
Multi-model databases and the artof aircraft maintenance

Max Neunhöffer

Strata London 2015, 6 May 2015

www.arangodb.com

www.arangodb.com


About

about me
Max Neunhöffer (@neunhoef) working for ArangoDBMathematician turned database engineer

about the talk
multi-model databases, polyglot persistencea case study in aircraft fleet managementit is real, but secret, some guesswork on my sideArangoDB



An Aircraft Fleet



A single Aircraft



Or rather: a single Aircraft

Consists of several million parts.



Aircraft, parts, . . .



A component: an Engine, . . .



A hierarchy of thingies

...

...

Aircraft

Engine

Components

Part

...

Fleet



A tree of items



Data
We have to store a lot of data for each item:

names, type number, serial number, manufacturer
maintenance intervals, maintenance dates, subcontractor
links to manuals and documentation, contact persons
warranty information, service contract information
etc.



Questions/Queries
We have lots of different questions about this data:

Find all parts in a component.
Given a (broken) part, what is the smallest enclosing component for whichthere is amaintenance procedure?
Which parts of this aircraft need maintenance next week?
Find all components from a given supplier.
etc.



Document store
A document store stores a set of documents, which means JSON data,
these sets are called collections. The database has access to the contents
of the documents.

schema-less
very versatile



Key/value store
Opaque values, only key lookup without secondary indexes:

=⇒ high performance and perfect scalability
more restricted queries — better scalability



Graph database
A graph database stores a labelled graph. Vertices and edges can be
documents.
Graphs are good to model relations.

“graphy queries” like traversals are crucial



Polyglot Persistence

Idea
Use the right data model for each part of a system.

Take scalability needs into account!



A typical Use Case — an Online Shop
We need to hold

customer data: usually homogeneous, but still variationsMySQL
product data: even for a specialised business quite inhomogeneous
shopping carts: need very fast lookup by session key
order and sales data: relate customers and products
recommendation engine data: links between different entities



Polyglot Persistence is nice, but . . .

Disadvantages
Consequence: One needs multiple database systems in the persistencelayer of a single project!

Wouldn’t it be nice, . . .
. . . to enjoy the benefits without the disadvantages?



The Multi-Model Approach

Multi-model database
A multi-model database combines a document store with a graph
database and is at the same time a key/value store,
with a common query language for all three data models.

Important:
is able to compete with specialised products on their turf
allows for polyglot persistence using a single database



A multi-model data modeling approach
Idea
We store all data as documents.Since vertices and edges of graphs are documents, this allows to mix allthree data models.

One document (a vertex) for
the fleet,
each aircraft,
each component, and
each part

(in different vertex collections).

Containment is stored via edges (an item points to those contained).
Use document queries where the graph structure is irrelevant.
Use graphy queries when containment of items matters.
Can mix the two within a single query.



A multi-model data modeling approach
Example: An aircraft

{
_key: "No18",
kind: "aircraft",
type: "747-800",
manufacturer: "Boeing",
built: "2001-07-07_12:12",
lastMaintenance: "2015-05-04",
nextMaintenance: "2015-05-07",
flightHours: 1765,
serialNo: "123456-78-9a",
registration: "DK67BG",
isMaintainable: true

}



A multi-model data modeling approach
Example: An engine

{
_key: "Engine765",
kind: "component",
type: "X67-12",
manufacturer: "Rolls-Royce",
built: "2001-05-17_09:23",
nextMaintenance: "2015-06-01",
lastMaintenance: "2015-05-04",
flightHours: 812,
serialNo: "987654-32-1a",
fuelConsumption: 75.6,
isMaintainable: true

}



A multi-model data modeling approach

Example: A screw
{

_key: "Screw56743",
kind: "part",
type: "S6L65Q1",
material: "steel",
manufacturer: "Fischer",
serialNo: "546372635251",
batch: "B5876a"

}



A multi-model data modeling approach

Example: An edge in the graph
{

"_key": "E5364",
"_from": "aircraft/No18",
"_to": "components/Engine765",
"kind": "contains"

}



A multi-model data modeling approach



Query time . . .



Query time . . .



Query time . . .



Query time . . .



Query time . . .



Query time . . .



Query time . . .



Query time . . .

Find whole subtree
RETURN GRAPH_TRAVERSAL("FleetGraph", "components/Engine765",

"outbound")

Returns all subcomponents and subparts of Engine765.



Query time . . .

Find shortest path
RETURN GRAPH_SHORTEST_PATH("FleetGraph", "parts/Screw56744",

{isMaintainable: true},
{direction: "inbound"})

Climbs „up“ from Screw56744 until a maintainable component is found.



Query time . . .

„Orthogonal“ to the graph structure
FOR c IN components

FILTER c.nextMaintenance <= "2015-05-15"
RETURN {key: c._key, nextMaintenance: c.nextMaintenance}

Disregards graph structure, finds all components with maintenance due.



Query time . . .
A mix of them all
FOR p IN parts

FILTER p.nextMaintenance <= "2015-05-15"
LET path = GRAPH_SHORTEST_PATH("FleetGraph", p._id,

{isMaintainable: true},
{direction: "inbound"})

LET c = DOCUMENT(path[0].vertex)
FOR person IN contacts

FILTER person._key == c.contact
RETURN {part: p._id, component: c, contact: person}

Find parts, their corresponding maintenance component and join a contact person.



Other use cases
E-commerce system
Enterprise hierarchies and rights management
Social networks
Version management
Complex user-created data
Workflow management
Organisation systems
Knowledge graphs

Observation
Use cases that benefit frommulti-model are actually prevalent!



is a multi-model database (document store & graph database),
is open source and free (Apache 2 license),
offers convenient queries (via HTTP/REST and AQL),
including joins between different collections,
configurable consistency guarantees using transactions
memory efficient by shape detection,
API extensible by JS code in the Foxx Microservice Framework,
is easy to use with web front end and good documentation,
and enjoys good community as well as professional support.



Extensible through JavaScript

The Foxx Microservice Framework
Allows you to extend the HTTP/REST API by your own routes, which you
implement in JavaScript running on the database server, with direct access
to the C++ DB engine.

Unprecedented possibilities for data centric services:
custom-made complex queries or authorizations
schema-validation
push feeds, etc.



Data Center Operating System Integration

Distributed applications run well togetheron DCOSes like Mesosphere, Docker Swarm
DCOS: helps to build distributed apps(automatic failover, scaling)
ArangoDB’s design lends itself well forApache Mesos integration.
It is a win-win-cooperation.



Links

https://www.arangodb.com

https://www.arangodb.com/foxx/

http://mesos.apache.org/

https://mesosphere.com/

https://www.arangodb.com
https://www.arangodb.com/foxx/
http://mesos.apache.org/
https://mesosphere.com/

