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Self introduction 

•  Background 
- Machine learning research 

•  Now 
- Build ML tools 
- Teach folks how to use them 

     @RainyData, @DatoInc 
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What is Dato? 

•  A startup based in Seattle, Washington 
•  Formerly named GraphLab 
•  We built an ML platform for building and deploying apps 
- Data engineering, ML modeling, deployment to production 
- Graphs, tables, text, images 
- Out of core processing for fast ML on large data 
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Demo: stratanow.dato.com 
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What’s in an ML app? 

•  An application that uses machine learning to make 
predictions 

MyData 
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Machine learning deployment pipeline 
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Machine learning evaluation 
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When/how to evaluate ML 

•  Offline evaluation 
- Evaluate on historical labeled data 

•  Online evaluation 
- A/B testing – split off a portion of incoming requests (B) to 

evaluate new deployment, use the rest as control group (A) 
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Evaluating ML—What Could Go Wrong? 
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Evaluation metrics 

•  Classification 
- Accuracy, precision-recall, AUC, log-loss, etc. 

•  Ranking 
- Precision-recall, DCG/NDCG, etc. 

•  Regression 
- RMSE, error quantiles, max error, etc. 

•  Online models 
- Online loss (error of current model on current example) 
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Which metric? 
•  Offline metric != business metric 
- Business metric: customer lifetime value 

•  How long does the customer stay on your site? 
•  How much more do you sell? 

- Which offline metric does it correspond to? 
•  Say you are building a recommender 
-  “How well can I predict ratings?” 
- Customer sees the first few recommended items 
- Ranking metric is better than rating regression 

•  Track both business and ML metrics to see if they correlate 
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Watch out for imbalanced datasets! 
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Watch out for rare classes! 
When averaging statistics from multiple sources, watch out for different 
confidence intervals. 
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A/B testing: T-tests 

•  Statistical hypothesis testing 
-  Is population 1 significantly different from population 0? 

•  T-tests: are the means of the two populations equal? 
•  Procedure: 
- Pick significance level α 
- Compute test statistic 
- Compute p-value (probability of test statistic under the null 

hypothesis) 
- Reject the null hypothesis if p-value is less than α 
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A/B testing: T-tests 

•  Student’s t-test assumes variances are equal 
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A/B testing: T-tests 

•  Welch’s t-test doesn’t assume variances are equal 
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A/B testing: How long to run the test? 
•  Run the test until you see a significant difference? 

- Wrong! Don’t do this. 
•  Statistical tests directly control for false positive rate (significance) 

- With probability 1-α, Population 1 is different from Population 0 
•  The statistical power of a test controls for the false negative rate 

-  How many observations do I need to discern a difference of δ between the 
means with power 0.8 and significance 0.05? 

•  Determine how many observations you need before you start the 
test 
-  Pick the power β, significance α, and magnitude of difference δ 
-  Calculate n, the number of observations needed 
-  Don’t stop the test until you’ve made this many observations 
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A/B testing: 
The conundrum of multiple hypotheses 
•  You are testing 20 models at the same time … 
- … each of them has a 5% chance of being a fluke 
- … on average, expect at least one fluke in this suite of tests 

•  Adjust the acceptance level when testing multiple 
hypotheses 
- Bonferroni correction for false discovery rates 
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A/B testing: Separation of experiences 

•  How well did you split off group B? 
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A/B testing: The shock of newness 

•  People hate change 
- Why is my button now blue?? 

•  Wait until the “shock of newness” wears off, then measure 
•  Some population of users are forever wedded to old ways 

-  Consider obtaining a fresh population 

Clickathrough%rate%

The%shock%of%
newness%

t0%
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Distribution drift 

•  Trends and user taste changes over time 
- “I liked house music 10 years ago. Now I like jazz.” 

•  Models become out of date 
- When to update the model? 

•  Do both online and offline evaluation 
- Monitor correlation 
- Also useful for tracking business metrics vs. evaluation metrics 



Dato%Inc.%Strata%+%Hadoop%World,%London,%2015%%
23%

Conclusions 

•  Machine learning are useful in making smart apps 
•  Evaluating ML models in production is tricky 
•  Summary of tips: 
- Pick the right metrics 
- Monitor offline and online behavior, track their correlation 
- Be really careful with A/B testing   

%@RainyData,%@DatoInc%


