
WebRTC

Joshua Marantz jmarantz@google.com
Google Make the Web Fast team

Delivering Optimized Images on the Modern Web
Velocity/Europe, Barcelona
November 17, 2014

mailto:jmarantz@google.com

Balancing UX, Speed and Ease of Development

Smartphone Users
High-latency connectivity
Relatively small screens
Slow CPUs, thin pipe to GPUs
Batteries Stretched Thin
Varying Browser Capabilities

Desktop / Retina Tablet Users
Fast WIFI connection

Can Display large, dense images
Powerful CPUs

Long-lasting Batteries
Varying Browser Capabilities

Website Developers
Limited Time --> Prioritize Content

User-Generated Content
Confusing Array of Changing Standards

Browsers Updating Constantly
Getting Up To Speed on “Responsive” Techniques

Balancing UX, Speed and Ease of Development

Smartphone Users
High-latency connectivity
Relatively small screens
Slow CPUs, thin pipe to GPUs
Batteries Stretched Thin
Varying Browser Capabilities

Desktop / Retina Tablet Users
Fast WIFI connection

Can Display large, dense images
Powerful CPUs

Long-lasting Batteries
Varying Browser Capabilities

Website Developers
Limited Time --> Prioritize Content

User-Generated Content
Confusing Array of Changing Standards

Browsers Updating Constantly
Getting Up To Speed on “Responsive” Techniques

UX = Performance + Quality

Mobile Web Performance
Above-the-fold content delivered in one round trip, 15kb compressed

Ilya Grigorik: Optimizing the Critical Rendering Path for Instant Mobile Websites - Velocity SC - 2013

This includes all critical JavaScript, CSS, and Images
→ inlined base64 low-resolution data URLs
→ use the most compact format available on client

Mobile Web Quality
Deliver images with enough quality to make Retina displays look great
→ replace low-res images with high-res ones on zoom

Delivering A Great Mobile Web Experience

https://www.youtube.com/watch?v=YV1nKLWoARQ

Balancing UX, Speed and Ease of Development

Smartphone Users
High-latency connectivity
Relatively small screens
Slow CPUs, thin pipe to GPUs
Batteries Stretched Thin
Varying Browser Capabilities

Desktop / Retina Tablet Users
Fast WIFI connection

Can Display large, dense images
Powerful CPUs

Long-lasting Batteries
Varying Browser Capabilities

Website Developers
Limited Time --> Prioritize Content

User-Generated Content
Confusing Array of Changing Standards

Browsers Updating Constantly
Getting Up To Speed on “Responsive” Techniques

● Image-resolution sensitive to pixel density

● Image-resolution sensitive to zoom-level

● Maximize system performance using CDNs and proxy-caches

Delivering a great desktop / tablet experience

Balancing UX, Speed and Ease of Development

Smartphone Users
High-latency connectivity
Relatively small screens
Slow CPUs, thin pipe to GPUs
Batteries Stretched Thin
Varying Browser Capabilities

Desktop / Retina Tablet Users
Fast WIFI connection

Can Display large, dense images
Powerful CPUs

Long-lasting Batteries
Varying Browser Capabilities

Website Developers
Limited Time --> Prioritize Content

User-Generated Content
Confusing Array of Changing Standards

Browsers Updating Constantly
Getting Up To Speed on “Responsive” Techniques

 Most Website developers are not performance experts
Most Website developers are not mobile experts
Most Website developers are not responsive-design experts

Most Website developers don’t come to Velocity

Many websites are not owned or maintained by their developers
contractors, sons-in-law, nephews...

Website Developers

 A simple tag is the easiest way to put images on your site

Consider sites with lots of web pages
Each of those have lots of images

Getting simple ‘img’ tags right may be all we can get in the wild

But by itself it is not going to make all of your users happy.

Web Developers View of Web Images

Lossy: JPEG, Webp, JPEG-XR
Lossless: PNG, Webp, JPEG-XR, GIF, SVG

Fewer bytes is generally better
modulo decompression cost
modulo memory of decompressed image

Goal: get the whole page to 15k uncompressed, 1 round trip
we need to squeeze critical images
need to serve them as base64 data URLs

http://goldfishforthought.blogspot.com/2010/10/comparison-webp-jpeg-and-jpeg-xr.html
https://developers.google.com/speed/webp/docs/webp_study
http://www.smashingmagazine.com/2014/05/14/responsive-images-done-right-guide-picture-srcset/

The Changing Landscape: Image Formats

http://goldfishforthought.blogspot.com/2010/10/comparison-webp-jpeg-and-jpeg-xr.html
http://goldfishforthought.blogspot.com/2010/10/comparison-webp-jpeg-and-jpeg-xr.html
https://developers.google.com/speed/webp/docs/webp_study
https://developers.google.com/speed/webp/docs/webp_study
http://www.smashingmagazine.com/2014/05/14/responsive-images-done-right-guide-picture-srcset/
http://www.smashingmagazine.com/2014/05/14/responsive-images-done-right-guide-picture-srcset/

http://gs.statcounter.com/#all-browser-ww-monthly-200812-201411

The Changing Landscape: Overall Browser Share

http://gs.statcounter.com/#all-browser-ww-monthly-200812-201411
http://gs.statcounter.com/#all-browser-ww-monthly-200812-201411

The Changing Landscape: The Ascent Of Mobile

http://gs.statcounter.com/#desktop+mobile+tablet-comparison-ww-monthly-200812-201411

The Developing World is driving this trend

And they are largely on 2G

http://gs.statcounter.com/#desktop+mobile+tablet-comparison-ww-monthly-200812-201411
http://gs.statcounter.com/#desktop+mobile+tablet-comparison-ww-monthly-200812-201411

The Changing Landscape: Mobile-only Browser Share

UC Browser & Opera

http://gs.statcounter.com/#mobile_browser-ww-monthly-200812-201411

http://gs.statcounter.com/#mobile_browser-ww-monthly-200812-201411
http://gs.statcounter.com/#mobile_browser-ww-monthly-200812-201411

The Changing Landscape: Browser Image Support, Nov ‘14
Browser Mobile Market

Share(*)
Desktop + Tablet
Market Share

WebP Jpeg-XR PNG, Jpeg, Jpeg-
Progressive, GIF

IE 0% 20% no Yes (IE9+) Yes

Chrome 29% 48% Lossy & Lossless no Yes

Android 21% 0% Lossy no Yes

Opera 9% 1% Lossy no Yes

UC Browser 10% 0% ? ? Yes

Safari / iPhone 22% 11% no no Yes

Firefox 0% 17% no no Yes

Nokia 9% 0% no no Yes

http://gs.statcounter.com/#all-browser-ww-monthly-200812-201405,
http://gs.statcounter.com/#mobile_browser-ww-monthly-200812-201406-bar

Browsers supporting advanced image formats
Desktop+Tablet: 69% (Chrome + IE + Opera)
Mobile: 59% (Android + Opera + Chrome)

19% of Mobile Browsers designed for low bandwidth (Opera + UC)

http://gs.statcounter.com/#all-browser-ww-monthly-200812-201405,
http://gs.statcounter.com/#all-browser-ww-monthly-200812-201405,

http://en.wikipedia.org/wiki/List_of_displays_by_pixel_density (+ zooming)

Changing Landscape: Devices

CSS pixel == device pixel CSS pixel ≠ device pixel

Old: New:

http://en.wikipedia.org/wiki/List_of_displays_by_pixel_density
http://en.wikipedia.org/wiki/List_of_displays_by_pixel_density

Recent Apple device resolutions

Model Generations Diagonal cm (in) Resolution PPCM (PPI) CSS pixel ratio

iPad 1st gen, 2 gen 25 (9.7) 1024x768 52 (132) 1

iPad / iPad Air 3rd gen, 4th gen 25 (9.7) 2048x1536 104 (264) 2

iPad Mini 1st gen 20 (7.9) 1024x768 64 (163) 1

iPad Mini 2nd gen 20 (7.9) 2048x1536 128 (326) 2

iPhone 3GS 3 / 3rd gen 8.9 (3.5) 320x480 64 (163) 1

iPhone 4 4 / 4th gen 8.9 (3.5) 960x640 128 (326) 2

MBP 13” 2009-2012 34 (13.3) 1280x800 44 (113) 1

MBP 13” Retina 2012-2013 34 (13.3) 2560x1600 89 (227) 2

People who buy Retina iPads have
beautiful devices and want to see
beautiful images on them

http://en.wikipedia.org/wiki/IPad
http://en.wikipedia.org/wiki/IPad
http://en.wikipedia.org/wiki/XGA
http://en.wikipedia.org/wiki/XGA
http://en.wikipedia.org/wiki/IPad
http://en.wikipedia.org/wiki/IPad_Air
http://en.wikipedia.org/wiki/IPad
http://en.wikipedia.org/w/index.php?title=2048x1536&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=2048x1536&action=edit&redlink=1
http://en.wikipedia.org/wiki/IPad_Mini
http://en.wikipedia.org/wiki/IPad_Mini
http://en.wikipedia.org/wiki/XGA
http://en.wikipedia.org/wiki/XGA
http://en.wikipedia.org/wiki/IPad_Mini_(2nd_generation)
http://en.wikipedia.org/wiki/IPad_Mini_(2nd_generation)
http://en.wikipedia.org/w/index.php?title=2048x1536&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=2048x1536&action=edit&redlink=1
http://en.wikipedia.org/wiki/IPhone_3GS
http://en.wikipedia.org/wiki/IPhone_3GS
http://en.wikipedia.org/w/index.php?title=320x480&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=320x480&action=edit&redlink=1
http://en.wikipedia.org/wiki/IPhone_4
http://en.wikipedia.org/wiki/IPhone_4
http://en.wikipedia.org/w/index.php?title=960x640&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=960x640&action=edit&redlink=1
http://en.wikipedia.org/wiki/MacBook_Pro
http://en.wikipedia.org/wiki/1280x800
http://en.wikipedia.org/wiki/1280x800
http://en.wikipedia.org/wiki/2560x1600
http://en.wikipedia.org/wiki/2560x1600

Challenges with simple tag

All parameters for optimization not known in one place

The browser doesn’t know the image dimensions are quality before
downloading

The server does not know the pixel density or device performance based in the
request

Thus was born srcset: http://www.w3.org/html/wg/drafts/srcset/w3c-srcset/
(published June 26, 2014)

http://www.w3.org/html/wg/drafts/srcset/w3c-srcset/

srcset browser support

http://caniuse.com/#feat=srcset

Fortunately, Graceful fallback to src= attribute means you can use srcset and it will not harm other browsers

http://caniuse.com/#feat=srcset
http://caniuse.com/#feat=srcset

Who are your users?
How are they connected?
What browsers do they use?
Do you care...

whether your site is beautiful on a modern tablet / computer?
if your site works properly on a variety of older browsers
if your site performs well on a mobile phone on Edge/3G/LTE?

Don’t forget the users!

<img src="image-1x.jpg"
 srcset="image-2x.jpg 2x, image-4x.jpg 4x">

Available in Chrome, Safari, & Firefox

Extra attributes will be safely ignored by other browsers until they add this
capability

Delivers the right quality images to most modern phones and tablets

Anatomy of a reasonable Image tag

The srcset attribute allows authors to provide a set of images to handle graphical
displays of varying dimensions and pixel densities.

The attribute essentially takes a comma-separated list of URLs each with one or
more descriptors giving the maximum viewport dimensions and pixel density
allowed to use the image. From the available options, the user agent then picks
the most appropriate image. If the viewport dimensions or pixel density
changes, the user agent can replace the image data with a new image on
the fly.

To specify an image, give first a URL, then one or more descriptors of the form
100w or 2x, where "100w" means "maximum viewport width of 100 CSS pixels"
and "2x" means "maximum pixel density of 2 device pixels per CSS pixel".

srcset specification flexibility

http://www.w3.org/html/wg/drafts/srcset/w3c-srcset/#attr-img-srcset

srcset helps Responsive Design, but is not dynamic by default

Srcset Observations in Chrome & Safari

Chrome Safari

Selects images on Page Load Yes Yes

Selects images on Control-+ No No

‘onresize’ on Control-+ Yes Yes

‘onresize’ on Pinch-Zoom No Yes

‘ontouchstart’ Yes Yes

function upgradeImage(img) {
 var hiRes = getSourceForCurrentResolution(img);
 if (img.src != hiRes) {
 var hiResImg = new Image();
 hiResImg.onload = function() { img.src = hiRes; }
 hiResImg.src = hiRes;
 }
}

Dynamic Image Refinement “polyfills”

Control-+ for Desktop devices Pinch-Zoom for Mobile Devices

window.addEventListener(‘resize’, function() {
 foreach img { upgradeImage(img); }
});

foreach img {
 img.addEventListener(‘touchstart’, function() {
 upgradeImage(img);
 });
}

Game Plan:

Deliver a low-res view of the web page in 15k bytes compressed
no external resources

Fill in detail dynamically as user expresses interest

srcset is not (AFAICT) intended for this, but it could be

Why Add This JS? Can’t Browsers Do This?

Resized image with simple img tag

1.3 meg is way too many
bytes for these pixels

And too slow, even
with server & client
on same machine

Optimized/sized images are 90% smaller & look great...

3.3 K: small enough to
inline if the images are
critical to the page

...until you zoom in; browser scaling looks terrible

Add “srcset” and polyfill for Zoom Sensitivity

1.1k JavaScript “polyfill”
replaces lower-res images
with higher-res images when
user zooms in with Control-+.
+ Enables ‘srcset’ on all
browsers with JS!

Demo

<picture> and <source> can be combined to select webp images to compatible
browsers (Chrome, Opera)

https://html.spec.whatwg.org/multipage/embedded-content.html#introduction-3:attr-picture-source-type

<picture>

 <source srcset="/uploads/100-marie-lloyd.webp" type="image/webp">

 <source srcset="/uploads/100-marie-lloyd.jxr" type="image/vnd.ms-photo">

</picture>

Delivering the best image format in markup

https://html.spec.whatwg.org/multipage/embedded-content.html#introduction-3:attr-picture-source-type
https://html.spec.whatwg.org/multipage/embedded-content.html#introduction-3:attr-picture-source-type

Change the URL
● Web Performance Optimization

mod_pagespeed etc, Akamai Aqua Ion, Radware
● Embedded in Web App (Facebook, Google+)
● Risks: subtly interfering with JavaScript introspection
http://mzoom.org/588x440xwintercharles.jpg.pagespeed.ic.iVgBCAHftt.webp

Leave the URL alone
● Serve webp but to .jpg URL
● Use Vary:Accept
● Proxy-caches & CDNs need to cache responses with Vary:Accept

Delivering the best image format in the server

http://mzoom.org/588x440xwintercharles.jpg.pagespeed.ic.iVgBCAHftt.webp
http://mzoom.org/588x440xwintercharles.jpg.pagespeed.ic.iVgBCAHftt.webp

Hints From The HTTP Request

User-Agent Accept

IE 11 Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; rv:
11.0) like Gecko

text/html, application/xhtml+xml, */*

Chrome Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_3)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.
0.1916.153 Safari/537.36

text/html,application/xhtml+xml,
application/xml;q=0.9,image/webp,*/*;
q=0.8

Firefox Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9; rv:30.0)
Gecko/20100101 Firefox/30.0

text/html,application/xhtml+xml,
application/xml;q=0.9,*/*;q=0.8

Safari Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_3)
AppleWebKit/537.76.4

text/html,application/xhtml+xml,
application/xml;q=0.9,*/*;q=0.8

Opera Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_3)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.
0.1916.153 Safari/537.36 OPR/22.0.1471.70

text/html,application/xhtml+xml,
application/xml;q=0.9,image/webp,*/*;
q=0.8

Proxy Caches situated closer to users than your origin
Maps URLs + X? -> Content (Content-Type)
But what if you want to serve different content to modern browsers?

Vary:Accept
Vary:User-Agent

One concern: Proxy Cache Fragmentation

Content Delivery Networks

Handles cached requests much faster than typical origin
servers

Varnish
Squid
Apache Traffic Server
nginx

Same issues with CDNs: Vary handling

Local Proxy Cache

Add Vary:Accept in your response headers
IE will have to validate browser cache hits (!!)

Omit Vary:Accept in your response headers
Proxy caches and CDNs can deliver the wrong content, so use Cache-
Control:private

Strip Vary:Accept at the last point you control: proxy cache or CDN

ModPagespeedEnableFilters in_place_optimize_for_browser

ModPagespeedPrivateNotVaryForIE off
https://developers.google.com/speed/pagespeed/module/system#in_place_optimize_for_browser

Getting the Details Right: Internet Explorer

HTTP Requests for origin images from EC2 are served with
User-Agent + Accept headers stripped (!!!)

→ We must serve distinct URLs for webp, avoid optimizing in-
place for sites using EC2 as a CDN

Getting the Details Right: Amazon EC2

→ Evangelize web development best practices
→ Make faster browsers
→ Make better CDNs
→ Automate content generation to exploit browsers & CDNs

Making A Better Web

In 2014, browsers, CDNs, and WPO tools are make this easier

Effective use of srcset (with help of dynamic polyfills)
Try It Yourself: http://mzoom.org [through November 2014]

Sending superior image formats to modern browsers

 Effective Use of CDNs and Proxy Caches

Delivering Optimized Images On The Modern Web

http://mzoom.org

