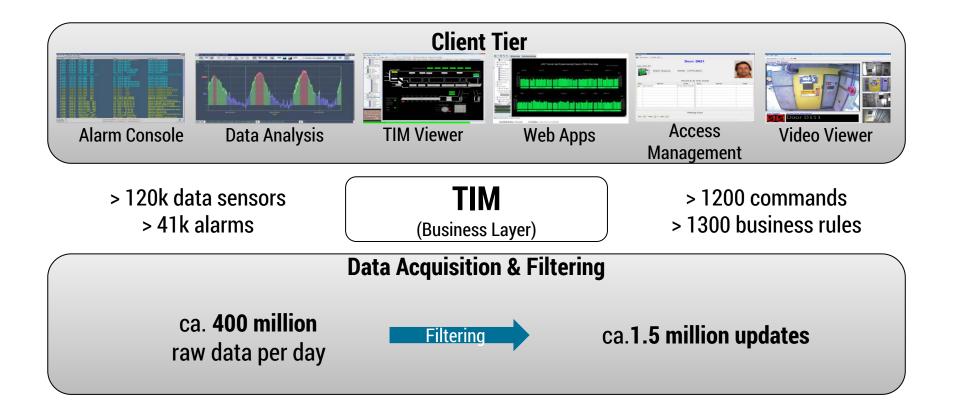
Raw data filtering on DAQ layer

Strata+Hadoop

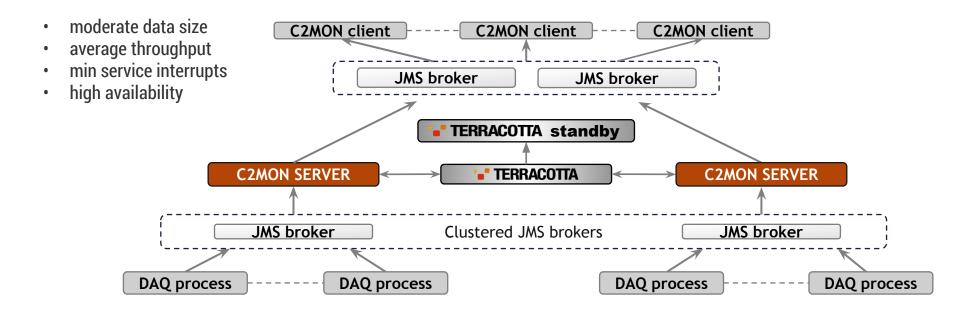
C2MON Server


TIM – Technical Infrastructure Monitoring

- Operational since 2005
- Used to monitor and control infrastructure at CERN
- 24/7 service
- ~ 100 different main users at CERN
- Since Jan. 2012 based on new server architecture with C2MON



CERN Control Center at LHC startup





Scenario 1: High availability

Strata+Hadoop

Scenario 2: High requirements

C2MON Roadmap

- Offering C2MON to the Open Source community <u>http://cern.</u> <u>ch/c2mon</u>
- Introduction of Complex Event Processing (CEP) module
- Providing NoSQL log storage solution for high data throughput scenario

Takeaways

- Data and High Availability services are more important than ever before for all modern organizations.
- Deriving value from collected data is key to success.
- In-Memory platforms are essential for high value & high velocity data storage and processing.

Credits & References

Many thanks to CERN & Software AG:

- Sebastien Ponce (CERN), for providing information about CASTOR
- Rainer Toebbicke (CERN), for providing information about CERN HBASE service
- Jan Iven (CERN), for being helpful finding information about existing CERN Hadoop projects
- Software AG/Terracotta Product & Engineering Team

References:

#strataconf

- C2MON: http://cern.ch/c2mon
- The ATLAS EventIndex: https://cds.cern.ch/record/1690609
- Agile Infrastructure at CERN Moving 9'000 Servers into a Private Cloud, Helge Meinhard (CERN): <u>http://vimeo.</u> <u>com/93247922</u>
- CRAN, The Comprehensive R Archive Network: http://cran.r-project.org
- Software AG Terracotta: http://www.terracotta.org

Related Information

Office Hours with Manish Devgan

(In-Memory Data Management & Computing) 5:05pm Thursday, 10/16/2014, Location: Table D

- Technology landscape for in-memory data management platforms
- Convergence of In-Memory, NoSQL, Hadoop, and other "Big Data" solutions
- Real-world deployments and use cases leveraging In-Memory Data Management

Follow up questions

Software AG Booth #458

∮ software ∗°

Questions?

Thank you for coming!

